• Aucun résultat trouvé

Theoretical study of cooling load caused by lights

N/A
N/A
Protected

Academic year: 2021

Partager "Theoretical study of cooling load caused by lights"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

ASHRAE Transactions, 74, 2, pp. 189-197, 1969-02-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Theoretical study of cooling load caused by lights

Kimura, K.; Stephenson, D. G.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=3de1725b-4cf4-4acc-922f-28a939ef5235 https://publications-cnrc.canada.ca/fra/voir/objet/?id=3de1725b-4cf4-4acc-922f-28a939ef5235

(2)

Ser

TH1 N21r2 no.

394

c . 2 NATIONAL R E S E A R C H C O U N C I L O F CANADA C O N S E I L NATIONAL D E R E C H E R C H E S DU CANADA J 3 ; j $.\

;-

v

;;

;;

Q

T H E O R E T I C A L STUDY O F COOLING LOAD CAUSED BY L I G H T S

-

by K . Kimura a n d D.G. S t e p h e n s o n R e p r i n t e d from ASHRAE T R A N S A C T I O N S Vol. 7 4 , P a r t 11, 1 9 6 8 p. 189-197

-

LIBRARY

-

R e s e a r c h P a p e r No. 3 9 4 of t h e D i v i s i o n of B u i l d i n g R e s e a r c h OTTAWA F e b r u a r y , 1 9 6 9 P r i c e 25 c e n t s NRC 1 0 6 3 0

(3)

,(.--

g

?,:; 9

? ,.-..<

(.c'. - :.

NATIONAL RESEARCH COUNCIL O F CANADA 'DIVISION O F BUILDING R E S E M C H

ERRATA

" T h e o r e t i c a l Study of Cooling Load C a u s e d by L i g h t s " by K. K i m u r a a n d D. G. S t e p h e n s o n ( N R C 10630) F i g u r e 5

-

l a s t n u m b e r on o r d i n a t e s c a l e s h o u l d be 0. 7 5 . Appendix

I

-

l a s t p a r a g r a p h should r e a d : T h e v a l u e s of r e s p o n s e f a c t o r s f o r f u r t h e r s t e p s of j which a r e n o t t a - b u l a t e d c a n b e obtained by nzultiply- ing t h e c o m m o n r a t i o by t h e r e s p e c - t i v e v a l u e s a t t h e s t e p j

-

1 s u c c e s s i v e l y

(4)

No.

2087

D. G. STEPHENSON

Theoretical Study of Cooling Load

Caused by Lights

I

T h e m a j o r c o m p o n e n t of h e a t g a i n in t h e i n t e r i o r z o n e s of modern b u i l d i n g s i s t h e p o w e r s u p p l i e d t o t h e l i g h t s . A l t h o u g h t h i s e l e c t r i c a l e n e r g y i s a l l c o n v e r t e d t o h e a t , a l l t h e h e a t d o e s n o t a p p e a r im- m e d i a t e l y a s c o o l i n g l o a d . S o m e of t h e h e a t from t h e l i g h t s i s s t o r e d by t h e s t r u c t u r e , p a r t i c u l a r l y i n t h e floor s l a b , a n d o n l y c o n t r i b u t e s t o t h e s p a c e c o o l i n g l o a d a f t e r t h e l i g h t s a r e s w i t c h e d off. T h i s h e a t s t o r a g e e f f e c t s h o u l d b e t a k e n i n t o a c c o u n t in t h e c a l c u l a t i o n of c o o l i n g l o a d . S t o r a g e f a c t o r s h a v e b e e n p u b l i s h e d 1 for e x p o s e d a n d r e c e s s e d l i g h t f i x t u r e s , but t h e r e i s n o t h i n g in t h e l i t e r a t u r e t o s u p p o r t t h e s e d a t a . T h e c a l c u l a - t i o n s r e p o r t e d in t h i s p a p e r w e r e m a d e , i n t h e f i r s t i n s t a n c e , t o c h e c k t h e p u b l i s h e d d a t a . T h e y h a v e b e e n e x t e n d e d t o d e t e r m i n e t h e s e n s i t i v i t y of t h e s t o r a g e f a c t o r s t o c h a n g e s i n t h e h e a t t r a n s f e r c o e f - f i c i e n t s a t t h e room s u r f a c e s , t h e t h e r m a l c h a r a c t e r - i s t i c s of t h e f l o o r - c e i l i n g a r r a n g e m e n t , t h e propor- t i o n of t h e i n p u t p o w e r t h a t i s i n i t i a l l y t r a n s f e r r e d from t h e f i x t u r e t o t h e s p a c e a b o v e t h e c e i l i n g , a n d v e n t i l a t i o n of t h e c e i l i n g c a v i t y . T h i s t h e o r e t i c a l s t u d y of t h e s e n s i t i v i t y of t h e s t o r a g e f a c t o r s in- K . K i m u r a i s a P o s t D o c t o r a l F e l l o w , D i v i s i o n o f B u i l d i n g Research, N a t i o n a l R e s e a r c h C o u n c i l of Canada, Ottawa, o n l e a v e f r o m t h e D e p a r t m e n t 0.f A r c h i t e c t u r e , Waseda U n i v e r s i t y , T o k y o , Japan. D. G. S t e p h e n s o n i s a R e s e a r c h O f f i c e r , B u i l d i n g S e r v i c e s Section, D i v i s i o n o f B u i l d i n g Research, N a t i o n a l R e s e a r c h C o u n c i l o f Canada, O t t a w a . T h i s paper i s o c o n t r i - b u t i o n from t h e D i v i s i o n o f B u i l d i n g Research, N a t i o n a l R e s e a r c h C o u n c i l o f Canada, and i s p u b l i s h e d w i t h t h e a p - ~ r o v a l of t h e D i r e c t o r o f the D i v i s i o n . T h i s paper was p r e p a r e d for p r e s e n t a t i o n a t t h e A S H R A E A n n u a l Meeting, L a k e P l a c i d , N e w York, J u n e 24 - 2 6 , 1968. d i c a t e s t h e n e e d for a d d i t i o n a l e x p e r i m e n t a l work. I t a l s o s h o w s h o w t h e e x p e r i m e n t a l r e s u l t s c a n b e a n a l y z e d t o o b t a i n t h e v a l u e s of t h e i m p o r t a n t p a r a m e t e r s . M E T H O D O F C A L C U L A T I N G C O O L I N G L O A D C o o l i n g l o a d s h a v e b e e n c a l c u l a t e d for f l u o r e s c e n t f i x t u r e s r e c e s s e d i n t o a s u s p e n d e d c e i l i n g a s s h o w n in F i g . 1. I t w a s a s s u m e d t h a t t h e r o o m s a b o v e a n d b e l o w w e r e i d e n t i c a l t o t h e room i n q u e s t i o n . T h e .-

-

L ( /h

.

R o o m S p a c e 1 F l o o r S l a b 2 h3 C e i l i n g P l e n u m S p a c e C e i l i n g ( \ R o o m S p a c e h3 C e i l i n g P l e n u m S p a c e C e i l i n g

Fig. 1 Thermal s y s t e m o / suspended ceiling with re- c e s s e d l i g h t s

(5)

power t o t h e l i g h t s w a s a s s u m e d t o be d i s s i p a t e d a s s h o w n in F i g . 1: a f r a c t i o n , p , of t h e i n p u t g o i n g up and (1-p) down i n t o the room. E a c h of t h e s e com- p o n e n t s w a s a s s u m e d t o b e d i v i d e d e q u a l l y b e t w e e n c o n v e c t i o n to the a i r a n d radiation a b s o r b e d by t h e floor s u r f a c e . T h e fraction (1-p)/2 of t h e input power that g o e s d i r e c t l y t o t h e room a i r a l l o w s for t h e h e a t t r a n s f e r by c o n v e c t i o n from t h e l i g h t f i x t u r e a n d t h e part of t h e r a d i a t i o n from t h e l i g h t s t h a t is a b s o r b e d by the furniture. T h i s p r e s u p p o s e s t h a t t h e r a d i a t i o n a b s o r b e d by t h e furniture a p p e a r s as c o o l i n g l o a d a l m o s t immediately b e c a u s e of t h e low h e a t s t o r a g e c a p a c i t y of t h e f u r n i s h i n g s . A l l of t h e h e a t s t o r a g e c a p a c i t y w a s a s s u m e d t o b e in t h e floor s l a b ; t h e s u s p e n d e d c e i l i n g being t r e a t e d as a thermal r e s i s - t a n c e . T h e h e a t f l u x e s through the upper and l o w e r s u r f a c e s of the floor s l a b w e r e computed by the re- s p o n s e f a c t o r m e t h ~ d ~ > ~ . T h e r e s p o n s e f a c t o r s for the floor s l a b w e r e e v a l u a t e d with the program g i v e n in R e f e r e n c e 4 using a time i n c r e m e n t of 1 5 mins. T h e y a r e t a b u l a t e d in Appendix I.

T h e t e m p e r a t u r e s a t e a c h s u r f a c e of the floor a n d c e i l i n g a n d i n t h e s p a c e a b o ~ e the c e i l i n g w e r e found by s o l v i n g t h e s e t of h e a t b a l a n c e e q u a t i o n s for t h e 4 s u r f a c e s a n d t h e c e i l i n g c a v i t y . T h i s s e t of e q u a t i o n s is g i v e n i n Appendix I1 i n matrix form.

T h e c o o l i n g l o a d a t e a c h time i s j u s t t h e s u m of the h e a t t r a n s f e r r e d t o t h e room a i r by c o n v e c t i o n from t h e floor and c e i l i n g p l u s t h e (1-p)/2 of t h e in- put power, which a c c o u n t s for c o n v e c t i o n from t h e light f i x t u r e s a n d furniture. 0 . 7 I I I I

I

I

N o P l e n u m V e n t i l a t i o n

1

f

$

-

1

-

0 . 7 4 9 e x p ( - 0 . 1 5 2 t )

+

-

1

-

0 . 7 5 5 e x p ( - 0 . 1 2 7 t )

$

= 1 - 0 . 7 6 2 e x p ( - 0 . 0 9 6 t ) I I I I

I

1 2 3 4 5 T I M E , H R S

Fig. 2 Cooling load for unventzlated plenum, calculated using different convection coefficients

DISCUSSION O F R E S U L T S U n v e n t i l a t e d S p a c e A b o v e C e i l i n g

F i g . 2 s h o w s t h e c a l c u l a t e d c o o l i n g load v s time a f t e r l i g h t s a r e turned o n for a f l u o r e s c e n t fixture r e c e s s e d i n t o a n u n v e n t i l a t e d c e i l i n g s p a c e . T h e variation o f t h e l o a d with time i s r e p r e s e n t e d q u i t e w e l l by a n e x p r e s s i o n of t h e form - - q l - A e - B '

w -

(1) T h e r a t e a t w h i c h h e a t is being s t o r e d is W

-

q = WAe-B' (2) T h u s , t h e t o t a l h e a t s t o r e d when s t e a d y - s t a t e c o n - d i t i o n s a r e r e a c h e d i s T h i s s t o r e d h e a t i s r e l e a s e d t o t h e room a i r o v e r q u i t e a long period a f t e r t h e l i g h t s a r e s w i t c h e d off. T h u s t h e c o o l i n g l o a d d o e s n o t s t o p e v e n though t h e p o w e r input h a s s t o p p e d . If i t i s a s s u m e d t h a t t h e h e a t t r a n s f e r c o e f f i c i e n t s remain the s a m e w h e t h e r the l i g h t s a r e on or off, the c o o l i n g l o a d a f t e r the l i g h t s a r e turned off i s g i v e n by

where t h e l i g h t s w e r e o n from t=O t o t=M.

T h e u s u a l v a l u e s of B a r e s m a l l enough t h a t e-B'

i s n o t n e g l i g i b l e w h e n t = 2 4 hrs. T h u s , t h e r e i s a carry-over e f f e c t from d a y to d a y w h e n t h e l i g h t s a r e o p e r a t e d on a r e g u l a r d a i l y s c h e d u l e . A s s u m i n g t h a t t h e l i g h t s a r e o n for M hours a n d off for 24-M hours t h e c u m u l a t i v e c o o l i n g l o a d i s :

T h e s e i n f i n i t e g e o m e t r i c s e r i e s c a n b e summed t o g i v e

(6)

V a l u e s of given by t h e s e e q u a t i o n s with

d

M

= 10 h r s c a n b e compared with the published Stor- a g e L o a d F a c t o r s ( S L F ) mentioned earlier. T h e p o i n t s plotted in F i g .

3

a r e t h e S L F for fluores- c e n t l i g h t s r e c e s s e d into a n unventilated plenum.

-

-

c 0

-

VI .- I I I I I I , 0 2 4 6 8 10 1 2 14 16 1 8 20 2 2 24 TIME. HR No P l e i i u m V e n t i l a t i o n - C a l c u l a t e d p = 0 . 6 L s = 0 . 5 , K c l L c = 1.0 h p = h 3 = 0 . 5 h i = h 4 = 1.5

.

. C a r r i e r 1 0 0 l b l f t 2 , 24 h r O p e r a t i o n

- -

-

I n f e r r e d C u r v e f o r C a r r i e r A = 0 . 5 2 5 , B = 0. 1 1 7 h r - l

Fig. 3 Storage load lactor /or unventilated plenum

T h e s e a r e for a room with 1 0 0 l b / f t 2 of floor a r e a and a cooling s y s t e m t h a t o p e r a t e s continuously. T h e dotted l i n e through the points r e p r e s e n t s the v a l u e s given by E q s 6 and 7 for A = 0.525 a n d B = 0.117 hr-l. T h e s o l i d l i n e r e p r e s e n t s t h e c a l - c u l a t e d r e s u l t s shown in F i g . 2 for h l = h 4 =

1.5

~ t u / f t ~ hr d e g

F

( i e : A = 0.754,

B

= 0.127 hr'l). T h e s e c u r v e s show that the published S L F a r e s i g - nificantly higher than t h e c a l c u l a t e d v a l u e s for the times when the l i g h t s a r e on ( a n d consequently lower when the l i g h t s a r e off). T h e S L F c a n be rep- r e s e n t e d , however, by e q u a t i o n s of the form given in

E q s 6 and 7, s o t h e s e e q u a t i o n s could be u s e d t o modify the ~ u b l i s h e d v a l u e s for any other v a l u e of

M.

A further s e t of c a l c u l a t i o n s w a s made to deter- mine the s e n s i t i v i t y of the r e s u l t s t o c h a n g e s in the a s s u m e d v a l u e s of t h e h e a t transfer c o e f f i c i e n t s , the fraction, p, of t h e power that i s d i s s i p a t e d into t h e plenum s p a c e , alld c h a n g e s in the thermal character- i s t i c s of the floor-ceiling combination. T h e l o a d s shown in F i g . 2 a r e b a s e d on a v a l u e of p = 0.6, which w a s c h o s e n on t h e b a s i s of d a t a in Reference 5; and h 2 = h 3 = 0.5, which s e e m e d reasonable for

natural convection in the plenum s p a c e . T h e v a l u e s of h a n d h d e p e n d on the r a t e of a i r movement in the room. A v a l u e of 1 . 5 w a s taken a s a rather con- s e r v a t i v e ( i e : high) e s t i m a t e of the v a l u e that might occur in a real building. T h e s e v a l u e s were taken a s t h e s t a n d a r d conditions when t h e various parameters were varied to determine the s e n s i t i v i t y of load to the parameters. T h e r e s u l t a n t c h a n g e s in the A and B v a l u e s a r e shown in F i g . 4. T h e main conclusion

Fig.

4

S e n s i t i v i t y o/ A and B to the changes o/ para- meters /or unventilated plenum

that c a n be drawn from t h e s e r e s u l t s is t h a t t h e value of A i s q u i t e s e n s i t i v e to c h a n g e s in p w h i l e

B

i s unaffected by c h a n g e s i n p. On the o t h e r h a n d ,

B

i s much more s e n s i t i v e than

A

to c h a n g e s in the convective h e a t t r a n s f e r c o e f f i c i e n t s a t t h e floor and c e i l i n g s u r f a c e s . Neither A nor

B

i s very s e n s i - tive to c h a n g e s in the c o n v e c t i v e h e a t transfer c o e f - f i c i e n t s in the s p a c e above t h e ceiling. F i g . 4 a l s o

(7)

s h o w s t h a t t h e v a l u e s of both A a n d B depend on the thermal r e s i s t a n c e of the c e i l i n g a n d the t h i c k n e s s of the floor. Changing the t h i c k n e s s of the floor ( i e : the h e a t s t o r a g e c a p a c i t y of t h e room) h a s the g r e a t e s t e f f e c t on B.

All t h e r e s u l t s p r e s e n t e d in F i g s . 2,

3

and

4

w e r e obtained by u s i n g the rather arbitrary a s s u m p t i o n that the power d i s s i p a t e d from t h e l i g h t s is e q u a l l y divided between radiation and c o n v e c t i o n . Some a d - d i t i o n a l c a l c u l a t i o n s w e r e made a s s u m i n g that i t w a s divided i n t o 30% c o n v e c t i o n a n d 70% radiation, a n d ,vice v e r s a . It made very l i t t l e d i f f e r e n c e which a s -

sumption w a s u s e d for t h e component of the h e a t that w a s transferred upward, but t h e c o o l i n g l o a d w a s in- c r e a s e d when more of t h e downward component w a s a s s u m e d to b e c o n v e c t e d d i r e c t l y t o the room a i r . E x p e r i m e n t a l work i s required t o e s t a b l i s h t h e a p - propriate r a t i o of c o n v e c t i o n t o radiation for rooms with t y p i c a l l i g h t fixtures and a r r a n g e m e n t s of furni- ture. A l l of t h e downward component would h a v e t o be c o n v e c t e d to t h e room a i r t o make c a l c u l a t e d re- s u l t s a g r e e with t h e published s t o r a g e l o a d f a c t o r s . It s e e m s s a f e t o c o n c l u d e , therefore, t h a t t h e pub- l i s h e d d a t a a r e q u i t e c o n s e r v a t i v e .

Ventilated S p a c e Above C e i l i n g

When room a i r is e x h a u s t e d through the s p a c e a b o v e the c e i l i n g , part of the h e a t from t h e l i g h t s is re- moved before i t c a n e n t e r t h e room. T h i s e f f e c t is taken i n t o a c c o u n t i n the c a l c u l a t i o n of room c o o l i n g load by introducing the f i n a l term in the h e a t b a l a n c e e q u a t i o n for the plenum g i v e n in Appendix 11. With t h i s c h a n g e t h e c o o l i n g l o a d of the room a p p r o a c h e s a s t e a d y - s t a t e v a l u e q, t h a t is l e s s t h a n W, and t h e h e a t e x t r a c t e d from t h e plenum a p p r o a c h e s W - q,. F i g .

5

s h o w s t h a t the room c o o l i n g l o a d c a n b e r e p r e s e n t e d by a n d the h e a t e x t r a c t i o n from t h e c e i l i n g s p a c e , q,, c a n be r e p r e s e n t e d by V a l u e s of A, B , C a n d q,/W a r e given in F i g .

6

for s e v e r a l different v a l u e s of the v a r i a b l e parameters. T h e computed v a l u e s of q / W a n d qc/W a r e for t h e

0.1 0

1 2 3 4 5

TIME. H R S

Fig. 5 Cooling load and heal removed by exhnust air

I I I I

I

- -

-

1 - 0 . 7 2 0 e x p l - 0 . 1 4 6 11 1- - , 0 0

-

0 0

-

0 '0 0 -

./

W i t h P l e n u m V e n t i l a t i o n

-

V = 10 ft31ft2 h L S = 0.5, k c / L , = 1.0

-

p = 0.6 - h 2 = h3 = 1.0, h i = h4 = 1.5 -

-

-

I I I I s a m e s t a n d a r d c o n d i t i o n s a s the r e s u l t s in F i g . 2 for h , = h 4 = 1.5 e x c e p t t h a t plenum ventilation of 1 0 c f h per f t 2 of floor a r e a h a s b e e n introduced.

- P - h i . h 4 -h2. h j - k c l L , - L ,

Fig. 6 S e n s i t i v i t y o f A , B , C and q , t o / h e c h a n g e s of parameters for ventilated plenum

T h e p u b l i s h e d S L F d a t a for a v e n t i l a t e d c e i l i n g plenum approach a v a l u e of 1 a s t becomes large, just a s for the c a s e s with n o v e n t i l a t i o n . It s e e m s , therefore, t h a t t h e s e d a t a a r e for ( q ,

+

q)/W rather than just q/W. T h e c a l c u l a t e d v a l u e s of q/W and (q

+

qC)/W, modified t o a l l o w for a 10-hr p e r d a y s c h e d u l e of o p e r a t i o n , a r e plotted in F i g . 7 along with the p u b l i s h e d d a t a . H e r e the e a r l i e r d a t a a r e

(8)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 20 22 24 T I M E . H R S W i t h P l e n u m V e n t i l a t i o n

-

C a l c u l a t e d

-

i f P l e n u m A i r R e c i r c u l a t e d

-

C a l c u l a t e d - i f P l e n u m A i r E x h a u s t e d p = 0. 6. V = 10 L s = 0.5. K c l L c = 1. 0 h ? = h 3 = 1.0. h i = h4 = 1 . 5 9

.

C a r r i e r 1 0 0 l b l f t ? 24 h r O p e r a t i o n

Fig. 7 Storage l o a d factor for v e n t i l a t e d p l e r ~ u m

s o m e w h a t s m a l l e r t h a n t h e c a l c u l a t e d (q

+

q,)/W d u r i n g t h e t i m e w h i l e t h e l i g h t s a r e on a n d l a r g e r w h i l e l i g h t s a r e off. T h e y a r e a l w a y s l a r g e r , h o w - e v e r , t h a n q / W f o r t h e room. C O O L I N G L O A D W E I G H T I N G F A C T O R S F O R L I G H T S T h e c o o l i n g l o a d d u e to l i g h t s c a n b e c a l c u l a t e d e a s i l y by t h e w e i g h t i n g f a c t o r m e t h o d d e s c r i b e d i n R e f e r e n c e 2 e v e n t h o u g h t h e l i g h t s a r e o p e r a t e d on a n i r r e g u l a r s c h e d u l e . T h e c o o l i n g l o a d a t a n y time, t, is: w h e r e W t - j ~ is t h e a v e r a g e p o w e r i n p u t t o t h e l i g h t s d u r i n g t h e i n t e r v a l b e t w e e n t-jA a n d t-(j + 1 ) A . T h e w e i g h t i n g f a c t o r s r j a r e s i m p l y t h e v a l u e s of q/W a t t = ( j

+

1 ) A f o r t h e case w h e r e t h e l i g h t s w e r e o n from t = 0 t o t = A a n d a r e off t h e r e a f t e r : f o r j = O r , = l - ~ e - ~ ~ ( l l a ) for j 2 1 r j = A ( 1 - e - ~ ~ ) e- jBA (lib)

T h e v a l u e s of r j g e t p r o g r e s s i v e l y s m a l l e r a s j in- c r e a s e s s o t h a t t h e y b e c o m e n e g l i g i b l e f o r l a r g e v a l u e s o f j . T h u s t h e s u m m a t i o n for q c a n b e s t o p p e d a f t e r a f i n i t e n u m b e r of t e r m s ; t h e a c t u a l n u m b e r of t e r m s d e p e n d i n g on t h e m a g n i t u d e of B A a n d t h e p r e c i s i o n r e q u i r e d . C O N C L U S I O N T h i s s t u d y h a s s h o w n t h a t t h e c o o l i n g l o a d a s s o - c i a t e d w i t h p o w e r i n p u t t o l i g h t s d e p e n d s o n t h e c o n - v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t s a t t h e c e i l i n g a n d f l o o r s u r f a c e s , t h e t h e r m a l r e s i s t a n c e of t h e c e i l i n g , t h e p r o p o r t i o n s of t h e i n p u t p o w e r t h a t a r e d i s s i p a t e d u p w a r d a n d d o w n w a r d from t h e l i g h t f i x t u r e , a n d t h e h e a t s t o r a g e c a p a c i t y of t h e f l o o r s l a b . C a l c u l a t e d v a l u e s of s t o r a g e l o a d f a c t o r s b a s e d on e s t i m a t e d v a l u e s of t h e h e a t t r a n s f e r c o e f f i c i e n t s a r e i n f a i r a g r e e m e n t w i t h p u b l i s h e d v a l u e s : t h e p u b l i s h e d v a l u e s a p p e a r i n g t o b e c o n s e r v a t i v e . E x p e r i m e n t a l w o r k is n e e d e d t o e s t a b l i s h t h e a p - p r o p r i a t e v a l u e s of t h e c o n v e c t i v e h e a t t r a n s f e r c o - e f f i c i e n t s in r o o m s w i t h v a r i o u s a i r s u p p l y a n d e x h a u s t a r r a n g e m e n t s . An e x p e r i m e n t a l d e t e r m i n a t i o n of c o o l i n g l o a d d u e t o l i g h t s w i l l y i e l d v a l u e s of t h e t w o c o n s t a n t s A a n d B i n E q 1. An a n a l y s i s s i m i l a r t o t h e o n e r e p o r t e d i n t h i s p a p e r c a n e s t a b l i s h t h e c u r v e of B v s h f o r t h e s p e c i f i c c a s e u n d e r t e s t ; t h e n t h e e x p e r i m e n t a l v a l u e of B c a n b e u s e d t o f i n d t h e a p p r o p r i a t e v a l u e of h. S i m i l a r l y , t h e e x p e r i - m e n t a l v a l u e of A c a n b e u s e d t o f i n d t h e p r o p o r t i o n of t h e i n p u t p o w e r t h a t is t r a n s f e r r e d d i r e c t l y t o t h e room. When t h e s e d a t a a r e k n o w n , t h e e q u a t i o n s p r e s e n t e d i n t h i s p a p e r c a n b e u s e d t o e v a l u a t e t h e c o o l i n g l o a d w e i g h t i n g f a c t o r s o r t h e s t o r a g e l o a d f a c t o r s for r o o m s w i t h s i m i l a r v e n t i l a t i o n a r r a n g e - m e n t s b u t d i f f e r e n t floor

-

c e i l i n g a r r a n g e m e n t s . R E F E R E N C E S

1. Carrier Air Conditioning Company, Handbook of Air Conditioning S y s t e m D e s i g n , McGraw-Hill, Inc., 1965.

2. D. G. S t e p h e n s o n , a n d G. P . Mitalas, Cooling Load C a l c u l a t i o n s by Thermal R e s p o n s e F a c t o r Method, ASHRAE TRANS., Vol. 7 3 , P a r t I , 1967.

3. G. P . Mitalas, a n d D. G. Stephenson, Room Thermal R e s p o n s e F a c t o r s , ASHRAE TRANS., Vol. 7 3 , P a r t I , 1967.

4. G. P . M i t a l a s , a n d J . G. Arseneault, Fortran IV Program t o C a l c u l a t e H e a t F l u x R e s p o n s e F a c t o r s f o r

(9)

Canada, Division of Building Research, Computer Progfam No. 26, June 1767.

5. J . E. Flynn, and S. M. Mills, Architectural Lighting Graphics, Reinhold Publishing Corp., 1962.

NOMENCLATURE

01,, = upper s u r f a c e temperature of floor s l a b

0 2 , n = l o w e r s u r f a c e temperature of floor s l a b 03,, = upper s u r f a c e temperature of c e i l i n g p a n e l 0 4 , n = l o w e r s u r f a c e temperature of c e i l i n g p a n e l O,,, = a v e r a g e a i r temperature i n c e i l i n g plenum q = outward c o n d u c t i v e h e a t flux to s u r f a c e 1 qz,, = outward c o n d u c t i v e h e a t flux t o s u r f a c e 2 S e c o n d s u b s c r i p t n d e n o t e s time a f t e r l i g h t s a r e s w i t c h e d o n i n u n i t s of 1 / 4 h r h = c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t a t s u r f a c e 1 h 2 = c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t a t s u r f a c e 2 h 3 = c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t a t s u r f a c e

3

h q = c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t a t s u r f a c e

4

hr32 = r a d i a t i v e h e a t t r a n s f e r c o e f f i c i e n t b e t w e e n s u r f a c e

3

a n d 2 h , 4 = r a d i a t i v e h e a t t r a n s f e r c o e f f i c i e n t b e t w e e n s u r f a c e

4

a n d 1 k,,k, = thermal c o n d u c t i v i t y of c e i l i n g p a n e l a n d floor s l a b r e s p e c t i v e l y L,,L, = t h i c k n e s s of c e i l i n g p a n e l a n d floor s l a b r e s p e c t i v e l y C,,y = s p e c i f i c h e a t a n d s p e c i f i c w e i g h t of return a i r r e s p e c t i v e l y p = f r a c t i o n of power input t h a t i s t r a n s f e r r e d t o plenum W = power s u p p l i e d t o l i g h t s p e r s q u a r e foot of floor a r e a

q = room c o o l i n g l o a d per s q u a r e foot of f l o o r a r e a a f t e r l i g h t s turned on q , = r a t e of h e a t removal by v e n t i l a t e d a i r through plenum a f t e r l i g h t s turned on q, = toom c o o l i n g l o a d d u e t o l i g h t s a t s t e a d y s t a t e c o n d i t i o n when plenum i s v e n t i l a t e d A , B , C , = c o n s t a n t s d e p e n d e n t on p a r a m e t e r s i n t h e a p p r o x i m a t e r e p r e s e n t a t i o n of t h e c o o l i n g l o a d ( E q s 1 a n d

9)

t = time a f t e r l i g h t s turned on i n h o u r s A = time i n c r e m e n t d = number of s u c c e s s i v e d a y s of i d e n t i c a l o p e r a t i o n

V = r a t e of v e n t i l a t e d a i r flow through plenum i n

c u b i c foot p e r h o u r per s q u a r e foot of floor a r e a

r i = c o o l i n g l o a d w e i g h t i n g f a c t o r s for l i g h t s a t

t = ( j

+

1)A

X j Y , Z j = thermal r e s p o n s e f a c t o r s for a homoge- n e o u s s l a b (Appendix I a n d 11)

A P P E N D I X I

R E S P O N S E F A C T O R S F O R C O N C R E T E S L A B A program for c a l c u l a t i n g t h e thermal r e s p o n s e f a c t o r s for a h o m o g e n e o u s s l a b o r a multi-layer s l a b made up of h o m o g e n e o u s l a y e r s is p r e s e n t e d in

R e f e r e n c e

4.

T h e downward h e a t f l u x e s a t t h e upper s u r f a c e of s l a b a n d t h e l o w e r s u r f a c e of s l a b a t e v e r y time s t e p j d u e t o a triangle u n i t p u l s e t o the u p p e r s u r f a c e a t j = o a r e d e f i n e d a s t h e r e s p o n s e f a c t o r s X j a n d Y , a n d t h e upward h e a t f l u x e s a t t h e lower a n d upper s u r f a c e s of s l a b , d u e to the u n i t p u l s e t o t h e l o w e r s u r f a c e , a s

Z , a n d

Y ,

r e s p e c - t i v e l y . F o r a h o m o g e n e o u s s l a b a s u s e d h e r e X , = Z j b e c a u s e of symmetry.

T h e v a l u e s o f X i , Y a n d Z i t a b u l a t e d i n T a b l e A for 0.3, 0.5 a n d 0.7 f t of c o n c r e t e s l a b w e r e c a l c u - l a t e d with t h e time i n t e r v a l of 1 5 m i n s , which w a s s h o r t enough to be q u i t e a c c u r a t e a s d i s c u s s e d in R e f e r e n c e

3.

T h e v a l u e s of r e s p o n s e f a c t o r s for further s t e p s of n which a r e n o t t a b u l a t e d c a n b e o b t a i n e d by multiplying t h e common r a t i o by the r e s p e c t i v e v a l u e s a t t h e s t e p j; 1 s u c c e s s i v e l y .

A P P E N D I X I1

H E A T B A L A N C E EQUATIONS AND SOLUTION P R O C E D U R E

Referring t o F i g . 1 , t h e h e a t b a l a n c e e q u a t i o n s c a n be set u p a s f o l l o w s , u s i n g the room a i r temperature a s t h e z e r o b a s e :

(10)

'

- 'W - h l e l , n q l , n

+2

+ h r 4 1 ( e 4 , n

-

= 0 ( A l ) w h e r e 2. A t t h e l o w e r s u r f a c e of f l o o r s l a b P q2.n

+?W

+ h2(0C7n - 02,n) w h e r e

3.

A t t h e u p p e r s u r f a c e o f c e i l i n g p a n e l

k

-C ~ ~ ( 0 4 , n

-

03,n) + h3(0Cyn - 03,,,) - hr32(03,n - 02,.> = 0 ( A 3 )

4.

A t t h e l o w e r s u r f a c e of c e i l i n g p a n e l - h,41(04,n - d l y n ) = 0 ( A d )

5 .

A t t h e c e i l i n g p l e n u m h 2 ( 0 2 , n - Oc,,-,) + h3(03,n

-

O c , n ) P + -W - 2 C p y V 0 c , n = 0 ( A 5 ) 2 T h e a b o v e h e a t b a l a n c e e q u a t i o n s c a n b e c o n - v e r t e d i n t o t h e f o l l o w i n g s i m u l t a n e o u s e q u a t i o n s e x p r e s s e d i n m a t r i x forms to b e s o l v e d for 0 l , n , 0 ~ , n , 0 3 , n , 0 4 , n a n d 8 c , n .

(11)

T h e n the c o o l i n g l o a d d u e to l i g h t s a f t e r s w i t c h e d on c a n be o b t a i n e d by t h e formula

T A B L E A

R E S P O N S E F A C T O R S F O R A HOMOGENEOUS C O N C R E T E S L A B

fer from the u p p e r s u r f a c e of floor s l a b t o the room a i r ; the s e c o n d term, the t r a n s f e r from t h e lower s u r - 1 - P w

q n = h1e1," + h494.n +T

T h e f i r s t term r e p r e s e n t s t h e c o n v e c t i v e h e a t t r a n s -

C o n s t a n t s u s e d :

f a c e of c e i l i n g to t h e room a i r ; a n d t h e third term, the i n s t a n t a n e o u s h e a t g a i n from f i x t u r e s . T h e r m a l c o n d u c t i v i t y k , = 1 . 0 ~ t u / f t

*

h r OF/ft S l a b t h i c k n e s s L , = 0.3, 0.5, 0.7 ft S p e c i f i c w e i g h t D = 1 4 0 1b/ft3 S p e c i f i c h e a t C = 0 . 2 0 B t u / l b O F T h e i n t e r v a l At = 0 . 2 5 hour Common Ratio 0.3756387234 0.7029384971 0.8354040384

DISCUSSION

R. H. T U L L (Morristown, N. J.): T h e a u t h o r s a r e t o b e commended for c a r r y i n g t h e i r work on more a c - c u r a t e c a l c u l a t i o n of c o o l i n g l o a d s , i n t o the problem of the c o o l i n g l o a d c a u s e d by l i g h t s . T h i s p a p e r ex- t e n d s t h e i r work on the a p p l i c a t i o n of the r e s p o n s e

f a c t o r methodology i n t o a m o s t important a r e a of l o a d c a l c u l a t i o n . T h i s method h a s been a d o p t e d by the ASHRAE T a s k Group o n E n e r g y R e q u i r e m e n t s a s the b a s i s for t h e p r o p o s e d new c a l c u l a t i o n procedure f o r d e t e r m i n i n g h e a t i n g a n d c o o l i n g l o a d s . C o n s e -

(12)

q u e n t l y , w e f e e l t h a t t h i s p a p e r m a k e s a s i g n i f i c a n t c o n t r i b u t i o n t o our k n o w l e d g e in t h i s field.

T h e a u t h o r s p o i n t o u t the n e e d for e x p e r i m e n t a l work to provide an e m p i r i c a l b a s e for the mathe- m a t i c a l a n a l y s i s a n d for e s t a b l i s h i n g S t o r a g e L o a d F a c t o r s ( S L F ) for t y p i c a l l i g h t i n g fixture a p p l i c a - t i o n s . A r e q u e s t for s u c h a n e x p e r i m e n t a l s t u d y h a s been i n i t i a t e d by t h e T a s k Group. We f e e l t h a t i t is highly d e s i r a b l e for ASHRAE to u p g r a d e its informa- tion on t h i s s u b j e c t . T h e p r e s e n t ASHRAE HAND- BOOK O F FUNDAMENTALS g i v e s r e c o m m e n d a t i o n s t h a t c o m p a r e w i t h t h e a u t h o r s ' c a l c u l a t i o n s ( F i g s . 1 & 2).

F i g u r e 1 s h o w s t h e c o m p a r i s o n for a r e c e s s e d fixture i n a n o n - v e n t i l a t e d plenum. Note t h a t t h e ASHRAE recommendation g i v e s much h i g h e r i n s t a n - t a n e o u s c o o l i n g l o a d s during the period when t h e l i g h t s a r e on and g i v e s n o information on t h e c o o l i n g l o a d r e s u l t i n g from t h e s t o r e d h e a t a f t e r the l i g h t s a r e turned off. F i g u r e 2 s h o w s a s i m i l a r c o m p a r i s o n with a v e n t i l a t e d plenum. T h e m a t h e m a t i c a l a n a l y s i s d e v e l o p e d in t h i s p a p e r c e r t a i n l y i n d i c a t e s a n e e d for a r e v i s i o n i n t h i s ASHRAE information. We h o p e

COOLING LOAD FROM LIGHTS STORAGE LOAD FACTORS

RECESSED FLUORESCENT LIGHTS-ON 10 HOURS/24 HRS.

NO PLENUM EXHAUST

LIGHTING INPUT = 15 BTUH/FT'

UPWARD FRACTION P = 0.75

STORAGE LOAD FACTOR

t-

LIGHTS ON

-

LIGHTS OFF

_I

HOURS

Fig. 1 Comparison of Storage Load Factors ( S L F) for a recessed fixture in a non-ventilated plenum

a n d t r u s t that i t may o p e n the way for further re- s e a r c h in d e t e r m i n i n g the i n s t a n t a n e o u s c o o l i n g l o a d s from a l l t y p e s of a p p l i c a t i o n s of l i g h t i n g equipment.

MR. KIMURA: T h e comment by Mr. T u l l is v e r y much a p p r e c i a t e d . We a r e now making p l a n s for e x p e r i - m e n t a l work to d e t e r m i n e t h e unknown f a c t o r s a s d e s c r i b e d i n t h e p a p e r , a n d h o p e t h a t t h e r e s u l t s w i l l s u p p l e m e n t t h i s t h e o r e t i c a l s t u d y .

T h e s t o r a g e l o a d f a c t o r c u r v e s d e s i g n a t e d a s N . R . C . i n F i g . 1 of Mr. T u l l ' s comment for unven- t i l a t e d plenum c o r r e s p o n d s to t h e c u r v e i n F i g .

3

i n t h e p a p e r , w h i l e t h e N.R.C. c u r v e s i n F i g . 2 of Mr. T u l l ' s comment for v e n t i l a t e d plenum s h o w only t h e s p a c e c o o l i n g l o a d w h i c h c o r r e s p o n d s to the l o w e r c u r v e i n F i g . 7 of t h e p a p e r . T h e s l i g h t d i f f e r e n c e s b e t w e e n the c u r v e s in t h e f i g u r e s of Mr. T u l l ' s com- m e n t a n d t h o s e i n the p a p e r a r e d u e to t h e d i f f e r e n t v a l u e s of p a r a m e t e r s a s s u m e d i n the c a l c u l a t i o n s . T h e computer program d e v e l o p e d at N.R.C. c a l c u l a t e s e i t h e r s t o r a g e l o a d f a c t o r o r v a l u e s of A, B, C , a n d q,/W for any c o m b i n a t i o n s of p a r a m e t e r s i n c l u d i n g t h e period of l i g h t s on a n d off.

COOLING LOAD FROM LIGHTS

STORAGE LOAD FACTORS

RECESSED FLUORESCENT LIGHTS-ON 10 HOURS/24 HRS.

RETURN AIR EXHAUST THROUGH PLENUM V = 15 F T ' / F T ~ H

LIGHTING INPUT = 15 BTUH / FT2

UPWARD FRACTION P = 0.75 STORAGE LOAD FACTOR 0 0 2 4 6 8 10 12 14 16 18 20 22 24 HOURS

Fig. 2 Comparison of Storage Load Factors ( S L F) for a recessed fixture in a ventilated plenum

Figure

Fig.  1  Thermal  s y s t e m   o /   suspended  ceiling  with  re-  c e s s e d  l i g h t s
Fig.  2  Cooling  load for  unventzlated plenum,  calculated  using  different  convection  coefficients
Fig.  4  S e n s i t i v i t y   o/  A  and  B  to  the  changes  o/ para-  meters  /or  unventilated  plenum
Fig.  5  Cooling  load  and  heal  removed  by  exhnust  air
+2

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including