• Aucun résultat trouvé

Probing retinal function with a multi-layered simulator

N/A
N/A
Protected

Academic year: 2021

Partager "Probing retinal function with a multi-layered simulator"

Copied!
31
0
0

Texte intégral

(1)

HAL Id: hal-02389076

https://hal.archives-ouvertes.fr/hal-02389076 Submitted on 2 Dec 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are

pub-L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, Probing retinal function with a multi-layered simulator

Evgenia Kartsaki, Bruno Cessac, Gerrit Hilgen, Evelyne Sernagor

To cite this version:

Evgenia Kartsaki, Bruno Cessac, Gerrit Hilgen, Evelyne Sernagor. Probing retinal function with a multi-layered simulator. The Rank Prize Funds - Symposium on The retinal processing of natural signals, Jun 2019, Grasmere, United Kingdom. �hal-02389076�

(2)

Probing retinal function with

a multi-layered simulator

1Université Côte d’Azur, Inria, France

2Institute of Neuroscience, University of Newcastle, UK

Evgenia Kartsaki1,2, Bruno Cessac1, Gerrit Hilgen2, Evelyne Sernagor2

(3)

Electrophysiology & IHC Retinal Simulator

(4)
(5)
(6)

Connectivity graph

General structure

Cell type 1 Cell type 2

Visual or Electrical Input

Inter-type connectivity

Intra-type

connectivity connectivityIntra-type

(7)

Visual or Electrical Input

(8)

Cell

ü A set of variables evolving in time and characterizing the cell’s evolution : e.g.

membrane potential, probability that a ionic channel of a given type is open etc.

(9)

Cell

ü A set of variables evolving in time and

characterizing the cell’s evolution : e.g.

membrane potential, probability that a ionic channel of a given type is open etc.

ü A set of parameters that constrain the cell’s

evolution : e.g. conductance, reversal potential, membrane capacitance, characteristic time of a channel’s activity

(10)

Cell

ü A set of variables evolving in time and

characterizing the cell’s evolution : e.g.

membrane potential, probability that a ionic channel of a given type is open etc.

ü A set of parameters that constrain the cell’s

evolution : e.g. conductance, reversal potential, membrane capacitance, characteristic time of a channel’s activity

ü A function controlling the cell’s evolution with a differential equation

(11)

Cell

ü A set of variables evolving in time and

characterizing the cell’s evolution : e.g.

membrane potential, probability that a ionic channel of a given type is open etc.

ü A set of parameters that constrain the cell’s

evolution : e.g. conductance, reversal potential, membrane capacitance, characteristic time of a channel’s activity

ü A function controlling the cell’s evolution

ü Isyn : A synaptic input corresponding to synaptic

(12)

Cell

ü A set of variables evolving in time and

characterizing the cell’s evolution : e.g.

membrane potential, probability that a ionic channel of a given type is open etc.

ü A set of parameters that constrain the cell’s

evolution : e.g. conductance, reversal potential, membrane capacitance, characteristic time of a channel’s activity

ü A function controlling the cell’s evolution

ü Isyn : A synaptic input corresponding to synaptic connections with other cells

ü Iext : An external input corresponding either to a

visual input or the electric current provided by an electrode

(13)

Visual or Electrical Input

(14)

Synapse

ü Chemical or electrical (gap junction)

ü A set of variables that evolve in time : e.g. conductance

(15)

Visual or Electrical Input

(16)

External Input

ü Emulate the electric current provided by an electrode

Virtual Retina module

ü Emulate the outer plexiform layer (OPL) current

Retinal prosthesis

A.Wohrer et al., 2009

(17)

Connectivity graph

General structure

Cell type 1 Cell type 2

Visual or Electrical Input

Inter-type connectivity

Intra-type

(18)

Connectivity graph

General structure

Cell type 1 Cell type 2

Visual or Electrical Input

Inter-type connectivity

Intra-type

connectivity connectivityIntra-type

(19)

Graph

ü Cell types

ü Synapse types ü Cell coordinates ü Synapse indices

(20)

Graph

☞ Design a local circuit with specific connectivity patterns ☞ Deploy it to the whole retina

Source: From Gabriel Luna, Steve Fisher and Geoff Lewis, retinal cell

biology group at UC Santa Barbara Neuroscience Research Institute

Connectivity graph

(21)

BC

AC

BC

AC

(22)

𝐾 𝑥, 𝑦, 𝑡 = 𝐾' 𝑥, 𝑦 𝐾((𝑡) +(𝑆 ∗ K)(x,y,t) BC AC GC BC AC GC BC

(23)

𝐾 𝑥, 𝑦, 𝑡 = 𝐾' 𝑥, 𝑦 𝐾((𝑡) +(𝑆 ∗ K)(x,y,t) 𝐼345 = −𝑔345 𝑉9:3; − 𝐸345 𝐼=>? = −𝑔=>? 𝑉9:3; − 𝑉9@A BC AC BC AC BC Chemical synapse Electrical synapse

(24)

𝐾 𝑥, 𝑦, 𝑡 = 𝐾' 𝑥, 𝑦 𝐾((𝑡) +(𝑆 ∗ K)(x,y,t) 𝐼345 = −𝑔345 𝑉9:3; − 𝐸345 𝐼=>? = −𝑔=>? 𝑉9:3; − 𝑉9@A BC AC GC BC AC GC BC Chemical synapse Electrical synapse 𝐶 𝑑𝑉 𝑑𝑡 = −𝑔D 𝑉 − 𝑉D + 𝐼𝑠𝑦𝑛 + 𝐼𝑒𝑥𝑡 + 𝐼IJK

(25)

𝐾 𝑥, 𝑦, 𝑡 = 𝐾' 𝑥, 𝑦 𝐾((𝑡) +(𝑆 ∗ K)(x,y,t) 𝐼345 = −𝑔345 𝑉9:3; − 𝐸345 𝐼=>? = −𝑔=>? 𝑉9:3; − 𝑉9@A BC AC BC AC BC Chemical synapse Electrical synapse 𝐶 𝑑𝑉 𝑑𝑡 = −𝑔D 𝑉 − 𝑉D + 𝐼𝑠𝑦𝑛 + 𝐼𝑒𝑥𝑡 + 𝐼IJK

(26)
(27)
(28)
(29)
(30)

Acknowledgements

Prof. Evelyne Sernagor Dr. Gerrit Hilgen

Dr. Bruno Cessac AMDT team

(31)

+1 23 987 6554

april@www.proseware.com www.proseware.com

Thank you!

Questions?

Références

Documents relatifs

We consider in ultrahyperbolic Clifford analysis, [1], [5], [6], the rep- resentation of a k-vector function F : Ω → Cl k p,q , with 0 < k < n, in terms of functions

The localization switches frequently between the GNSS solution (if no map matching available) and map matching solution. Ranganathan et al. used a windowed bundle adjustment as

Furthermore, as shown by Exam- ple 1, in order to determine this differential Hilbert function it may be necessary to compute derivatives of the original equations up to order ν,

Separation of stroma, thylakoid and envelope mem- brane proteins into hydrophobic and hydrophilic fractions —The proteins of the stroma, the thylakoid and the inner and outer

The difference is that now we perform R-functions not to combine implicit fields of several Gielis curves or surfaces, but the multiple implicit values of the same rational

Traversal time (lower graph) and transmission coefficient (upper graph) versus the size of the wavepacket for three different values ofthe central wavenumber, k = 81r/80 (dashed

- The object of the paper is to develop a perturbation expan- sion of the Hamilton-Jacobi characteristic function of a mechanical system, for which the potential

In this paper we prove the global existence of a solution of (1.13) and show its convergence as t → ∞ under sufficients conditions on the prescribed scalar curvature f.. More