• Aucun résultat trouvé

A folk model structure on omega-cat

N/A
N/A
Protected

Academic year: 2022

Partager "A folk model structure on omega-cat"

Copied!
4
0
0

Texte intégral

(1)

A folk model structure on omega-cat

joint work with

François Métayer & Krzysztof Worytkiewicz Yves Lafont

Aix-Marseille 2 & CNRS

Institut de Mathématiques de Luminy

HOCAT 2008 CRM, Barcelona

1

History

Homology of rewriting (Anick/Squier 1987) Finite derivation type (Squier 1994)

Computads/polygraphs (Street & Power/Burroni 1991) Polygraphic resolutions (Métayer 2003)

Model structure on Cat (Joyal & Tierney 1990) Model structure on 2-Cat (Lack 2002)

2

Strict omega-categories

0-cells 1-cells 2-cells 3-cells ...

Compositions

...

...

Laws of associativity, units, and interchange

... ...

3

Generating cofibrations

C D p

Acyclic fibrations

i0 ...

O0

!O0

i1

O1

!O1

i2

O2

!O2

i3

O3

!O3

in

!On

On

x y

such that p u = v.

C

p x D

p yv

For any v : p x ! p y in D,

u

there is u : x ! y in C I:

I-fib:

4

(2)

Cofibrations Factorization

Theorem (Métayer) Cofibrant objects

are polygraphs.

O0

!O1

o0

O1

!O2

o1

B A k

C D

p I-fib

B A

f C

p I-fib k I-cof

Any

"-

functor factorizes as follows:

k0

p0

k1

p1

Crucial example:

...

B

C D p I-cof:

5

Our main result

Theorem

(Lafont, Métayer & Worytkiewicz):

There is a model structure on "-Cat such that:

#

I is a set of generating cofibrations for this structure;

#

the class W of weak equivalences is minimal.

The following model structures are derivable from this:

#

on Cat (Joyal & Tierney 1990);

#

on 2-Cat (Lack 2002);

#

on n-Cat.

They are obtained by Quillen adjunctions (Beke 2001)

6

Our strategy

Define the class W of weak equivalences.

Prove the following properties (Smith):

#

I-fib W;

#

W has the 3 for 2 property;

#

I-cof W is closed under pushout, retract, and tranfinite composition;

#

I and W satisfy the solution set condition.

Tools: "-equivalence & reversibility, connections, gluing factorization, immersions, generic squares.

7

" -equivalence & reversibility

y

x u

Lemma

If u is reversible, it satisfies a (left) division property:

u v

w such that u ! r ~ s.

(General case: u is a 1-cell and s is a n+1-cell)

u v

w

u s

For all s : u ! v ! u ! w,

r there is r : v ! w

Definition

(by coinduction)

#

x ~ y iff there exists a reversible cell u : x ! y;

#

u : x ! y is reversible iff there exists u : y ! x such that u ! u $ ~ idx and u $ ! u ~ idy.

$

~

u ! u$ ~ $u ! u

$u

8

(3)

Weak equivalences

Proposition

The class W of weak equivalences satisfies 3 for 2.

Definition

By a relaxed version of the right lifting property:

x y

such that f u ~ v C

D

A B C A B C A B C

(Some machinery is needed for the third case)

f x f yv

For any v : f x ! f y in D

u

there is u : x ! y in C (not =) W:

9

Cylinders & connections

0-cylinder

x

y

1-cylinder

x

y

2-cylinder

x

y

...

Definition

A connection U : x ☎ y is a reversible cylinder.

Lemma

There is a topdown transport for parallel connections:

x

x’

U!

y

y’

!V

z For all z : x ! y,

!W

and a connection W : U ! V | z ☎ z’.

z’

there is z’ : x’ ! y’

z’ is weakly unique.

10

Operations on connections

concatenation

Theorem:

Connections in C form an "-category %(C).

x

y

z

trivial cylinder

x

0-composition

x

z

y

t

x

z

1-composition

y

t

...

Concatenation is needed to define n-compositions.

We get the following commutative diagram:

C&

%(C) C "1 "2 C

id id

11

Gluing factorization

C D f

Definition

The gluing factorization f = f o f is defined by a pullback:ˆ ˜

%(D) "1

f’

'(f) "1

Lemma

f W if and only if f I-fib.ˆ

C '(f) D

f fˆ

f˜ where f = "ˆ 2 o f’

Explicit descriptions: f(x)

! f(x)

f(x):˜

&(f(x)) f(x)

y

!

'(f):

U

12

(4)

Immersions

C D C

id

f g D

%(D)h D "1 "2 D fC

g

id D

%(D)h D &

fC f

Definition

f : C ! D is in Z if there are g : D ! C and h : D ! %(D) such that the following three diagrams commute:

Lemma

I-cof W Z W.

Lemma

Z is closed under pushout.

Corollary

I-cof W is closed under pushout.

fC id D

'(f)

D fˆ

In other words:

13

Generic squares

Definition

The generic squares are the following diagrams:

i0

O0

!O0 i0 O0

j0

j0’ P0

i1

O1

!O1 i1 O1

j1

j1’ P1

...

Lemma

Those squares are universal for "-equivalence.

Corollary

f W iff we have factorizations:

C D f Pn

On jn

in

!On

On (solution set condition)

14

Conclusion

We have proved the following properties:

#

I-fib W;

#

W has the 3 for 2 property;

#

I-cof W is closed under pushout, retract, and tranfinite composition;

#

I and W satisfy the solution set condition.

15

References

Y. Lafont, François Métayer & Krzysytof Worytkiewicz, A folk model structure on omega-cat (ArXiv, 2007) Y. Lafont & François Métayer, Polygraphic resolutions and homology of monoids (submitted)

François Métayer, Cofibrant objects among higher dimensional categories (HHA, 2008)

16

Références

Documents relatifs

[r]

[r]

[r]

[r]

Le combat livré par Jacques LAFONT dans ce dossier, marque le tournant d'une jurisprudence qui va ainsi se dessiner à partir des années 1980, indemnisant enfin les

Dans son char, enveloppé d'une épaisse nuée noire, Phaéton n'avait qu'un seul désir : que ce cauchemar se termine au plus vite!. Plutôt la mort que cette terreur

Now Simplicial Sets carries a closed model structure, i.e., it has distinguished classes of maps called cofibrations, weak equivalences, and.. fibrations satisfying

Therefore, it is equivalent to generate directly the vertical positioning error using the variance