• Aucun résultat trouvé

Forming mechanism of Te-based conductive-bridge memories

N/A
N/A
Protected

Academic year: 2021

Partager "Forming mechanism of Te-based conductive-bridge memories"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: cea-01591636

https://hal-cea.archives-ouvertes.fr/cea-01591636

Submitted on 21 Sep 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

memories

Munique Kazar Mendes, Eugenie Martinez, A Marty, Marc Veillerot, Y.

Yamashita, Rémy Gassilloud, M Bernard, Olivier Renault, N. Barrett

To cite this version:

Munique Kazar Mendes, Eugenie Martinez, A Marty, Marc Veillerot, Y. Yamashita, et al.. Forming

mechanism of Te-based conductive-bridge memories. Applied Surface Science, Elsevier, In press,

�10.1016/j.apsusc.2017.07.187�. �cea-01591636�

(2)

Contents lists available atScienceDirect

Applied

Surface

Science

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Full

Length

Article

Forming

mechanism

of

Te-based

conductive-bridge

memories

M.

Kazar

Mendes

a,b,∗

,

E.

Martinez

a,b

,

A.

Marty

a,b

,

M.

Veillerot

a,b

,

Y.

Yamashita

c

,

R.

Gassilloud

a,b

,

M.

Bernard

a,b

,

O.

Renault

a,b

,

N.

Barrett

d

aUnivGrenobleAlpes,F-38000Grenoble,France bCEA,LETI,MINATECCampus,F-38054Grenoble,France

cNationalInstituteforMaterialsScience,1-1Namiki,Tsukuba,Ibaraki305-0044,Japan dSPEC,CEA,CNRS,UniversitéParis-Saclay,CEASaclay,91191Gif-sur-Yvette,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received14March2017

Receivedinrevisedform18July2017 Accepted20July2017 Availableonlinexxx Keywords: RRAM CBRAM Oxygenscavenging Interfacechemistry HAXPES

a

b

s

t

r

a

c

t

WeinvestigatedoriginsoftheresistivitychangeduringtheformingofZrTe/Al2O3based

conductive-bridgeresistiverandomaccessmemories.Non-destructivehardX-rayphotoelectronspectroscopywas usedtoinvestigateredoxprocesseswithsufficientdepthsensitivity.Resultshighlightedthereduction ofaluminacorrelatedtotheoxidationofzirconiumattheinterfacebetweenthesolidelectrolyteandthe activeelectrode.InadditiontheresistanceswitchingcausedadecreaseofZr-Tebondsandanincrease ofelementalTeshowinganenrichmentoftelluriumattheZrTe/Al2O3interface.XPSdepthprofiling

usingargonclustersionbeamconfirmedtheoxygendiffusiontowardsthetopelectrode.Afour-layer capacitormodelshowedanincreaseofboththeZrO2andAlOxinterfaciallayers,confirmingtheredox

processlocatedattheZrTe/Al2O3interface.Oxygenvacanciescreatedinthealuminahelpthefilament

formationbyactingaspreferentialconductivepaths.Thisstudyprovidesafirstdirectevidenceofthe physico-chemicalphenomenainvolvedinresistiveswitchingofsuchdevices.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Resistive random access memories (RRAM) are interesting candidates for the next generation of non-volatile memories (NVM).Datastorageprincipleisbasedonswitchingtheresistivity betweenhighandlowresistancestates(HRSandLRS,respectively). Amongthem,conducting-bridgeresistiverandomaccess memo-ries(CBRAMs) areone optioncurrently investigated,leadingto promisingadvanceddevicesintermsofindustrialdemonstrators. Theswitchingmechanismisbasedonapplyingvoltageorcurrent pulsestoasolidelectrolyte.Twotypesofelectrolytesarecurrently investigated:sulphides(GeS2[1],Cu2S[2],Ag2S[3],etc.)andoxides

(Ta2O5[4],SiO2[5],Al2O3[6],etc.).Ionicdiffusionfromtheactive

electrodeintotheelectrolytecreatesaconductivebridgebetween thetwoelectrodes.However,ifthegeneralmechanismisnowwell understood,moredetailedinformationabouttheelectrochemical processesandmaterialchangesinvolvedintheswitchingisneeded tooptimizedevicedesignandmaterialengineering.

∗ Correspondingauthorat:CEA, LETI,MINATEC Campus,F-38054Grenoble, France.

E-mailaddresses:Munique.KAZARMENDES@cea.fr,

muniquekazar@yahoo.com.br(M.K.Mendes).

Historically,Ag-andCu-basedCBRAMsarethemoststudied[7]. Theresistiveswitchingofthesedevicesisattributedtothe forma-tionanddisruptionofconductivepathsbetweenthetwoelectrodes [8,9]. By applying a voltageto thedevice, Ag+ (Cu+)ions from

theactiveelectrodemigrateintotheelectrolyte.Theyarereduced whenreachingthebottomelectrodeandthefilamentisformedby accumulationintheelectrolyte.Inthesameway,byreversingthe polarityoftheappliedvoltage,someofthecationshavereturned totheactiveelectrodeandthefilamentispartiallydestroyed.

Here, we investigated subquantum CBRAMs, operating with reducedcurrentsandthusverypromisingforlow-power applica-tions[10].ThecurrentrequiredtoprogramaCBRAMcellisdirectly relatedtotheconductanceofa1-atomfilament(G1atom).Instead

ofusingafilamentcontainingametal(Ag,Cu),thesenew mem-orycellsarebasedonthediffusionofTeinthesolidelectrolyte.For metalsG1atomiscomparabletothequantumG0=2e2/h,whereasfor

asemiconductorsuchasTe,itissub-quantum(0.03G0)enabling

operationatlowcurrents.ThedevicewasbasedontheuseofaZrTe alloyastheactiveelectrode,whichissupposedtoreleaseTe dur-ingelectricalbiasing.Theconductivebridgeofsuchmemorycells wasattributedtothemigration oftelluriumacrossthealumina [10].Jamesonatal.suggested thatapossiblemechanismforTe releasemightbetheoxidationofZr,yieldingtosub-stoichiometric alumina.Oxygenvacancies(VO)arethoughttocreate

preferen-http://dx.doi.org/10.1016/j.apsusc.2017.07.187

(3)

2 M.K.Mendesetal./AppliedSurfaceSciencexxx(2017)xxx–xxx

Fig. 1. Schematic of the setup for electrical characterization of the TaN/ZrTe/Al2O3/Tastack.

tialpathsforTemigrationacrossthealumina.Theseassumptions werebased ona detailedanalysisofelectricalcharacterizations butnodirectproofhasbeenreportedyetintheliterature.Herewe bringinformationabouttheelectrochemicalmechanismsinvolved inresistiveswitching.Inparticular,weconfirmedthekeyroleof theZrTe/Al2O3interfacechemistry.

Characterizing a device is challenging because of the small amountofnetchangeduetothefilamentformation.Moreover,the changesmostlikelyoccurinathinlayerburiedunderathickertop electrode.Thisrequiresnon-destructivecharacterizationmethods abletoprobethroughthickcappinglayerswithhighsensitivity.The filamentcompositionandmorphologyhasbeenstudiedinthepast usingtomographicatomicforcemicroscopy(T-AFM)[11], trans-missionelectronmicroscopy(TEM)[12],andX-rayphotoelectron spectroscopy(XPS)[13].XPSprofilinggivesdepthsensitive chem-icalinformation about cation diffusionand oxidation-reduction (redox)reactionsproducedduringtheformingprocess[14].The formingprocessisacrucialstepduringwhichmostofthe chemi-calandstructuralmodificationsoccurandwhichdefinesthefinal propertiesofthedevices.

Here, we have used hard X-ray photoelectron spectroscopy (HAXPES)toprobetheburiedinterfacebetweentheZrTeactive electrodeandtheAl2O3layer.Measurementswereperformedon

as-depositedsamplesandafterex-situforming,labeledas-grown andformed.UsinghardX-rays,theelectronmeanfreepathis con-siderablyincreasedprovidingsufficientdepthsensitivitytoreach theburiedinterfaceandthusprovideinformationabouttheredox processesoccurringthere.WehavealsousedXPSdepthprofiling toinvestigatetheoxygenmigration.

2. Experiment

Thememorycellswerecomprisedofanultrathin(5nm)Al2O3

layersandwichedbetweentwo metallicelectrodes. Thebottom electrodewasa200nm-thickTalayer,depositedona200mmSi (100)wafer,followedbythealuminadeposition.A15nm-thick ZrTemetallicalloywasdepositedthroughamask,toobtain2mm diameteractive,topelectrodesasshowninFig.1.Theseelectrodes andAl2O3layerweredepositedbyphysicalvapordeposition.The

ZrTegrowthprocesswasoptimizedtoreachaZr/Testoichiometry of40/60priortothedeposition.Thebasepressureinthe deposi-tionchamberwas5×10−4mbar.Finally,a5-nmthickTaNlayer wasdepositedbyreactivesputteringtopreventoxidationofZrTe whenexposedtoair.ThisTaNlayerisacappinglayertoreproduce theoperatingconditionsofanintegratedmemorystack.

FormingwasperformedinambientatmosphereusingaKeithley 2635B.TheTabottomelectrodewasgrounded.Alinearpositive voltagesweepbetween0and+4VwasappliedbyanAutipwith

minimumcontactforceontheTaN(seeFig.1)at0.1V/s.Standard electricalconnectionscannotbeusedhereduetotheultra-thin aluminalayerwhichcanbeeasilyshort-circuitedbymechanicalor thermalstress.Thecompliancecurrentof50mA(0.16mAcm−2) waschoseninordertoavoidpermanentbreakdownoftheoxide whilstinducingsignificantionicdiffusion,facilitatingthedetection [15].

TheHAXPESexperimentswereperformedattheBL15XUbeam lineoftheJapanSynchrotronRadiationResearchInstitute (SPring-8).Aphotonenergyof7.9keVwithanoverallenergyresolution (beamline and spectrometer) of 243meV was employed. The inelasticmeanfreepaths(␭),estimatedwiththeTanuma equa-tion[16]forAl1s,Zr3p3/2andTe3d3/2photoelectronsinthestack,

were9.2,10.7and10.4nm,respectively.Thesevaluesareobtained byaveragingtheIMFPsestimatedforeach layercrossedbythe photoelectronsduringtheirtransporttowardthesurface.The aver-agewasweightedbythethicknessofeachlayer.Corresponding samplingdepths(3␭)of27.6,32.1and31.2nmallowprobingthe ZrTeelectrodeandaluminalayer.Theareaprobedbythex-rays was300*25␮m2 andphotoelectrons emittedat anangleof 80

withrespecttothesurfacewerecollectedwithaVGScientaR4000 hemisphericalanalyzer,withaslitsizeof0.5*25mm2.Thebinding

energywascalibratedrelativetotheFermilevelmeasuredfroma cleangoldsurface.SubtractedbackgroundsforXPSspectrawereof Shirleytype[17],andtheoxidepeaksweremodeledusinga combi-nationofLorentzian(30%)andGaussian(70%)functionswhilethe metalliccorelineswerefittedusingaDoniach-Sunjicfunction[18] usingCasaXPSv2.3software.

LaboratoryXPSdepthprofilingwasperformedusingaPHI5000 VersaProbeII(Physical Electronics)equippedwitha monochro-maticAlK␣ source(h␯=1486.6eV). Thepassenergywassetto 47eV,givinganoverallenergyresolutionof0.75eV,withan emis-sionangleof45.0◦.Tocompensateforsamplecharging,inparticular whenanalyzingtheAl2O3layer,adualbeamchargeneutralizerwas

used.XPSdepthprofilingwascarriedoutusinganargongascluster ionbeam(GCIB)[19]with2500Aratomspercluster,acurrentof 20nA,arasterareaof2mm*2mm,ensuringuniformsputteringof theanalyzedarea,and20kVacceleratingvoltagecorrespondingto anenergyof8eVperatom.

3. Resultsanddiscussion

3.1. Electricalcharacterization

Fig.2(a)showstheI–VcharacteristicoftheTaN/ZrTe/Al2O3/Ta

stackmeasuredunderambientatmospherefortheformingstep. Thecurrentincreases abruptlyby threeordersofmagnitudeto the50mAcompliancecurrentathighthresholdvoltages.Thisis theformingprocess,duringwhich conductivepathsarecreated throughtheinsulatingdielectriclayer.Itistriggeredbytheforming voltage(Vf),equalto3.3V.Thecurrentincreaseatlowervoltages

isprobablyduetopreliminaryredoxordiffusionphenomena[20]. Thecurrentlimitationof50mA,orcompliancecurrent,was cho-seninordertogenerateimportantchemicalmodificationsinthe insulatinglayerorattheinterfaceswiththeelectrodes,while pro-tectingthestructurefromadielectricbreakdown[15].Thedevice resistancemeasuredbeforeand afterforminggave a resistance ratioRAs-grown/RFormed=1.105,confirmingasignificantchangeof

thedevicesresistivitybytheformationofaconductivepath(or paths)intheelectrolyte.Fig.2(b)presentsacurrent–voltage(I–V) curvefortheformingand reset processesmeasuredona simi-larmemorystack.In thiscurve,itispossibletoobserve,bythe applicationofoppositepolarity,theresetoperationswitchingthe memoryfromthelow-resistancestate(LRS)tothehigh-resistance state(HRS)at−1.4V.Inthisstudy,wefocusedourattentionon

(4)

Fig.2. (a)Current–voltage(I–V)curvefortheformingoftheTaN/ZrTe/Al2O3/Tastack.(b)Current–voltage(I–V)curvefortheformingandresetoftheTaN/ZrTe/Al2O3/Ta

stack. Table1

Relativeareas(%)oftheAl1scomponentsfortheAl2O3/Tastack,as-grownand

formedsamples.

Al2O3 AlOx

Al2O3/Ta 97.8±0.1 2.2±0.3

As-grown 91.3±0.1 8.7±0.3

Formed 88.0±0.1 12.0±0.3

thecriticalformingstepwhichhasakeyroleforthedevice oper-ation.HAXPESresultsobtainedforsimilardevicesmeasuredafter formingandresetarestillunderanalysisandwillbepublishedin afurtherpaper.

3.2. HardX-rayphotoelectronspectroscopy

HAXPES measurements were performed on as-grown and formedTaN/ZrTe/Al2O3/Tastacks,andalsoonthebareAl2O3/Ta

structureoutsidethetopelectrode(seeFig.1),inordertoprovide areferencespectrumforaluminum.Eachpeakwasnormalized rel-ativetotheintensityofthebackgroundmeasuredathighkinetic energy.Thephotoelectronrecoileffects[21]wereestimatedfrom Ekin(m/M)whereEkinisthephotoelectronkineticenergy,misthe

electronmassandMtheatomic mass.TheestimationforAl1s, Zr3p3/2andTe3d3/2corelevelsshowedarecoilenergyof0.13,

0.045and0.03eV,respectively.Takingintoaccounttheuncertainty of0.1eVonthebindingenergy,wehave neglectedtheserecoil energiesintherestofthepaper.

TheAl1scorelevelspectraoutsidethetopelectrode,i.e.forthe Al2O3/Tastack,andfortheas-grownandformedstatesare

repre-sentedinFig.3togetherwiththebestfits.Thedecompositionof theseAl1sspectratookintoaccounttwocontributions:aluminum sub-oxide(labeledAlOx)atbindingenergy(BE)of1561.5eVand

alumina(Al2O3)at1562.4eV.Therelativeareasofthese

compo-nentsaregiveninTable1.

Theseresultsshowedanincreaseofthesub-oxide contribu-tion(AlOxat1561.5eV)relativetothemaincontribution(Al2O3

at1562.4eV)fortheas-grownandformedstateswithrespectto theAl2O3/Tastack.Regardingtheas-grownstate,itmeansthatthe

ZrTetopelectrodedepositiongivesrisetoaslightreductionofthe underlyingaluminalayer.Thisphenomenonispresumablylocated atorneartheZrTe/Al2O3interfaceandrelatedtooxygen

scaveng-ingbythetopelectrode[10].Positivelybiasingthisactiveelectrode, oxygenmigration,probablyintheO2−form,isenhancedleadingto

afurtherreductionoftheAl2O3andanincreaseoftheAlOx

contri-bution(+3.3%).OxygenmigrationcreatespositivelychargedVOin

thealumina,whichmayhaveanimportantroleintheformationof conductivefilamentsbyactingaseasyionicdiffusionpathsinthe solidelectrolyte[20,22,23].

Fig.3.Al1scorelevelpeaksobtainedbyHAXPESon:a)theAl2O3/Tastack,b)

as-grownandc)formedstatesoftheTaN/ZrTe/Al2O3/Tastack.

Table2

Relativeareas(%)oftheZr3p3/2componentsfortheas-grownandformedsamples.

ZrTe ZrO2

As-grown 79.0±0.2 21.0±0.4

Formed 74.4±0.2 25.6±0.4

Fig.4presentstheZr3p3/2spectraforas-grownandformed

sam-ples.Thespectrahavebeenfittedconsideringtwocontributions. Thefirstcomponentat330.2eVwasfittedusingaDoniach-Sunjic [18] functionand it ischaracteristic of theZrTealloy.The sec-ondcomponentat332.9eVwasfittedusingaLorentzian-Gaussian functionanditischaracteristicofZrO2.

Table2showstherelativeareasofthetwocomponentsofthe Zr3p3/2spectrumforas-grownandformedsamples.Anincreaseof

theZrO2area(+4.6%)withrespecttothemainpeakwasobserved

afterforming,consistentwithoxygenmigrationtowardstheactive electroderesultinginoxidationofZrattheZrTe/Al2O3interface.

(5)

4 M.K.Mendesetal./AppliedSurfaceSciencexxx(2017)xxx–xxx

Fig.4.Zr3p3/2corelevelpeaksobtainedbyHAXPESon:a)as-grownandb)formed

statesoftheTaN/ZrTe/Al2O3/Tastack.

Fig.5. Te3d3 /2 corelevelspectraofa)as-grownandb)formedstatesofthe

TaN/ZrTe/Al2O3/Tastack.

TheproposedmechanismforZroxidationandTereleaseatthe interfaceisdescribedbyZrTex+O2→ZrO2+xTe[10].

TheoxidationofZristhoughttoallowTetransportunderan appliedfieldthroughtheoxidetocreatethefilament.TheHAXPES resultsprovideadirectevidenceofthechemistryofthefirststepof theproposedmechanism,i.e.Zroxidationbyoxygenscavenging fromthealuminaand,asaconsequence,Terelease.

TheTe3d3/2spectrameasuredforas-grownandformed

sam-plesareshowninFig.5.Theseasymmetricalpeakshavebeenfitted usingaDoniach-Sunjicfunction[18]byconsideringtwo contribu-tions.Thefirstcomponentat582.6eVisrelatedwiththeZrTealloy

Table3

Relativeareas(%)oftheTe3d3/2componentsfortheas-grownandformedsamples.

ZrTe Te-Te

As-grown 90.8±0.1 9.7±0.4

Formed 86.8±0.1 13.2±0.3

Fig.6.XPSdepthprofilesofoxygenmeasuredontheTiN/ZrTe/Al2O3/Tastackfor as-grownandformedsamples.

andthesecondcomponentat583.4eVischaracteristicofelemental Te[24,25].

Comparison between the relative areas extracted from as-grown and formed spectra is presented in Table3.This result showedasignificantelementaltelluriumincrease(+3.5%)during theformingprocess.ThisincreasewassimilartothatoftheZrO2

contribution.Thisresultcouldberelatedtothedetachmentand migration ofTe [10]or simplyformationofTe-Te bondsinside thetopelectrodeasaresultsofZrO2formationfollowingoxygen

uptakefromthealumina. 3.3. XPSdepthprofiling

XPS depth profiling were carried out on the as-grown and formedsamplestoprovideinformation aboutoxygenmigration alongthestack.Theanalysiswasperformedonaslightlydifferent stack,witha15nm-thickTiNcappinglayerinsteadofthethinner 5nm-thickTaNlayerandathinner(10nm)ZrTeelectrode.

Fig.6showstheXPSatomicconcentrationsputterdepthprofile ofoxygenobtainedfromtheO1scorelevelintensity,forthe as-grownandformedsamples.

Thehighoxygensignalbeforesputteringisduetosurface oxida-tionoftheTiNcapanddoesnotinfluencethesubsequentprofiling. TheonsetoftheburiedOintensityobtainedafterformingisshifted towardsthetopelectrodecomparedtotheonemeasuredforthe as-grownsample.ThisresultindicatesOdiffusionintotheZrTelayer whichisconsistentwiththescavengingmechanismsuggestedby J.R.Jamesonandal[10].andisconsistentwithwhatisobservedon theZr3p3/2corelevelspectra,i.e.adecreaseofZrTecomponent

andanincreaseofZrO2.

4. Discussion

InthecaseofTe-basedCBRAMs,suchasZrTe/Al2O3 devices,

ourresultsshowedthataredoxprocessoccursattheZrTe/Al2O3

interface(ZrO2formationandAl2O3reduction)yieldingtoa

sub-stoichiometricaluminium oxide.Thisbehaviour canalready be observedduringthedepositionofthetopelectrodeonthealumina. 8.7%ofAlwasinaloweroxidationstatecomparedtoonly2.2%in theas-depositedAl2O3.Thissuggestsapreliminaryredoxprocess

(6)

Fig.7. Four-layercapacitormodelforthe(a)as-grownand(b)formedsamples.

attheZrTe/Al2O3interfacecreatingVOinthealumina.Indeed,the

formationofZrO2isthermodynamicallymorefavourablein

com-parisonwithAl2O3formation,asshownbytheEllinghamdiagrams

[8].VOfacilitatethecreationoflowresistancepathspresumablyvia

Tediffusioninsidetheelectrolyte,asstatedbyJamesonetal.[10]. TheVOconcentrationdeducedfromtheAlOxcomponentincreased

afterformingwith12%Alinloweroxidationstate.Furthermorethe comparisonbetweentheoxygendepthprofilesmeasuredon as-grownandformedsampleshighlightedanoxygenmigrationfrom theelectrolyteintotheactiveelectrode.Electroforminghas there-foreenhancedtheOscavengingbytheZrTeelectrodeand,aswe willsee,increasedthereleaseofelementalTe.

Afour-layercapacitormodel[26,27]wasusedtoquantifythe redoxprocessattheZrTe/Al2O3 interface.Weassumedthattwo

distinctlayers ofZrO2 and AlOx wereformedwithsharp

inter-facesyieldingthestructureshowninFig.7.Wealsoassumedthat thereleasedTestaysattheinterface,andislocatedatthesame levelastheinterfacialZrO2 layer,labelledZrO2+Te-TeinFig.7.

Thisisequivalenttoassumingaphaseseparationwithinthelayer betweenZrO2andTe.

Tocalculatetherespectivethicknesses,weconsideredthe pho-toelectronintensitiesfromeachoftheAl2O3,AlOx,ZrO2andZrTe

layers,givenbytheareasofthecorrespondingcomponentsofthe Al1sandZr3p3/2corelevelspectra.Theseintensitiesweredefined

bythefollowingequations:

IZrTe=I∞ZrTe



1−exp



−d ZrTe Zr



(1)

IZrO2 =I∞ZrO2exp



−d ZrTe Zr

 

[1−exp



−dZrO2 Zr



(2)

IAlOx=IAlO∞xexp



−dZrTe Al



exp



d ZrO2 Al



1−exp



−d AlOx Al



(3) IAl2O3=I ∞ Al2O3exp



−d ZrTe Al



exp



d ZrO2 Al



exp



−dAlOx Al





1−exp



−dAl2O3 Al



(4)

where dZrTe, dZrO2, dAlOx and dAl2O3 are the thicknesses of the

ZrTe,ZrO2,AlOxandAl2O3layersofthemodel.Forsimplicity,we

assumedthattheinelasticmeanfreepathsofAl1sandZr3p3/2

photoelectronswerethesameinallthelayers ofthestack and respectivelyequaltoAl=9.2nmandZr=10.7nm.This

approx-imation leads to an uncertainty of ±1.3nm in the ZrO2 layer

estimation.

FromEqs.(1)and(2),wecanexpresstheintensityratioofthe ZrO2andZrTecontributionsextractedfromtheZr3p3/2corelevel:

IZrO2 I ZrTe =I ∞ ZrO2 I∞ZrTeexp

−dZrTe  Zr

1−exp



− dZrO2 Zr



1−exp

dZrTe  Zr

FromEqs.(3)and(4),wecanexpresstheintensityratioofthe Al2O3andAlOxcontributionsextractedfromtheAl1scorelevel:

IAl2O3 IAlOx =I ∞ Al2O3 I∞AlOx exp



−dAlOx Al



1exp



−dAl2O3 Al





1−exp



−dAlOx Al



These ratiosenable toestimatethethicknessof the interfa-cial AlOx and ZrO2 layers, given that dAlOx+ dAl2O3=5nm and

dZrO2+dZrTe=15nm.Wealsoassumedthattheintensitiesofthe

semi-infiniteblocksoftheAl2O3andAlOxlayerswereequal.The

sameassumptionwasmadefortheZrO2andZrTelayers.

ThethicknessesoftheZrO2andAlOxlayerscalculatedusingthis

modelfortheas-grownandformedsamplesaregiveninTable4 togetherwiththeintensityratiosoftheAl2O3,AlOx,ZrO2andZrTe

componentsinthecorelevelspectra.

Similarly,theintensityratiobetweentheTeandZrTe contri-butionsextractedfromtheTe3d3/2corelevelcanbeexpressedas

follows: ITeTe I ZrTe = I∞Te−Te I∞ ZrTe exp



−d ZrTe Te



1−exp



d Te-Te Te





1−exp



−d ZrTe Te



wheredTe-TeisthethicknessoftheTe-richlayerformednearthe

interfaceand␭Teisequalto10.4nm.Fromthislastequation,we

calculatedthethicknessoftheinterfacialTe-richlayertobe2.9 and4.0nm,fortheas-grownandformedsamplesrespectively(see

Table4).

Aftertheformingprocess,wesawanincreaseof1.1nmatthe interfacialZrO2 layer(seeFig.7(b)).TheTe-richlayershoweda

similargrowth.Thistrendagreeswiththeredoxprocessdeduced fromthedetailedanalysisoftheAl1s,Zr3p3/2andTe3d3/2peaks.

(7)

6 M.K.Mendesetal./AppliedSurfaceSciencexxx(2017)xxx–xxx Table4

ExperimentalintensityratiosandestimatedthicknessesoftheZrTe/ZrO2+Te-Te/AlOx/Al2O3stackextractedfromthequantitativemodelandtheAl1s,Zr3p3/2andTe3d3/2

core-levelcomponentsintensities.

Sample IAl2O3/IAlOx IZrO2/IZrTe ITe-Te/IZrTe dAlOx(nm) dZrO2(nm) dTe-Te(nm) dZrTe(nm)

As-grown 9.0 0.26 0.11 0.40 5.3 2.9 9.7

Formed 6.0 0.36 0.17 0.57 6.4 4.0 8.6

thealloy.NotethattheZrO2layerextendsovernearlyhalfofthe

topelectrode, showingthatoxygendiffusesdeeply insideZrTe. Thisthicknesswasprobablyoverestimateddue toanadditional ZrO2contributionontheZr3p3/2peakcomingfromZroxidation

attheupperTaN/ZrTeinterface.Indeed,theTaNcappinglayerdid notcompletelypreventoxidationofZrTe.TheTe-richlayeris thin-nerbyhalfcomparedtoZrO2.ThereleasedTeisconfinednearthe

ZrTe/Al2O3withapossibleextensioninsidethealumina.Asmall

increaseoftheinterfacialAlOxlayerwasalsoobtainedafterthe

voltageapplication,confirmingthecreationofVOinsidethe

alu-minalayer.Assumingthatthisisaninterfacialeffect,ourmodel showedthattheAlOxthicknessis0.17nmhigherafterformingbut

veryconfined(∼2monolayers).However,thisreductionprocess isprobablynotonlylocatedattheinterface,butextendsthrough thewholealuminalayer,toachievetheformationofpreferential conductivepaths.Therefore,theAlOxthicknessobtainedwithour

simplifiedmultilayermodelwasprobablyunderestimated. TheelectricalmeasurementsreportedbyJamesonetal. [10] showedthattheconductanceofsuchCBRAMscellsisequalto0.03 G0,belowthestandardG0value.Theswitchingmechanismisthus

relatedneithertoametallicfilamentnortoVO.Theconductance

ismoreconsistentwithaTe filament,suggesting thatthe pres-enceofTeinsidetheoxideisdirectlyrelatedtotheoxidationof Zr.OurstudyclearlyshowedthecorrelationofZroxidationwith thereleaseofTeattheZrTe/Al2O3 interface.However,itismore

difficulttoconcludeonthechemicalnatureofthefilament.Forthe sakeofconsistencywiththeelectricalresultsreportedin[10],we assumethatfilamentsaremadeofTe.TheHAXPESTe3d3/2

spec-trashowedthatthereleasedTeisnotionized.TheTemigration throughthealuminaisthusnotdirectlydrivenbytheelectricfield andmoredifficulttoexplain.Aplausiblemechanismisthat:a) firstTeaccumulatesattheinterfaceandthenprogressivelyinside thealumina,b)second,localTesegregationmightoccurthrough VO,actingaseasierdiffusionpathstowardsthebottomelectrode.

Thisstudyprovidesevidenceofthephysico-chemicalphenomena involvedduringtheelectroformingprocess.However,itcannotbe excludedthatotherconcurrentphysicalmechanismsgenerateor contributetotheresistiveswitching.

5. Conclusion

We investigated subquantum CBRAMs based on the ZrTe/Al2O3/Ta stack using HAXPES and XPS to learn about

electrochemical reactions and ionic transport involved in the electroformingprocess.HAXPESmeasurementsallowedin-depth analysesofthestackwithoutdegradingtheoriginalstructureby samplepreparation suchasion sputtering or chemicaletching. Thiswasofrealinteresttoavoiddamagingtheregionofinterest,in particulartheZrTe/Al2O3interface.Resultsshowedtheoxidation

ofZrtogetherwithacorrelatedaluminareductionduringforming. Thisredoxprocessisrelatedtooxygenscavengingbytheactive topelectrode.ThisOmigrationleadstothecreationofpositively chargedVO inthealumina,therebycreatingfavoredconductive

paths.XPS depth profiling confirmed the O diffusionfrom the Al2O3towardstheZrTetopelectrode.Afour-layercapacitormodel

showedanincreaseofboththeZrO2andAlOxinterfaciallayers,

confirmingtheredoxprocesslocatedbetweentheactiveelectrode

andtheelectrolyte.Furthermoretheresistanceswitchingcaused alsoanelementalTeincreaseattheinterfaceZrTe/Al2O3.

References

[1]E.Vianello,G.Molas,F.Longnos,P.Blaise,E.Souchier,C.Cagli,G.Palma,J. Guy,M.Bernard,M.Reyboz,G.Rodriguez,A.DeSalvo,F.Dahmani,P.Verrier, D.Bretegnier,J.Liebault,Sb-dopedGeS2asperformanceandreliability boosterinConductiveBridgeRAM,in:IEEE,2012,pp.31.5.1–31.5.4.

[2]N.Banno,T.Sakamoto,N.Iguchi,H.Sunamura,K.Terabe,T.Hasegawa,M. Aono,Diffusivityofcuionsinsolidelectrolyteanditseffectonthe performanceofnanometer-scaleswitch,IEEETrans.ElectronDevices55 (2008)3283–3287.

[3]K.Terabe,T.Hasegawa,T.Nakayama,M.Aono,Quantizedconductanceatomic switch,Nature433(2005)47–50.

[4]S.Maikap,S.Z.Rahaman,T.Y.Wu,F.Chen,M.-J.Kao,M.-J.Tsai,Lowcurrent(5 pA)resistiveswitchingmemoryusinghigh-kTa2O5solidelectrolyte,in:IEEE, 2009,pp.217–220.

[5]C.Schindler,S.C.P.Thermadam,R.Waser,M.N.Kozicki,Bipolarandunipolar resistiveswitchinginCu-dopedSiO2,IEEETrans.ElectronDevices54(2007) 2762–2768.

[6]L.Goux,K.Opsomer,R.Degraeve,R.Müller,C.Detavernier,D.J.Wouters,M. Jurczak,L.Altimime,J.A.Kittl,InfluenceoftheCu-Tecompositionand microstructureontheresistiveswitchingofCu-Te/Al2O3/Sicells,Appl.Phys. Lett.99(2011)053502.

[7]R.Waser,M.Aono,Nanoionics-basedresistiveswitchingmemories,Nat. Mater.6(2007)833–840.

[8]R.Waser,R.Dittmann,G.Staikov,K.Szot,Redox-basedresistiveswitching memories–nanoionicmechanismsprospects,andchallenges,Adv.Mater.21 (2009)2632–2663.

[9]S.Clima,K.Sankaran,Y.Y.Chen,A.Fantini,U.Celano,A.Belmonte,L.Zhang,L. Goux,B.Govoreanu,R.Degraeve,D.J.Wouters,M.Jurczak,W.Vandervorst, S.D.Gendt,G.Pourtois,RRAMsbasedonanionicandcationicswitching:a shortoverview,Phys.StatusSolidiRRLRapidRes.Lett.8(2014)501–511.

[10]J.R.Jameson,D.Kamalanathan,Subquantumconductive-bridgememory, Appl.Phys.Lett.108(2016)053505.

[11]U.Celano,L.Goux,A.Belmonte,A.Schulze,K.Opsomer,C.Detavernier,O. Richard,H.Bender,M.Jurczak,W.Vandervorst,Conductive-AFMtomography for3Dfilamentobservationinresistiveswitchingdevices,in:2013IEEEInt. ElectronDevicesMeet,2013,pp.21.6.1–21.6.4.

[12]Y.Yang,P.Gao,S.Gaba,T.Chang,X.Pan,W.Lu,Observationofconducting filamentgrowthinnanoscaleresistivememories,Nat.Commun.3(2012)732.

[13]W.Devulder,K.Opsomer,F.Seidel,A.Belmonte,R.Muller,B.DeSchutter,H. Bender,W.Vandervorst,S.VanElshocht,M.Jurczak,L.Goux,C.Detavernier, Influenceofcarbonalloyingonthethermalstabilityandresistiveswitching behaviorofcopper-telluridebasedCBRAMcells,ACSAppl.Mater.Interfaces5 (2013)6984–6989.

[14]S.Tappertzhofen,I.Valov,T.Tsuruoka,T.Hasegawa,R.Waser,M.Aono, Genericrelevanceofcounterchargesforcation-basednanoscaleresistive switchingmemories,ACSNano7(2013)6396–6402.

[15]D.Ielmini,Resistiveswitchingmemoriesbasedonmetaloxides:mechanisms, reliabilityandscaling,Semicond.Sci.Technol.31(2016)063002.

[16]QUASESsoftware(http://www.quases.com/products/quases-imfp-tpp2m/) usingtheTTP-2MformulafromS.Tanuma,C.J.,Powell,D.R.,Penn, Calculationsofelectroninelasticmeanfreepaths(IMFPS).IV.Evaluationof calculatedIMFPsandofthepredictiveIMFPformulaTPP-2forelectron energiesbetween50and2000eV,Surf.InterfaceAnal.20(1993)77–89. [17]D.Briggs,M.P.Seah(Eds.),PracticalSurfaceAnalysis,AugerandX-ray

PhotoelectronSpectroscopy,vol.1,edition,WileyChichester,NewYork,1996.

[18]S.Doniach,M.Sunjic,Many-electronsingularityinX-rayphotoemissionand X-raylinespectrafrommetals,J.Phys.CSolidStatePhys.3(1970)285.

[19]I.Yamada,J.Matsuo,N.Toyoda,A.Kirkpatrick,Materialsprocessingbygas clusterionbeams,Mater.Sci.Eng.RRep.34(2001)231–295.

[20]M.Saadi,P.Gonon,C.Vallée,C.Mannequin,H.Grampeix,E.Jalaguier,F. Jomni,A.Bsiesy,Onthemechanismsofcationinjectioninconductingbridge memories:thecaseofHfO2incontactwithnoblemetalanodes(AuCu,Ag),J. Appl.Phys.119(2016)114501.

[21]Y.Takata,Y.Kayanuma,M.Yabashi,K.Tamasaku,Y.Nishino,D.Miwa,Y. Harada,K.Horiba,S.Shin,S.Tanaka,E.Ikenaga,K.Kobayashi,Y.Senba,H. Ohashi,T.Ishikawa,Recoileffectsofphotoelectronsinasolid,Phys.Rev.B75 (2007)233404.

[22]Y.-L.Chung,W.-H.Cheng,J.-S.Jeng,W.-C.Chen,S.-A.Jhan,J.-S.Chen,Joint contributionsofAgionsandoxygenvacanciestoconductingfilament evolutionofAg/TaOx/Ptmemorydevice,J.Appl.Phys.116(2014)164502.

(8)

[23]G.Molas,E.Vianello,F.Dahmani,M.Barci,P.Blaise,J.Guy,A.Toffoli,M. Bernard,A.Roule,F.Pierre,C.Licitra,B.D.Salvo,L.Perniola,Controllingoxygen vacanciesindopedoxidebasedCBRAMforimprovedmemoryperformances, in:2014IEEEInt.ElectronDevicesMeet.,2014,pp.6.1.1-6.1.4.3.

[24]M.K.Bahl,R.L.Watson,K.J.Irgolic,X-rayphotoemissionstudiesoftellurium andsomeofitscompounds,J.Chem.Phys.66(1977)5526–5535.

[25]H.Neumann,M.Mast,J.Enderlein,R.D.Tomlinson,M.V.Yakushev,XPS analysisofbridgman-grownCuInTe2andofitsnativeoxide,Cryst.Res. Technol.31(1996)75–85.

[26]N.Barrett,O.Renault,J.-F.Damlencourt,F.Martin,Thermalstabilityofthe HfO2/SiO2interfaceforsub-0.1␮mcomplementary

metal-oxide-semiconductorgateoxidestacks:avalencebandand quantitativecore-levelstudybysoftx-rayphotoelectronspectroscopy,J. Appl.Phys.96(2004)6362–6369.

[27]A.Jablonski,J.Zemek,OverlayerthicknessdeterminationbyXPSusingthe multilineapproach,Surf.InterfaceAnal.41(2009)193–204.

Figure

Fig. 1. Schematic of the setup for electrical characterization of the TaN/ZrTe/Al 2 O 3 /Ta stack.
Fig. 2. (a) Current – voltage (I–V) curve for the forming of the TaN/ZrTe/Al 2 O 3 /Ta stack
Fig. 5. Te 3d 3 /2 core level spectra of a) as-grown and b) formed states of the TaN/ZrTe/Al 2 O 3 /Ta stack.
Fig. 7. Four-layer capacitor model for the (a) as-grown and (b) formed samples.

Références

Documents relatifs

SPSed specimen oxidized during 1000h at 1000°C. Ti, Al, C and O corresponding EDXS maps of the oxide layer are once more presented. Some nodules of TiO 2 are observed on top of.. The

Indeed, by controlling thin-film glass thickness, glass composition, crystallization temperature and duration of the heat treatment, oriented thin films of crystals with

Following this model the nodes of the dot structure (A sites) correspond to holes through the alumina films which are strong adsorption sites for metal atoms like Pd. The

The similarity of the spectra measured on the bare Al(111) islands and on the germanene nanosheets indicates a tunnelling current dominated by the band structure of the Al crystal

,OVHUDSODFpVXUXQSDUNLQJjO¶HQWUpHG¶XQEDVVLQGHUpWHQWLRQDX+DYUH'HVHVVDLVEDWFKRQWpWpPHQpVDYHFGHVVROXWLRQV tri-métallique et monométalliques Zn2+, Cu2+, Pb2+ à température ambiante et à

The dashed curves represent the changes of ellipsometric parameters () and () after the formation of 10 nm thick layer of the proteins on the surface of above

Oxidation of C 10 + solid hydrocarbons representative of soluble organic fraction of Diesel soots... Catalytic Oxidation of Heavy Hydrocarbons

The different simulations presented in this work show to what extent atomic scale structural data – obtained from Density Functional Theory calculations- can be used with the