• Aucun résultat trouvé

Initiation aux DL

N/A
N/A
Protected

Academic year: 2022

Partager "Initiation aux DL"

Copied!
7
0
0

Texte intégral

(1)

Initiation aux DL

Pour avoir une limite avec Maple, on utilse la fnction "limit". Pour un équivalent et/ou un développement limité, on utilise en général "taylor", ou "series" si "taylor" n’y arrive pas. Si l’affaire se passe au voisinage de l’infini, on peut utiliser "asympt"

> ?limit

The limit(f,x=a,dir) function attempts to compute the limiting value of f as x approaches a.

If dir is not specified, the limit is the real bidirectional limit, except in the case where the limit point is infinity or -infinity, in which case the limit is from the left to infinity and from the right to

-infinity. For help with directional limits see limit[dir].

> ?taylor

• The function taylor computes the Taylor series expansion of expr, with respect to the variable x, about the point a, up to order n.

• The taylor function is a restriction of the more general series function. See series for a complete explanation of the parameters.

> ?asympt

• The function asympt computes the asymptotic expansion of f with respect to the variable x (as x approaches infinity).

• The third argument n specifies the truncation order of the series expansion. If no third argument is given, the value of the global variable Order (default Order = 6) is used.

Exercice 3

> limit((1-2/n)^(3*n),n=infinity);

e(-6)

Exercice 7

> limit((1-1/n)^n,n=infinity);

e(-1)

Exercice 13

> plot({x,x^2,sqrt(x)},x=0..1);

0 0.2 0.4 0.6 0.8 1

0.2 0.4 x 0.6 0.8 1

> plot({1/x,1/x^ 2,-ln(x)},x=0..1,0..5);

(2)

0 1 2 3 4 5

0.2 0.4 x 0.6 0.8 1

Exercice 14

> plot({x,x^2,sqrt(x),ln(x)},x=1..3);

0 2 4 6 8

1.2 1.6 2x 2.4 2.8

> plot({1/x,1/x^2},x=1..3);

0.2 0.4 0.6 0.8 1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 x

Exercice 15

> limit((1-2/n)^(3*n),n=infinity);

e(-6) Incroyable !

Exercice 16

> taylor(1/sin(x)-1/x,x=0);

+ +

1

6x 7

360x3 O x( 4)

C’est un "développement de Taylor" (théorie en cours d’année). Le premier terme nous donne l’équivalent.

Exercice 17

> taylor(1/sin(x)^2-1/x^2,x=0);

(3)

+ + + 1

3 1

15x2 2

189x4 O x( 5)

> limit(1/sin(x)^2-1/x^2,x=0);

1 3

Exercice 20

> limit((t^t-1)/(1-t+ln(1+t)),t=1);

0

> limit(ln(t)/(t-1),t=1);

1

> limit((1-1/(n*sqrt(n)))^(n^(5/3)),n=infinity);

0

un peu plus subtil

> limit((t^t-1)/(1-t+ln(t)),t=1);

undefined

> limit((t^t-1)/(1-t+ln(t)),t=1,right);

−∞

> limit((t^t-1)/(1-t+ln(t)),t=1,left);

> taylor((t^t-1)/(1-t+ln(t)),t=1);

Error, does not have a taylor expansion, try series()

> series((t^t-1)/(1-t+ln(t)),t=1);

−2 (t−1)-1−10− − +

3 20

9 (t−1) 173

135(t−1)2 O (( t−1)3)

> limit(x^(sqrt(x))/(sqrt(x))^x,x=infinity);

0

> limit((Pi/2-x)^(sin(x)/ln(cos(x))),x=Pi/2);

e

> limit(tan(x)^(tan(2*x)),x=0);

1

Exercice 21

> limit(1/(1-x^x)-1/(x*ln(x)),x=0,right);

> limit(sqrt(x+sqrt(x))-sqrt(x),x=infinity);

1 2

> limit(cos(x)^(1/cotan(x)^2),x=0);

1

(4)

> limit(cos(x)^(1/tan(x)^2),x=0);

e(-1 2/ )

?????

> cotan(Pi/4);

 



cotan 1 4π

Il n connait pas cette fonction... cela dit, il est "assez contestable" de donner la réponse qu’il donne sur limit(cos(x)^(1/cotan(x)^2),x=0)...

> limit(tan(x)^(tan(2*x)),x=Pi/2,left);

1

> limit(tan(x)^(tan(2*x)),x=Pi/4);

e(-1)

Exercice 22

22.1

> limit(1/cos(x)^2+1/ln(sin(x)^2),x=Pi/2);

1 2

> taylor(ln(sin(x)^2)+cos(x)^2,x=Pi/2);

−1 +

2

 



x 1

4

 



O 

 



x 1

6

Soit encore :

> taylor(ln(sin(Pi/2+u)^2)+cos(Pi/2+u)^2,u=0);

−1 +

2u4 O u( 6)

22.2

> limit((x^sin(x)-sin(x)^x)/(x^tan(x)-tan(x)^x),x=0);

-1 2

> taylor(x^sin(x)-sin(x)^x,x=0);

Error, does not have a taylor expansion, try series()

> series(x^sin(x)-sin(x)^x,x=0,4);

 +

 



1− 6

1

6ln x( ) x3 O x( 4)

> series(x^tan(x)-tan(x)^x,x=0,4);

 +

 



− +1 3

1

3ln x( ) x3 O x( 4)

22.3

(5)

> limit((2^x+3^x-12)^(tan(Pi/4*x)),x=2);

1

 



2





1 π

16

 



3





1 π

36

> simplify(%);

9836602018824134393856





1 π

mouais...

22.4

> limit((exp(1)-(1+1/x)^x)^(sqrt(x^2+1)-sqrt(x^2-1)),x=infinity );

1

> taylor(exp(1)-(1+1/x)^x,x=infinity,2);

1 + 2

e x

 



O 1 x2

> taylor(sqrt(x^2+1)-sqrt(x^2-1),x=infinity,2);

1 + x

 



O 1 x3

Exercice 23

> series(ln(tan(x)),x=0,1);

+ ( )

ln x O x( 2)

> taylor(ln(tan(x)),x=Pi/4,2);

+ 2

 



x 1

4π 

 



O 

 



x 1

3

> series(sqrt(x^2+x)-(x^3+2*x^2)^(1/3),x=0,1);

+

x O x( (2 3/ ))

> asympt(sqrt(x^2+x)-(x^3+2*x^2)^(1/3),x,2);

− +1 +

6 23 72 x

 



O 1 x2

> series(1/x-1/tan(x),x=0,4);

1 +

3x O x( 2)

> asympt(exp(1/x)-x*(x+1)/x^2,x,3);

1 + 2

1 x2

 



O 1 x3

> asympt(sqrt(ln(2*n+1))-sqrt(ln(2*n)),n,2);

(6)

1 + 4

1 + ( )

ln 2 ln n n( )

 



O 1 n2

> asympt((ln(n+1)/ln(n))^n-1,n,1);

− + e





1 ( )

ln n 1 

 



O 1 n

> simplify(%);

− + e





1 ( )

ln n 1 

 



O 1 n

Etrange... je n’ai pas réussi à lui faire "voir" que exp(1/ln(n))-1 est équivalent à 1/ln(n). Comme quoi...

Exercice 24

> asympt((ln(x)/ln(x-1))^(x^2),x,1);

+ e





− /1 2ln x( )1 ( )

ln x2

 



O 1 x

e





x

( ) ln x

Arf ! On fait le calcul à la main... et onpeut tout de même vérifier :

> limit(exp(-x/ln(x))*(ln(x)/ln(x-1))^(x^2),x=infinity);

1

> asympt(exp(sqrt(x^2+x+1)),x,1);

 



+ e(1 2/ )

 



O 1 x ex

> expand(%);

+ exe(1 2/ ) ex

 



O 1 x

O(1/x) est uu terme qui tend vers 0, donc le tout est équivalent à exp(x)exp(1/2)

> series(exp(tan(x)^2),x=Pi/2);

Error, (in series/exp) unable to compute series

> series(tan(x)^2,x=Pi/2);

− + + +

 



x 1

-2 2 3

1 15

 



x 1

2 2

189

 



x 1

4

 



O 

 



x 1

5

"donc" exp(tan^2(Pi/2+u)) est equivalent à exp(-2/3)exp(1/u^2)

> asympt(ln(n)/n-ln(n)^2/2+ln(n-1)^2/2,n,3);

+

−1 +

2ln n( ) 1 2 n2

 



O 1 n3

> asympt((ln(x)/ln(x-1))^(x^2),x,2);

(7)

+ e





− /1 2ln x( )1 ( )

ln x2

 



O 1 x

e





x

( ) ln x

> simplify(%);





+ e





/

1 2ln x( )+1 ( )

ln x2

 



O 1

x e





x ( ) ln x

A la main :

> asympt(ln(x)/ln(x-1),x,3);

+ + +

1 1

( ) ln x x

1+ 2

1 ( ) ln x ( ) ln x x2

 



O 1 x3

> asympt(x^2*ln(ln(x)/ln(x-1)),x,1);

+ − +

x ( ) ln x

1+ 2

1 ( ) ln x ( ) ln x

1 2

1 ( ) ln x 2

 



O 1 x Et donc...

> series(x^x-(sin(x))^x-x^3/6,x=0,5);

1 +

6ln x x( ) 4 O x( 5)

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

data in the spatial domain. However for statistical data such as structure functions it is possible to obtain spatial information by directly using the following scheme: first

The effect of such an overturn may be in the enhancement of neutrino release on one hand the release of gravitational and thermal energy on the other (Colgate and Petschek

sets of resource proof-structures that are part of the Taylor expansion of some MELL

A crucial tool for the proof is a result initiated by Gehlen, Luh and M¨ uller [5] which asserts that every universal Taylor series actually possesses Ostrowski-gaps, in the sense

Then we apply the Type I Local Breaking Method with clockwise tubular flows described at the end of the previous section to the Taylor field at the saddle points qi{l < i < 2m

— Lemma 1 implies that, if three partial sums Sk(z),Sn(z),Sm^), with k < n < m, of a power series lie on a straight line e(z), for every z in an infinite subset E of T, then Sk

Our purpose was to propose a new way to take into account the grain shape effect in the frame of the Taylor-Bishop-Hill model and to demonstrate for a simplified