• Aucun résultat trouvé

Melting-Point Depression of Water in Sorbed State

N/A
N/A
Protected

Academic year: 2021

Partager "Melting-Point Depression of Water in Sorbed State"

Copied!
13
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1962

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331442

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Melting-Point Depression of Water in Sorbed State

Iwakami, Y.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=101e2d20-1333-43c4-af4a-74bf740c1c62 https://publications-cnrc.canada.ca/fra/voir/objet/?id=101e2d20-1333-43c4-af4a-74bf740c1c62

(2)

S t u d i e s of water i n a l l i t s phases c o n s t i t u t e an important p a r t of t h e l a b o r a t o r y s t u d i e s of t h e D i v i s i o n of B u i l d i n g Research. So important i s t h i s work t h a t a small group w i t h i n t h e B u i l d i n g l t l a t e r i a l s S e c t i o n of t h e D i v i s i o n i s d e v o t i n g a l l i t s time t o t h i s one s u b j e c t ,

t h e r e s u l t s of t h i s work being a p p l i c a b l e t o more prac- t i c a l s t u d i e s of v a r i o u s b u i l d i n g m a t e r i a l s .

T h i s t r a n s l a t i o n d e s c r i b e s solre s i g n i f i c a n t work in r e l a t i o n t o t h e d e p r e s s i o n of t h e f r e e z i n g - p o i n t of water when adsorbed i n v a r i o u s m a t e r i a l s . Piany s t u d i e s have been made of t h i s s u b j e c t with t h e o b j e c t of r e l a t i n g t h e e f f e c t of pore s t r u c t u r e t o t h e phenomenon. In t h i s work t h e d e p r e s s i o n of t h e melting-point of water adsorbed s i l i c i c a c i d g e l , pernlulite and i o n exchange r e s i n

IR-45

w a s i n v e s t i g a t e d with a d i f f e r e n t i a l c a l o r i m e t e r . The s i g n i f i c a n t r e s u l t s o b t a i n e d a r e thought t o be of i n t e r e s t n o t o n l y t o workers i n t h i s D i v i s i o n b u t t o o t h e r s concerned with t h i s i ~ n p o r t a n t a s p e c t of t h e p r o p e r t i e s of water. The t r a n s l a t i o n i s , t h e r e f o r e , p u b l i s h e d by t h e D i v i s i o n i n i t s r e g u l a r s e r i e s as a f u r t h e r c o n t r i b u t i o n t o b u i l d i n g s c i e n c e i n Canada. O t t a w a R.F. Legget February 1962 D i r e c t o r

(3)

NATIONAL RESEARCH C O U N C I L OF CANADA

T e c h n i c a l T r a n s l a t i o n 1010

T i t l e : The m e l t i n g - p o i n t d e p r e s s i o n of w a t e r i n sorbed s t a t e

Author:

Y e

I w a k m i

Reference : J. Chem. Soc. Japan, Pure Chem. Set, ( ~ ~ i p p o n Kagaku Z a s s h i ) ,

80

( 1 0 ) : 1094-1097,

1959

(4)

TIIE IJELTING-POZ\IT DEPRESS I O N OF l.JAPITEI'I

IN

SORBED STATE The a u t h o r h a s r e p o r t e d on s e v e r a l occasions t h a t t h e f a c t o r s c o n t r o l l i n g t h e d e p r e s s i o n of t h e melting-point of adsorbed m a t e r i a l a r e t h e pore s i z e d i s t r i b u t i o n , t h e n a t u r e and t h e q u a n t i t y of m a t e r i a l adsorbed. The o b j e c t of t h e p r e s e n t e x p e r i - ments w a s t o i n v e s t i g a t e t h e changes i n t h e melting-point o f t h e a d s o r b a t e when t h e adsorbent was s u b j e c t e d t o r a d i o a c t i v e r a y s which cause changes i n t h e c o n d i t i o n s of i t s s u r f a c e .

A s a d s o r b a t e , water w a s used, t h e adsorbent being s l l i c i c a c i d g e l , pernlutite, and i o n exchange r e s i n a m b e r l i t e IR-45. A s t h e source of r a d i o a c t i v e r a y s c o b a l t 60 was used. Water w a s adsorbed by exposed and unexposed m a t e r i a l , and t h e melting-point of water

i n t h e adsorbed s t a t e w a s measured by a d i f f e r e n t i a l c a l o r i m e t e r . The r e s u l t s d f f f e r e d depending on t h e adsorbent. However, t h e

experimental v a l u e s showed good agreement with t h e t h e o r e t i c a l ones, which were obtained u s i n g our e q u a t i o n r e l a t i n g t h e d e p r e s s i o n of t h e melting-point of water t o t h e s i z e of t h e pore and t h e amount of adsorbed water.

1. I n t r o d u c t i o n

S i l i c i c a c i d g e l , p e r m u t i t e and i o n exchange r e s i n arnberlite IR-45 a r e a l l good adsorbents; v~hen water 1 3 adsorbed t h e phenomenon of d e p r e s s i o n of t h e melting-point of water can be observed.

However, t h e e x t e n t of d e p r e s s i o n depends on t h e pore s i z e d i s t r i b u - t i o n of t h e adsorbent. Thus, i f changes a r e introduced i n t h e pore s i z e d i s t r i b u t i o n of t h e s e c a p i l l a r i e s by sorne rneans, i t seer113 reasonable t o assume t h a t t h e r e w i l l be a change i n t h e melting- p o i n t of water adsorbcd by t h e adsorbent. The p r e s e n t r e p o r t i s

concerned with t h e melting-point of water i n t h e adsorbed s t a t e ~~11ich vras rrleasured by means of a d i f f e r e n t i a l calorirrietcr. S i l i c i c a c i d g e l , perniutite and i o n exchange r e s i n a m b e r l i t e IK-45 were

(5)

exposed n i a t e r i a l werc cor~lpared t o t h o s e from unexposed m a t e r i a l .

Comnlercially a v a i l a b l e s i l i c i c a c i d g e l , p e r m u t i t e and amber- l i t e IR-45 were d r i e d i n a n a i r d r y e r a t

l l o O ,

130° and go0 f o r approximately

6

hours, r e s p e c t i v e l y . They were t h e n s e a l e d i n s e v e r a l g l a s s t u b e s and used as une,qosed n ~ a t e r i a l . Sonie of t h e s e t u b e s were placed n e a r a s o u r c e of c o b a l t 60 i n s e a l e d g l a s s t u b e s and were exposed t o t h e ganlrna r a y s f o r 48 h o u r s a t 10000 r-unit/min. T h i s w a s used as exposed m a t e r i a l .

For t h e exposed and unexposed n l a t e r i a l t h u s p r e p a r e d a d s o r p t i o n isotherrns a t O°C were o b t a i n e d u s i n g benzene a d s o r b a t e . From t h e s e i s o t h e r m s t h e p o r e s i z e d i s t r i b u t i o n f o r each a d s o r b e n t w a s c a l c u - l a t e d . These a r e shown i n F i g . 1 t o

3.

In F i g . 1, t h e maximum p o i n t s show good agreement i n exposed and unexposed c a s e s ; however, t h e r e a r e d i s c r e p a n c i e s i n o t h e r

p a r t s . In F i g . 2, t h e r e i s a s m a l l d i s c r e p a n c y even a t t h e maxinlum p o i n t s . I n F i g .

3,

one n o t e s a marked i n f l u e n c e a t t h e maxirnun~ p o i n t due t o exposure. It a p p e a r s r e a s o n a b l e t o assume t h a t t h e r e

w i l l b e a d i f f e r e n c e i n m e l t i n g - p o i n t s i f a s u b s t a n c e i s adsorbed by unexposed and exposed m a t e r i a l w l t h d i f f e r e n t p o r e s i z e d i s t r i b u -

t i o n even i f t h e a d s o r b a t e i s t h e same and i s adsorbed i n e q u a l amounts. Thus, a p p r o x i ~ n a t e l y a n e q u a l amount of water was allowed

t o be adsorbed by unexposed and exposed a d s o r b e n t s , and t h e melting- p o i n t of t h i s w a t e r w a s measured by means of a d i f f e r e n t i a l

c a l o r i m e t e r . The s t r u c t u r e of t h e c a l o r i m e t e r which vias used i n t h e p r e s e n t experiments i s shown i n F i g . 4.

A and B a r e b o t h v e s s e l s made of copper; t h e upper p o r t i o n s a r e connected by f u s e d g l a s s c a p i l l a r i e s . Equal amounts of a d s o r - b e n t a r e i n t r o d u c e d i n t o t h e s e c o n t a i n e r s , A and B, through C and D. A f t e r i n s e r t i n g thermocouples 11: and F', as shown i n t h e f i g u r e , t h e y a r e evacuated through G, IT and I. IText, s i l i c i c a c i d g e l , p c r r ~ l u t i t e and m l b e r l l t e II-i-45 were h e a t e d t o 1 1 0 ~ C , 130°C and 30°C, r e s p e c -

(6)

approximately 6 hours t o a hlgh vacuum, A f t e r b e i n g r e s t o r e d t o room temperature, a c o o l i n g a g e n t of a mixture of d r y i c e and

methanol w a s introduced i n t o t h e Dewarts v e s s e l , K, t h e c a l o r i m e t e r w a s cooled from o u t s i d e , and t h e temperature i n s i d e A and B was lowered t o approximately -60°C. The t e s t m a t e r i a l i n s i d e A and B

w a s heated by means o f h e a t e r J, m a i n t a i n i n g a d i f f e r e n c e i n temper- a t u r e between A, B and t h e h e a t e r J as c l o s e as p o s s i b l e t o 3OC. No. 0 i n Fig. 5-7 shows t h e d i f f e r e n c e between t h e temperatures of v e s s e l s A and B, i . e . t h e d i f f e r e n t i a l temperature corresponding t o t h e temperature o f e i t h e r A o r B. Next, a known q u a n t i t y of water i s allowed t o be adsorbed by t h e adsorbent i n e i t h e r A o r B. The system

i s

then cooled t o approximately -60°C and heated i n t h e same way as before. T h i s g i v e s t h e d i f f e r e n t i a l temperature curve No. 1.

The temperature a t t h e maximum of t h i s curve i s t h e m e l t i n g - p o i n t of water In t h e adsorbed s t a t e . S i m i l a r procedures were r e p e a t e d with d i f f e r e n t amounts of water. The r e s u l t s a r e curves No. 2 and No.

3 ,

3.

R e s u l t s and Discussion

Fig.

5

( 1 ) and ( 2 ) resemble each o t h e r except f o r curve No. 1.

T h i s shows t h a t t h e r e i s h a r d l y any e f f e c t due t o exposure. F i g .

6

( 1 ) and ( 2 ) show t h a t t h e maximum p o i n t s h i f t s t o t h e l e f t due t o exposure. I n Fig. 7 ( 1 ) and ( 2 ) t h e m a x i m u m p o i n t s h i f t s t o t h e r i g h t due t o exposure and t h e s l o p e of t h e curves i n c r e a s e s . This could i n d i c a t e p o s s i b l y a change i n t h e p o r e s i z e d i s t r i b u t i o n due t o exposure keeping i n mind t h a t t h e melting-point of adsorbed water

i s lowered with t h e d e c r e a s e In t h e r a d i u s of t h e c a p i l l a r i e s , However, i n t h e p r e s e n t paper, i n o r d e r t o t r e a t t h e phenomenon i n

a q u a n t i t a t i v e way, t h e curve r e l a t i n g

r2

A q / A r and r, i . e . t h e r e l a t i o n between t h e amount melted and r a d i u s , w a s o b t a i n e d as i n t h e previous r e p o r t s (2-4). These a r e shown i n Fig.

8-10.

I n t h e c a s e of s i l i c i c a c i d g e l In Fig.

8,

t h e maximum p o i n t appears a t t h e same p l a c e i n exposed and unexposed m a t e r i a l ; t h e curves a r e

similar. Thus, i t resembles Fig.

5

( 1 ) and ( 2 ) . I n t h e c a s e of perrnutite i n Fig. 9, t h e maximum p o i n t , which e x i s t s i n t h e c a s e of

(7)

unexposed m a t e r i a l , d i s a p p e a r s with exposure. Thus, t h i s means

t h a t t h e maximum p o i n t i n Fig.

6

( 2 ) c o n t i n u e s t o s h i f t t o t h e l e f t . I n t h e case of a m b e r l i t e IR-45 i n Fig. 10, t h e maximum p o i n t be- comes marlcely h i g h e r due t o exposure and a t t h e same time s h i f t s i n t h e d i r e c t i o n i n which

r

d e c r e a s e s . On t h e b a s i s of t h i s t h e i n c r e a s e i n s l o p e and t h e s h i f t i n g of t h e maximum p o i n t t o t h e r i g h t i n Fig.

7

( 2 ) can be explained. Since t h e r e has been a

change in t h e r e l a t i o n between r 2

.

A a / ~ r and r due t o exposure, as w a s sl~own above, t h e o r e t i c a l v a l u e s of t h e melting-point based on

t h e e q u a t i o n r e l a t i n g t h e d e p r e s s i o n . i n melting-point ( A T ) t o t h e amount adsorbed ( a ) were c a l c u l a t e d i n t h e same way as shown i n p r e v i o u s r e p o r t s . These were compared with experimental v a l u e s and

shown in Table I. It i s observed t h a t t h e r e i s a good agreement between t h e experimental v a l u e s and t h e t h e o r e t i c a l values. The r a d i u s , r, shown i n t h e t a b l e i s t h e one trhich has been used i n c a l c u l a t i n g t h e melting-points and corresponds t o t h e maximum amount of water melted. With d i f f e r e n t amounts of adsorbed water t h e melting-point a l s o changes. T h i s i s e v i d e n t i n t h e t a b l e .

F u r t h e r , t h e t a b l e shows t h a t , even i n t h e same adsorbent, t h e r e i s

a marked change i n melting-point even f o r t h e same adsorbed amount depending on whether t h e adsorbent had been exposed t o ganma r a y s o r not. The f a c t t h a t t h e r e i s a good agreement between t h e theo- r e t i c a l v a l u e s t h u s o b t a i n e d and observed v a l u e s means t h a t i t i s p o s s i b l e t o e x p l a i n t h e change in melting-point with r e s p e c t t o each adsorbent by t h e a p p l i c a t i o n of t h e melting-point d e p r e s s i o n equation, t a k i n g i n t o account t h e pore s i z e d i s t r i b u t i o n of t h e adsorbent both i n exposed and unexposed cases. It can a l s o be s a i d t h a t t h e above experimental evidence confirms t h e melting-point

d e p r e s s i o n e q u a t i o n mentioned i n p r e v i o u s r e p o r t s based on t h e t h e o r y of c a p i l l a r y condensation.

The a u t h o r wishes t o e x p r e s s h i s a p p r e c i a t i o n t o D r . Masaichiro S a i t o f o r h i s generous a s s i s t a n c e .

(8)

References

1. Ivrakan~i. Nikka,

72: 259, 1951.

2 . Iwakanli. Nikka,

72: 707, 1-351.

3 .

Iwakami.

N i k k a ,

77: 1499, 1956.

4.

I~iakami. ?!?.kka,

79: 610, 1958.

5. Spalayis,

C . N . ,

Bupp,

L.P.,

Gflbert,

E.C. J. Phys.

Chem. 61:

(9)

Table I

0 0 0 1

1To. 2

No. 3

Unexposed H a t e r i a l Exposed Piaterial

Adsorbed Radius r n.p. m.p.

a obs. theor.

m

d

~

'A

o

c

o

c

Adsorbed R a d i u s r m.p. m.p.

amt. a obs. theor.

m d g

II

o

c

o

c

S i l i c i c Acid Gel Permutite S i l i c i c Acid Gel 0 4 c 8 0 0 398 -37.0 -36.1 512 47.4 -32.5 -31.8 920 49.0 -31.0 -30.5 I

SD

Permut i t e Amberlite IR-45

(10)

,-

(A) o: unexposed X: exposed F i g . 1 S i l i c i c a c i d g e l 4 0

3

--.

E"

-

+.

20 P \ C) P @O ;10 40 60 80 r (A) o: unexposed X : exposed Fig.

3

Arnberlite

IR-45

r ( A )

o:

unexposed x : exposed F i g . 2 P e r m u t i t e Fig.

4

(11)

Temperature ( O C ) S i l i c i c a c i d g e l ( ~ n e ~ x p o s e d ) Temperature ( O C ) S i l i c i c a c i d g e l ( e x p o s e d ) 1.0

-

u 0

-

0 8 rl cd 0.6 -P E: 0.4 Q) 6-4

2

0.2

c

l

0 - I 0 -70 -30 -40 -50 Temperature ( O C ) P e r m u t i t e (unexposed) Temperature ( O C ) F i g .

6

( 2 ) P e r m u t i t e ( e x p o s e d )

(12)

Temperature ( O C ) Fig. 7 (1) Amberlite

W-45

(unexposed) r ( A ) o: unexposed x: exyosed F i g .

8

S i l i c i c a c i d g e l Temperature (

"

C ) Fig. 7 (2.) Amberlite IR-45 (exposed ) fl ( A ) o: unexposed x: exposed Fig.

9

Pernlut i t e

(13)

r (A)

0 : unexposed x: exposed

F i g . 10 A m b e r l i t e

IR-45

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including