• Aucun résultat trouvé

Selection for feed efficiency as a tool to improve sustainability of poultry production

N/A
N/A
Protected

Academic year: 2021

Partager "Selection for feed efficiency as a tool to improve sustainability of poultry production"

Copied!
29
0
0

Texte intégral

(1)

HAL Id: hal-01209208

https://hal.archives-ouvertes.fr/hal-01209208

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Selection for feed efficiency as a tool to improve sustainability of poultry production

Sandrine Grasteau, Agnès Narcy, Bertrand Méda, Michel Lessire, Nabeel Alnahhas, Cécile Arnould, Anne-Christine Lalmanach, Pascale Quéré, Fabien

Brossier, Nathalie Meme, et al.

To cite this version:

Sandrine Grasteau, Agnès Narcy, Bertrand Méda, Michel Lessire, Nabeel Alnahhas, et al.. Selection for feed efficiency as a tool to improve sustainability of poultry production. 102. Annual Meeting of the Poultry Science Association, Jul 2013, San Diego, United States. 28 diapositives. �hal-01209208�

(2)

S. Mignon-Grasteau, A. Narcy, B. Méda, M. Lessire, N. Alnahhas, C.

Arnould, A.C. Lalmanach, P. Quéré, F. Brossier, N. Même, L. Sedano, A. Niepceron, H. Marty, N. Chanteloup, A. Trottereau, Y. Le Vern, N.

Lallier, J.M. Brigant, O. Callut, E. Guitton, P. Cousin, B. Campone, S.

Lavillatte, M. Hassouna, and C. Schouler

Selection for feed efficiency as a tool to improve sustainability of poultry production

(3)

.02

Animals represent 50%

of human activities emissions

Agriculture (animals)

Agriculture (land)

Energy

Chemical industry Forest

Wastes

Agriculture (animals)

Agriculture (land)

Urban domestic

effluents

Sewage sludges Urban

industrial effluents

(4)

.03

Poultry represent 5-10%

of animal emissions

Horse

Pig

Sheep

& Goat

Cattle Poultry

Horse Pig

Sheep

& Goat

Cattle Poultry

(5)

Situation in 2005, in France

0 1 2 3 4 5 6 7

Meat production

Solide manure Liquid manure 106 tons

(6)

Situation in 2005, in Europe

Zones of poultry production ≠ Zones of cereals production Large impact of poultry manure in specific regions in Europe

Sharpley et al (1999)

Cereals Poultry Phosphorus (kg.ha-1.year-1)

Consumed Retained Lost

Sutton et al (2011)

Total nitrogen emissions in the air (kg N.km-2.year-1)

(7)

How can we reduce environmental impact on production: post-excretion treatment

Post-excretion treatment Transportation

.km-1 .t-1 of nitrogen

Cost of poultry manure transportation in fonction of the distance

Control

5% Al spread on the surface 10% Al spread on the surface 5% Al mixed in manure

10% Al mixed in manure

Cumulated losses of NH3 (g.m-2 )

Time (d)

(8)

How can we reduce environmental impact on production: nutrition

Addition of additives Adequation of diets to needs

BW at 3

wk (g) Bone Ash

(%)

Available P (%)

Nitrogen Phosphorus

Phytase (U.kg-1 of feed)

Retention rate (%)

(9)

How can we reduce environmental impact on production: genetics

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14

0 1 2 3 4 5 6 7

P2O5 excretion (g/kg of bird)

Nitrogen excretion (g/kg of bird)

FCR

Relationship between FCR and nitrogen and phosphorus excretion in different types of poultry production (CORPEN, 2006)

(10)

Increased needs for poultry meat

~100 106 t today

~250 106 t in 2050

(11)

Increased needs for cereals and proteins

80%

20%

60-70%

30-40%

Increasing the digestive efficiency to include alternative feedstuffs and maintain a sustainable system

(12)

The D+/D- lines selected on digestive efficiency

Medium growing broilers

Used in certified colored production 2.2 kg at 56 d

Commercial products

Dwarf hens

« Fast » growing broilers 2.0 kg at 49 d

2.4 kg at 56 d

(13)

The D+/D- lines selected on digestive efficiency

Selection during 8 generations on a Rialto wheat diet Criterion of selection: AMEn

Wheat

Corn

AMEn

(14)

The D+/D- lines selected on digestive efficiency

D+

Commercial Line D-

4-7 d 17-21 d 49-53 d Age (d)

(15)

Selection on AMEn: consequences on manure

production

(16)

Selection on AMEn: consequences on manure production

D+

Commercial Line D-

(17)

Selection on AMEn: which traits can we select?

N=630 D+/D- Age = 3 wk Diet= Rialto

BW

(18)

Selection on AMEn: which traits can we select?

(19)

What was still missing to assess sustainability?

Growth FCR, AMEn

Economy

Quantity of droppings N, P, water in droppings Behavior

Susceptibility to disease

Leg disorders, bone quality

Characteristics of litter (N, P, water, pH, temperature)

Environment

Air quality Carcass composition

Meat quality

Social

Floor rearing

(20)

Filling the gaps

32 pens

846 males and females D+ and D-

On floor 2 diets

Classical diet (CD)

Corn : 61% (0-14 d); 69% (14-53 d) Soybean :35% (0-14 d); 26% (14-53 d)

Alternative diet (AD)

Rialto wheat : 54% (0-14 d); 62% (14-53 d) Soybean : 28% (0-14 d); 16% (14-53 d) Sunflower meal : 5% (0-14 d); 6% (14-53 d) Rapeseed cake : 6% (0-14 d); 6% (14-53 d)

(21)

Measurements on the 3 pillars

Growth: BW0, 1, 2, …, 8 wk Efficiency:

FCR: weekly by pen

Dig. Phosphorus (3, 7 wk) Body composition:

Abdominal and breast yield (8 wk)

Gizzard, Intestine yield (8 wk) Meat quality:

L, a*, b* of the breast (8 wk)

pH of the breast (8 wk)

Economy

Behavior: Scan sampling (1, 3, 5, 7 wk):

eating, drinking, walking,

standing, laying down Leg quality:

Pododermatitis, breast blisters, tibia burns (1, 3, 5, 7 wk)

Tibia yield, ash % of the tibia (3, 7 wk) Susceptibility to disease (3 wk):

E. coli (bacteraemia, lesion score)

Susceptibility to E. tenella (growth, lesion score)

Genes of the immune system (IFNg, IL6, IL1b)

Environment

Litter quantity (8 wk)

Litter characteristics (1, 3, 5, 8 wk):

pH, temperature (surface+deep), humidity

Nitrogen, ammonia, phosphorus content

Air quality (1, 3, 7 wk):

NH3

N2O

CO2

Social

(22)

Analyses

Analyses of variance trait by trait:

• All traits: line, diet, line×diet interaction

• Depending on trait: sex, weight, observer

Multifactorial analyses:

• 1 analysis by pillar on a selection of traits

• Done at the pen level

• Means of individual values (body weight, digestibility, …)

• Value of the pen (FCR, litter quality)

• Each trait was cut in 2 categories (high-low) with equal frequencies

• SPAD7.0 software

(23)

Results (economy)

0 500 1000 1500 2000

0 20 40 60

Body weight (g)

Age (d)

D+ AD D+ CD D- AD D- CD

0,0 0,5 1,0 1,5 2,0 2,5 3,0

D+ AD D+ CD D- AD D- CD

c c a b

Growth FCR (0-8 wk)

(24)

Results (environment)

c c a b

a ab b ab

Manure quantity Air quality

(25)

Results (social)

Susceptibility to E. coli Pododermatitis score

b c a a c bc ab a

a b b ab

(26)

Multifactorial Analyses: economy

-1.0 -0.5 0 0.5

-0.8 -0.4 0 0.4 0.8

Factor 1 - 28.06 % BW0 : <39.5

BW0 : >39.5 BW2 : <173

BW2 : >173 BW4 : <607

BW4 : >607 BW8 : <1860

BW8 : >1860 PHM : <5.65

PHM : >5.65

L : <49.45 L : >49.45

a* : <-0.32

a* : >-0.32 b* : <0.7

b* : >0.7 BRY : <6.6

BRY : >6.6 AFY : <3.0

AFY : >3.0 GIZY : <1.3

GIZY : >1.3

INTY : <3.95 INTY : >3.95

FC0-2 : <300

FC0-2 : >300

FC2-4 : <745

FC2-4 : >745

FC4-8 : <3160

FC4-8 : >3160

FCR : <2.1

FCR : >2.1

DIGP3 : <61.2 DIGP3 : >61.2

DIGP7 : <53.9

DIGP7 : >53.9

D+AD

D+CD D-AD

D-CD Factor 2 - 17.75 %

(27)

Multifactorial Analyses: environmental

-1.2 -0.8 -0.4 0 0.4 0.8

-0.4 0 0.4

Factor 1 - 26.73 % Factor 2 - 18.39 %

EXCR : <0.675 EXCR : >0.675

HUM1 : <7.3 HUM1 : >7.3

HUM3 : <16.0

HUM3 : >16.0 HUM8 : <29.8

HUM8 : >29.8

TEMP1 : <27.6

TEMP1 : >27.6

TEMP3 : <23.1

TEMP3 : >23.1

TEMP8 : <23.4

TEMP8 : >23.4 PHL1 : <6.3

PHL1 : >6.3 NTOTL1 : <2.02 NTOTL1 : >2.02

NAMML1 : <0.03 NAMML1 : >0.03

PL1 : <0.36 PL1 : >0.36

PHL3 : <6.0

PHL3 : >6.0

NTOTL3 : <2.85 NTOTL3 : >2.85

NAMML3 : <0.08

NAMML3 : >0.08

PL3 : <0.71 PL3 : >0.71

PHL7 : <7.22

PHL7 : >7.22

NTOTL7 : <4.05

NTOTL7 : >4.05

NAMML7 : <0.40

NAMML7 : >0.40 PL7 : <1.27

PL7 : >1.27 PHL8 : <7.6

PHL8 : >7.6 NTOTL8 : <4.06

NTOTL8 : >4.06

NAMML8 : <0.30

NAMML8 : >0.30

PL8 : <0.99

PL8 : >0.99

D+AD

D+CD D-AD

D-CD

(28)

Multifactorial Analyses: social

-0.4 0 0.4

-0.4 0 0.4

D+AD

Factor 1 - 21.10 % DRI1 : <3.6

DRI1 : >3.6

EAT1 : <7.6 EAT1 : >7.6

WAL1 : <4.5

WAL1 : >4.5

STA1 : <43 STA1 : >43

LAY1 : <40

LAY1 : >40 DRI3 : <4.5

DRI3 : >4.5 EAT3 : <5

EAT3 : >5

WAL3 : <4.5

WAL3 : >4.5

STA3 : <28

STA3 : >28

LAY3 : <58

LAY3 : >58

DRI8 : <2.8

DRI8 : >2.8

EAT8 : <3.3 EAT8 : >3.3

WAL8 : <1.6

WAL8 : >1.6

STA8 : <11

STA8 : >11

LAY8 : <82

LAY8 : >82

PODO1 : <0.30

PODO1 : >0.30

PODO3 : <2.18

PODO3 : >2.18

ASH3 : <41.5

ASH3 : >41.5

ASH7 : <39.5

ASH7 : >39.5

DTY3 : <0.282

DTY3 : >0.282

DTY8 : <0.38 DTY8 : >0.38

SCORE : LSHigh SCORE : LSLow

Factor 2 - 14.75 %

D+CD

D-AD

D-CD

(29)

Conclusions

Criteria as CDUDM or NE/NI can be selected

Selection on CDUDM or AMEn more efficient than on RFC or FCR for environmental purposes

Selection for digestive efficiency

• Improves economic performances

• Improves environmental performances

• Does not modify or slightly improve social performances

Birds with improved digestive efficiency are less susceptible to diet change

Références

Documents relatifs

FIGURE 4 | Individual variations of mean voltage measured from force sensors and energy expenditure due to physical activity (AHP, % of ME intake) in entire male (EM),

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production

last decade have in fact reversed the role of schools from being instrument of democratic citizenship and social justice to being agents of neo-liberal market reform..

REVIEW EDITOR 1 DIRECTEUR DE LA CRITIQUE DES LIVRES: Anthony Paré. MEMBERS 1 MEMBRES: Helen

Title Page Abstract Introduction Conclusions References Tables Figures J I J I Back Close Full Screen / Esc.. Print Version

Video assessment of feed intake (FI) on individual fish reared in groups was used to estimate the genetic parameters of growth traits (body weight gain, BWG), FI, FCR and

The traits measured were body weight (BW), feed conversion ratio (FCR), AMEn, weights of crop, liver, gizzard and proventriculus, and weight, length and density of the duodenum,

The model that accounts for animal-specific feed requirements per unit of growth, backfat thickness gain and metabolic body weight needs was statistically superior to the