• Aucun résultat trouvé

Quasi-Monte Carlo integration on manifolds with mapped low-discrepancy points and greedy minimal Riesz s-energy points

N/A
N/A
Protected

Academic year: 2021

Partager "Quasi-Monte Carlo integration on manifolds with mapped low-discrepancy points and greedy minimal Riesz s-energy points"

Copied!
15
0
0

Texte intégral

(1)

Quasi-Monte

Carlo

integration

on

manifolds

with

mapped

low-discrepancy

points

and

greedy

minimal

Riesz

s-energy

points

Stefano De

Marchi

a

,

,

Giacomo Elefante

b

aUniversityofPadova,DepartmentofMathematics,ViaTrieste,63,I-35121Padova,Italy

bUniversityofFribourg,DepartmentofMathematics,CheminduMusée,23,CH-1700Fribourg,Switzerland

Keywords:

Cubatureonmanifolds Quasi-MonteCarlomethod Measurepreservingmaps Low-discrepancysequences GreedyminimalRieszs energypoints

Inthispaperweconsider twosets of pointsforQuasi-Monte Carlointegrationon two-dimensional manifolds. The first is the set of mapped low-discrepancy sequence by a measurepreservingmap, from a rectangle U ⊂ R2 to the manifold. The second is the greedyminimalRieszs-energypoints extractedfromasuitablediscretizationofthemanifold. ThankstothePoppy-seedBagelTheorem weknowthattheclasses ofpointswithminimal Rieszs-energy,undersuitableassumptions,areasymptoticallyuniformlydistributedwith respecttothenormalizedHausdorffmeasure.Theycanthenbeconsideredasquadrature points onmanifolds via the Quasi-Monte Carlo(QMC) method. On the otherhand, we donot knowifthegreedyminimalRieszs-energypointsareagoodchoicetointegrate functions with the QMC method on manifolds. Through theoretical considerations, by showingsomeproperties ofthesepointsand by numericalexperiments,weattempt to answertothesequestions.

1. Introduction

MonteCarlo(MC) andQuasi-MonteCarlo(QMC)methods are well-known techniquesin numericalanalysis, statistics,

ineconomy, infinancialengineeringandinmanyfieldswhereitisrequiredtonumericallycomputefastlyandaccurately,

theintegralofamultivariatefunction f .BothMCandQMCmethodsapproximatetheintegral



X f

(x)

d

μ

(x)

,withX

⊂ R

d,

bytheaverage ofthefunctionvaluesatasetof N pointsof X uniformlydistributedwithrespecttoa givenmeasure

μ

.

MonteCarlouses randompoints whereas the Quasi-MonteCarlomethodconsiders deterministic pointsets, inparticular

low-discrepancysequences.

Letusconsidertheintegral

1

H

d

(

M

)



M

f

(

x

)

d

H

d

(

x

)

(1)

where

M

is a d-dimensional manifold and

H

d is the Hausdorffmeasure (for thedefinition of thismeasure we refer to

[8,§11.2]). Inthiscase,theQMCmethodis preferabletoother cubaturetechniques,since itrequiresonlythe knowledge

*

Correspondingauthor.

E-mailaddresses:demarchi@math.unipd.it(S. DeMarchi),giacomo.elefante@unifr.ch(G. Elefante).

http://doc.rero.ch

Published in "Applied Numerical Mathematics 127: 110–124, 2018"

which should be cited to refer to this work.

(2)

of f ona well-distributedpoints setofthemanifold.It isworthmentioning,that othercubaturetechniques mayrequire

more information onthe approximation space, like forexample inthe nonnegative leastsquares or those basedon the

ApproximateFeketePoints(cf.[2])whereitisrequiredtheknowledgeofasuitablepolynomialbasisofthemanifold.There

existalsoChebyshev-typequadratureformulasonmultidimensionaldomains,asthosestudiedforinstancein[11].

ConvergenceresultsanderrorboundsforMCandQMCmethods,areusuallystudiedon X

= [

0

,

1

)

d.Inparticularthe

er-rorboundin

[

0

,

1

)

dfortheQMCmethodisgivenbythewell-knownKoksma–Hlawkainequality (seeTheorem 2ofSection2).

ForothercloseddomainsormanifoldsthereexistsimilarinequalitiesasrecalledinTheorems 3 and4(cf.[1,4,18]).

In ordertoprove convergenceto theintegral ona manifold, we canchoose alow-discrepancy sequence,whichturns

out to be uniformlydistributedwithrespect to theHausdorff measure ofthemanifold. Due to Poppy-seedBagelTheorem

(seetheweightedversion,Theorem 5ofSection4)weknowthatminimalRieszs-energypoints,undersomeassumptions,

areuniformlydistributedwithrespecttotheHausdorffmeasure

H

d (see[10,9]).Thereforethesepointsrepresentpotential

candidates forintegrating functions via the QMC method on manifolds. As observed in [3], it is also possible to use a

continuousandpositiveonthediagonal(CPD)weightfunction,sayw,todistributethesepointsuniformlywithrespectto

agivendensity.

To compute the minimal Riesz s-energy points we make use of a greedy technique, obtaining the so-called greedy

ks-energypoints (or Léja–Gorskipoints) and thegreedy

(

w

,

s

)

-energy points in the weighted case (see Section 4, below).

So far,we do not knowiftheseapproximatepoints of theminimal Rieszs-energy points are agood choice tointegrate

functionsviatheQMCmethodongeneralmanifolds.Asprovedin[13],weonlyknowthatthegreedypointsareuniformly

distributedonthed-dimensionalunitsphere

S

d,d

1.

In thiswork,we test thesegreedypoints forthe integrationon differentmanifoldsvia QMCmethod, makinga

com-parison withlow-discrepancy sequences (like Halton points or Fibonaccilattices) mapped tothe manifold by a measure

preserving map aimedtomaintain their uniformdistributionwithrespecttotheHausdorff measureofthemanifold (see

Section3),andalsowiththeMCmethodbytakingrandompointsonthemanifolditself.

Thepaperisorganized asfollows.Aftersomenecessarydefinitions,notationsandresultson MCandQMCintegration,

recalled in the next section, in Section 3 we presentthe mapping technique from the unit square

[

0

,

1

]

2 to a general

manifold

M

⊂ R

2.InSection4 weintroduceother setofpoints,that istheminimal s-Rieszenergypoints,theweighted

(

w

,

s

)

-Rieszpoints andthegreedyminimal

(

w

,

s

)

-energypoints.InSection5weprovideextensivenumericalexperiments

forcomparingthesesetofpointsforQMCintegrationondifferentfunctionsonclassical manifolds:cone,cylinder, sphere

and torus.WeconcludeinSection6bysummarizingtheresultsandproposingsomefutureworks.

2. Preliminaries

Let X beacompactHausdorffspaceand

μ

aregularunitBorelmeasureonX .

Definition1.Asequenceofpoints

S = (x

n

)

n≥1inacompactHausdorffspace X isuniformlydistributedwithrespecttothe

measure

μ

(or

μ

-u.d.)ifforanyreal-valuedboundedcontinuousfunction f

:

X

→ R

wehave

lim N→∞



N n=1f

(

xn

)

N

=



X f

(

x

)

d

μ

(

x

).

This definitiontells usthat, ifwe havea sequence uniformlydistributed withrespect toa given measure

μ

,we can

approximate



X f d

μ

byusingtheQMCmethod.

Theorem1(cf.[12]).Asequence

(x

n

)

n∈Nis

μ

-u.d.inX ifandonlyif

lim

N→∞

#

(

J

;

N

)

N

=

μ

(

J

)

holdsforall

μ

-continuitysets J

X .

Here,by#

(

J

;

N

)

wemeanthecardinalityoftheset J

∩ {

xn

}

nN=1.

Anequivalentwaytodescribetheuniformdistributionofasequenceisintermsofthediscrepancy





#(J;N)

N

μ

(

J

)





.

For

[

0

,

1

)

dand

μ

= λ

d(theLebesguemeasure)itiscommonlyusedthefollowingdefinitionofthediscrepancyofapoint

set.

Definition2. Let P

= {

x0

,

. . . ,

xN−1

}

denote a finite point set in

[

0

,

1

)

d and

B

a nonempty familyof Jordan measurable

subsetsof

[

0

,

1

)

d.Then DN

(

B

;

P

) :=

sup B∈B





#

(

B

;

NN

;

P

)

− λ

d

(

B

)



.

http://doc.rero.ch

(3)

Dependingonthefamily

B

wecandistinguishthediscrepanciesasfollows.

Stardiscrepancy:DN

(

P

)

=

DN

(J

;

P

)

,where

J

∗ isthefamilyofallsubintervalsof

[

0

,

1

)

d oftheform



di=1

[

0

,

ai

)

.

Extremediscrepancy:DN

(

P

)

=

DN

(J ;

P

)

,where

J

isthefamilyofallsubintervalsof

[

0

,

1

)

d oftheform



id=1

[

ai

,

bi

)

.

Isotropicdiscrepancy: JN

(

P

)

=

DN

(C;

P

)

,where

C

isthefamilyofallconvexsubsetsof

[

0

,

1

)

d.

Thestar-discrepancyisimportanton

[

0

,

1

)

dinestimatingtheerroroftheQMCmethodbytheKoksma–Hlawkainequality

(seee.g.[12]).

Theorem2(Koksma–Hlawkainequality).If f hasmultivariateboundedvariationV

(

f

)

on

[

0

,

1

)

d(inthesenseofHardyandKrause) thenforeveryP

= {

x1

,

. . . ,

xN

}

⊂ [

0

,

1

)

d









1 N N



n=1 f

(

xn

) −



[0,1)d f

(

x

)

dx









V

(

f

)

DN

(

P

),

(2)

whereDN

(

P

)

isthestar-discrepancyofP .

Forthe QMC method,thanks to this inequality it is natural to take low-discrepancy sequences. Low-discrepancy

se-quences are those whose star discrepancy has decay order log

(

N

)

d

/

N, which is the best known order of decay. Some

examplesoflow-discrepancysequencesare:Halton,Hammersley,SobolandtheFibonaccilattice(fordetailsseee.g.[5]).

Onthe other hand,if we integrate a function usingthe QMC methodon convex subsetsof

[

0

,

1

)

d we have a similar

inequalityduetoZaremba(see[18])wheretheisotropicdiscrepancy, JN,isused.

Theorem3.LetB

⊆ [

0

,

1

)

dbeaconvexsubsetand f afunctionwithboundedvariationV

(

f

)

on

[

0

,

1

)

dinthesenseofHardyand Krause.Then,foranypointsetP

= {

x1

,

. . . ,

xN

}

⊆ [

0

,

1

)

d,wehavethat









1 N N



i=1 xiB f

(

xi

) −



B f

(

x

)

dx









≤ (

V

(

f

) + |

f

(

1

)|)

JN

(

P

),

(3) where1

= (

1

,

. . . ,

1

)

.

Onasmoothcompactd-dimensionalmanifoldthereisaKoksma–Hlawkalikeinequality(see[4]).

Theorem4.Let

M

beasmoothcompactd-dimensionalmanifoldwithanormalizedmeasuredx.Fixafamilyoflocalcharts

{

ϕ

k

}

kK=1,

ϕ

k

: [

0

,

1

)

d

M

,andasmoothpartitionofunity

k

}

kK=1subordinatetothesecharts.Then,thereexistsanumberc

>

0,which dependsonthelocalchartsbutnotonthefunctionf orthemeasure

μ

,suchthat









M f

(

y

)

d

μ

(

y

)







c

D

(

μ

)||

f

||

Wd,1(M)

,

(4)

where

D(

μ

)

=

supUA



Ud

μ

(y)



,

A

isthecollectionofallimagesofintervalsin

M

and

||

f

||

Wn,p(M)

=



1≤kK



|α|≤n



[0,1)d





xαα

k

(

ϕ

k

(

x

))

f

(

ϕ

k

(

x

)))





pdx

1/p

,

withWn,paSobolevspace.

Notice that, if d

μ

=

N1



xXN

δ

x

dx in (4), we havethe analogue of the Koksma–Hlawka inequality formanifolds.

Therefore,inordertominimizetheerror,wehavetominimizethediscrepancy.

Wealsoremarkthatingeneralisnoteasy tocomputean estimateoftheerrorusingthisinequalitysincewe haveto

computethesupremumofthecollectionofallimagesofintervalsinthemanifold.

(4)

Thecaseofthespherehasbeensolvedbyadifferentapproach.Let

S

2 bethe2-sphere,then(seee.g.[14])itisproved

that,theworstcaseerror

sup f









1 N



xXN f

(

x

) −

1 4

π



S2 f

(

x

)

d

σ

(

x

)









isproportionaltothedistance-basedenergymetric

EN

(

XN

) =

4 3

1 N2



xiXN



xjXN

|

xi

xj

|

1/2

.

TheproofisbasedontheStolarsky’sinvarianceprinciple (seee.g.[16,17,15]).

Thus,ifwewanttominimizetheworstcaseerrorwehavetomaximizethesumofdistanceterm



x

iXN



xjXN

|

xi

xj

|

whichiseasiertocheckcomputationallythanthecalculationofthesphericalcapdiscrepancy.

Thisis thereasonwhyinthe nextsection we explorethe useofsequences uniformlydistributedwithrespectto the

Hausdorffmeasureonagivenmanifold

M

.

3. Measurepreservingmapson2-manifolds

Let

S = (

XN

)

N≥1 be uniformlydistributedwithrespecttotheLebesgue measureona rectangle

U ⊂ R

2,

M

aregular

manifoldofdimension2 and

amapfrom

U

to

M

.

Take A

M

.Themeasure

μ

ofA in

M

isdefinedas

μ

(

A

) := λ

2

(

−1

(

A

)) =



−1(A)

d

λ

2

.

Byconstruction,thesequence

(S)

isthenuniformlydistributedwithrespecttothemeasure

μ

.

Now,letusconsidertheHausdorffmeasure

H

2 onthemanifold

M

which,bymeansoftheareaformula[8,p. 353]is



U

g

(

x

)

dx

,

(5)

with g a densityfunctionthatdependsonthe parametrization

of

M

.Welookforachangeofvariables fromanother

rectangle

U

⊂ R

2to

U

suchthat

:

U

−→

U

x

−→

(

x

) =

x

.

(6)

Then,wewishthat

g

( (

x

))|

J

(

x

)| =

g

(

x

) =

1

.

(7)

This is equivalent to equalize the “natural” measure

μ

(which comes from the parametrization) and the Hausdorff

measure

H

2onthemanifold

M

:

H

2

(

M

) =



U g

(

x

)

dx

=



U g

( (

x

))|

J

(

x

)|

dx

=



U dx

=

μ

(

M

) .

Summarizing, starting from a sequence

S

uniformly distributed with respect to the Lebesgue measure on a rectangle

U

⊂ R

2, using the change of variables (6), we will get the sequence

( (S

))

that will be uniformly distributed with

respecttothemeasure

H

2 on

M

.

Proposition1.Let

U

beareferencerectanglein

R

2and

:

U → M

thecorrespondingmeasurepreservingmap.Themeasure preservingmapsforthecone,cylinderandsphereare:

cone:

U

= [

0

,

1

] × [

0

,

2

π

]

(

u

, θ) = (

u cos

(θ),

u sin

(θ),

u

)

cylinder:

U

= [−

1

,

1

] × [

0

,

2

π

]

(

u

, θ) = (

cos

(θ),

sin

(θ),

u

)

sphere:

U

= [−

1

,

1

] × [

0

,

2

π

]

(

u

, θ) = (



1

u2cos

(θ),



1

u2sin

(θ),

u

).

(5)

Proof. Itisaneasyexercise.

2

Notice that anotherpossible wayof computingthe integral isby takingany coordinatechart for theparametrization

ϕ

:

U → M

ofthemanifoldandthenintegratewiththeQMCmethoddirectlyin

U ⊂ R

2withalow-discrepancysequence

multiplyingtheintegratingfunctionbythedeterminantoftheJacobianof

ϕ

.Unfortunately,withthisapproachwewillnot

havepointswhichwilllieonthemanifold.Infact,mappingthepoints directlywiththeparametrization

ϕ

willnotgivea

sequenceofpointsuniformlydistributedwithrespecttotheHausdorffmeasureofthemanifold.Thisapproachalsodepends

onthedeterminantoftheJacobiansinceitwillmaketheintegratingfunctionadifferentfunction.

4. MinimalRiesz-energypoints

Westartbyintroducingthes-Rieszenergyofasetofpoints.

Definition3(cf.[10]).Let XN

= {

x1

,

. . . ,

xN

}

A

⊆ R

d beasetof N distinctpoints.Foreachreals

>

0,thes-Rieszenergy

ofXN is Es

(

XN

) :=



x,yXN x=y 1

|

x

y

|

s

,

(8)

where

|

· |

denotestheEuclideandistancein

R

d.TheN-pointminimals-energyover A isthen

E

s

(

A

,

N

) :=

inf XNA

Es

(

XN

)

(9)

Notethatin(9),byconvention,thesumoveranemptysetofindicesistakentobezeroandtheinfimumoveranempty

setis

.Notice alsothat

E

s

(

A

,

N

)

=

E

s

( ¯

A

,

N

)

and

E

s

(

A

,

N

)

=

0 if A isunbounded.Hence, withoutloss ofgenerality, we

couldrestrictourselvestothecasewhen A iscompact.

AContinuousandPositiveontheDiagonal(CPD)weightfunctionisdefinedasfollows.

Definition4.Let A

⊂ R

d bean infinitecompactsetwhosed-dimensionalHausdorffmeasure

H

d

(

A

)

isfinite.Asymmetric

functionw

:

A

×

A

→ [

0

,

+∞)

iscalledaCPDweightfunctionon A

×

A if

(i) w iscontinuousasfunctionon A

×

A at

H

d-almosteverypointofthediagonalD

(

A

)

= {(

x,x)

:

x

A

}

,

(ii) thereissomeneighborhoodG of D

(

A

)

suchthatinfGw

>

0,

(iii) w isboundedonanyclosedsubset B

A

×

A suchthat B

D

(

A

)

= ∅

.

Thisdefinitionallowsustodefinetheweighted Rieszs-energyofapointset XN,ofasubset A

⊂ R

d andtheweighted

HausdorffmeasureofBorelsets B

A.

Definition5.Lets

>

0 and XN

= {

x1

,

. . . ,

xN

}

A.TheweightedRieszs-energyof XN is

Esw

(

XN

) :=



1≤i=jN

w

(

xi

,

xj

)

|

xi

xj

|

s

,

theN-pointweightedRieszs-energyof A is

E

w

s

(

A

,

N

) :=

inf

{

Ews

(

XN

) :

XN

A

,

#XN

=

N

} ,

andtheweightedHausdorffmeasure

H

s,w

d onBorelsetsB

A isthen

H

s,w d

(

B

) :=



B

(

w

(

x

,

x

))

d/sd

H

d

(

x

).

Weneed another propertyfor theset A. Aset A issaid to be d-rectifiable (see e.g. [7]) ifand onlyifthere exists a

Lipschitzfunction

φ

mappingsomeboundedsubsetof

R

d onto A,i.e.thereexistsaconstant L andacompactset B

⊂ R

d

suchthat

|φ(

x

) − φ(

y

)| ≤

L

|

x

y

| , ∀

x

,

y

B

and

φ(

B

)

=

A.

Theconnectionbetweenthes-RieszenergyandasequenceuniformlydistributedwithrespecttotheHausdorffmeasure

isgivenbythe WeightedPoppy-seedBagelTheorem (cf.[3,10]).

(6)

Theorem5.LetA

⊂ R

d bea compactsubsetofad-dimensional

C

1-manifoldin

R

d ,d

<

d ,andw isaCDPweightfunctiononA

×

A. Then lim N→∞

E

w d

(

A

,

N

)

N2log N

=

Vol

(

B

d

)

H

d,w d

(

A

)

.

(10)

Furthermore,if

H

d

(

A

)

>

0 andXNisasequenceofconfigurationsonA satisfying(10),with

E

dw

(

A

,

N

)

replacedbyEdw

(

XN

)

,then

1 N



xXN

δ

x

(·)

−→

H

d,w d

(·)

|A

H

d,w d

(

A

)

as N

→ ∞.

(11)

AssumenowthatA

⊂ R

d isaclosedd-rectifiableset.Thenfors

>

d,

lim N→∞

E

w s

(

A

,

N

)

N1+s/d

=

Cs,d

(

H

s,w d

(

A

))

s/d

,

(12)

whereCs,d isafinitepositivenumberindependentof A andd .Moreover,if

H

d

(

A

)

>

0,anysequence XN ofconfigurationson A satisfying(12),withEw

s

(

XN

)

insteadof

E

sw

(

A

,

N

)

,satisfies(11). 4.1. GreedyminimalRiesz-energypoints

The computation of an approximation of these minimal Riesz s-energy points can be done by the following greedy

algorithm whichprovidesagoodapproximationoftheminimalsetandwhichattainsthecorrectasymptoticmaintermfor

theenergyfors

<

d.

Algorithm1.Letk

:

X

×

X

→ R

∪ {∞}

beasymmetriclower-semicontinuouskernelonalocallycompactHausdorffspace X ,

andlet A

X beacompactset.Asequence

(

an

)

n=1

A suchthat

(i) a1isselectedarbitrarilyon A; (ii) forn

1,an+1 ischosensothat

n



i=1 k

(

an+1

,

ai

) =

inf xA n



i=1 k

(

x

,

ai

),

for every n

1

.

Thesequence

{

an

}

n≥1 iscalleda

greedy

minimal

k

-energy

sequence

on

A (or

Léja-Gorski

points

).

TheRieszkernelin X

= R

d ,whichdependsontheparameters

∈ [

0

,

+∞)

,istheradialkernel

ks

(

x

,

y

) :=

Ks

(

x

y

),

x

,

y

∈ R

d

,

where



· 

istheEuclideannorm,with

Ks

(

t

) :=



ts if s

>

0

log

(

t

)

if s

=

0

.

Hence, fork

=

Ks we generatethe greedyminimalks-energypoints, whiletakingk

=

wKs we get the greedyminimal

(

w

,

s

)

-energypoints.

Asprovedin[13]fortheunitsphere

S

d,thegreedyminimal

(

w

,

d

)

-energypoints areasymptoticallydistributedasthe

realonessuggestingthattheycanbeagoodchoiceforintegrationonmanifolds.

Theorem6.Assumethatw

: S

d

× S

d

→ [

0

,

+∞)

isacontinuousfunctionsuchthatw

(x,

x)

>

0 forallx

∈ S

d.Let

{

Xw N,d

}

bean arbitrarygreedy

(

w

,

d

)

-energysequenceon

S

d,d

1.Then

lim N→∞ Ew d

(

XNw,d

)

N2log N

=

Vol

(

B

d

)

H

d,w d

(S

d

)

,

andfurthermore 1 N



xXwN,d

δ

x

(·) →

H

d,w d

(·)

|Sd

H

d,w d

(S

d

)

.

Inparticular,anygreedykd-energysequence

(

XN,d

)

on

S

disasymptoticallyd-energyminimizingon

S

d.

(7)

Unfortunatelythisresultisnotvalidfors

>

d.Ontheotherhand,foranycompact A

⊂ R

d with

H

δ

(

A

)

>

0 (where

δ

is

arbitrary),thefollowingorderofgrowthforEsw

(

XNw,s

)

holds(cf.[13]).

Theorem7.Let

H

δ

(

A

) :=

inf





i

(

diam Gi

)

δ

:

A

⊂ ∪

iGi



,

0

< δ ≤

d

.

AssumeA

⊂ R

d becompactwith

H

δ

(

A

)

>

0.Letw beaboundedlowersemicontinuousCDPweightfunctiononA

×

A andconsider anarbitrarygreedy

(

w

,

s

)

-energysequence

(

XNw,s

)

A,fors

≥ δ

.ThenforN

2

Esw

(

XNw,s

) ≤



Ms,δ,A

||

w

||

H

δ

(

A

)

s/δN1+s/δ

,

s

> δ

Mδ,A

||

w

||

H

δ

(

A

)

−1N2log N

,

s

= δ,

(13)

whereMs,δ,A

,

Mδ,A

>

0 areindependentofw andN,and

||

w

||

=

sup

{

w

(x,

y)

:

x,y

A

}

.

The previous theorem leads us to the following Corollary which is helpful to understand the use of greedy

(

w

,

s

)

-sequencesforintegrationonmanifolds.

Corollary1.LetA

⊂ R

d bead-rectifiableset.Supposes

>

d andw isaboundedlowersemicontinuousCDPweightfunctiononA

×

A. Consideranarbitrarygreedy

(

w

,

s

)

-energysequence

(

XNw,s

)

A.Then

(

XNw,s

)

isdenseinA.Ifs

=

d andA isassumedtobeacompact subsetofad-dimensional

C

1-manifold,thesameconclusionholdsforanygreedy

(

w

,

d

)

-energysequence.Takingw

=

1 theresultis applicabletogreedyks-energysequences.

Remark.Wedonotknowyetifgreedyminimal

(

w

,

d

)

-energy(orks)sequencesareagoodchoiceforintegratingfunctions

onamanifoldwithrespecttothemeasure

H

w

d asitisfortheminimalenergypoints. Orwhetherwe shouldpreferthem

toalowdiscrepancysequencesmappedonthemanifoldwithmeasurepreservingmaps.Thisiswhatwetrytounderstand

bythenumericalexperimentsinthenextsection.

5. Numericalexperiments

In this section we present some numerical tests showing that the greedy minimal ks-energy sequences are a good

choice for integratinga function when a measure preserving map is available, whereas they have a similar behavior of

low-discrepancysequencesifinsteadagenericmapisused.

Thefunctionsweconsideronthecone,cylinder,sphereandtorusare

f1

(

x

,

y

,

z

) :=



(

1

+

z

)(

1

z

)

cos



x 2

+

y 3

+

z 5



,

f2

(

x

,

y

,

z

) :=



cos

(

30xyz

)

if z

<

12

(

x2

+

y2

+

z2

)

3/2 if z

1 2

,

f3

(

x

,

y

,

z

) :=

e−sin(2x 2+3y2+5z2)

,

f4

(

x

,

y

,

z

) :=

e−x2+y2+z2 1

+

x2 cos

(

1

+

x 2

)

sin

(

1

y2

)

e|z|

.

(14)

Tocomputetheintegrals

1

H

d

(

M

)



M

fi

(

x

)

d

H

d

(

x

),

i

=

1

, . . . ,

4

weusetheQMCmethodwith

(a) lowdiscrepancypointsmappedonthemanifolds,

(b) greedyminimalks-energypoints.

Toemphasize the significanceof theQMC approach we did alsoa comparisonwith the MC methodtaking N points

randomlydistributedontherectangleandthenmappedonthe manifolds.Becauseoftherandom natureofthesepoints,

wecomputed10 timestheintegralswithMCandaveragedthem.

About(b),tocompute N greedyminimalks-energypointswestartedfromauniformmeshonarectangleconsistingof

N2

/

2 pointsandmappedthem,ifavailablebyusingthecorrespondingmeasurepreservingmap,tothemanifold.Thenwe

(8)

Table 1

Mapforthetorus(d).

[0,2π] × [0,2π]  (u,v) → ⎧ ⎪ ⎨ ⎪ ⎩ x= (2+cos(u))cos(v) y= (2+cos(u))sin(v) z=sin(u) (15) Table 2

Exactvaluesoftheintegrals.

Cone Cylinder Torus Sphere

f1 6.378e−01 7.125e−01 3.435e−01 7.295e−01

f2 0.130e+01 5.784e−01 0.470e+01 2.809e−01

f3 0.116e+01 0.132e+01 0.131e+01 0.1340e+01

f4 1.458e−01 −1.160e−01 −1.269e−02 8.950e−02

extractedN greedyminimalks-energypointsfromthismappedmesh.Heres

=

2 becauseofthedimensionofthemanifold

(asurfaceimmersedin

R

3).

Forthetorusweusedthemap(Table 1) whichdoesnotpreservetheLebesguemeasure.

Tocomparetheresultswiththegreedyminimalk2-energypoints,wecomputedtheintegrals(Table 2) byQMCmethod

using Halton points andFibonacci lattices mapped on the manifolds. Because of the peculiarity of Fibonacci points, we

generated forall sequences anumber ofpoints like theFibonaccisequence, starting from144 (i.e. the twelfth Fibonacci

number)upto2584,theeighteenthFibonaccinumber (Figs. 1–4). Butinthetablesbelow(Tables 3–19) theresultsareonly

presentedfor144,610 and2584 points.Theexactvalueoftheintegralhasbeenconsidered,afteravariablechange,using

thebuilt-inMatlabfunctiondblquad withtoleranceof10−11.Therelativeerrorsarethencomputedreferringtothisvalue.

Hereonlysome experimentsonthecone,cylinder,sphereandthetorusare presented.Moreexperimentsareavailable in

theMaster’sthesisofthesecondauthor(see[6]).Allthetestshave beenperformedonalaptopwithIntelCorei3-3120M

@2.50GHz,4GB ofRAM,Windows10andMATLAB8.5.0.197613.

TheMatlab packageGMKs(GreedyMinimalkspoints)allowstoreproduceall theexperimentspresentedhereand

inter-estedpeoplecandownloaditathttp://www.math.unipd.it/~demarchi/software/GMKs.

Fig. 1. 610 points on the cone.

(9)

Table 3

Relativeerrorsfor f1ontheconewithFibonacci,Halton,Greedy

Min-imalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 1.215e−02 5.352e−03 2.097e−01 1.325e−02 610 4.939e−03 1.270e−03 1.470e−01 6.137e−03 2584 1.241e−03 3.029e−04 9.817e−02 4.850e−03

Table 4

Relativeerrorsfor f2ontheconewithFibonacci,Halton,Greedy

Min-imalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 9.101e−03 6.250e−03 2.366e−01 3.498e−02 610 5.277e−03 1.173e−03 1.764e−01 2.294e−02 2584 6.766e−04 3.678e−04 1.212e−01 8.212e−03

Table 5

Relativeerrorsfor f3ontheconewithFibonacci,Halton,Greedy

Min-imalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 1.059e−02 1.416e−03 7.048e−02 4.324e−02 610 3.763e−04 3.389e−04 7.172e−02 2.050e−02 2584 1.289e−04 8.026e−05 3.790e−02 1.613e−02

Table 6

Relativeerrorsfor f4ontheconewithFibonacci,Halton,Greedy

Min-imalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 2.767e−02 1.384e−02 2.333e−01 8.209e−02 610 9.623e−03 3.230e−03 1.782e−01 1.708e−02 2584 3.068e−03 7.594e−04 1.313e−01 1.818e−02

Fig. 2. 610 points on the cylinder.

(10)

Table 7

Relativeerrorsfor f1onthecylinderwithFibonacci, Halton,Greedy

Minimalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 1.092e−03 5.264e−04 2.240e−01 3.043e−02 610 3.131e−04 6.400e−05 1.603e−01 9.933e−03 2584 1.029e−04 6.929e−06 9.533e−02 5.645e−03

Table 8

Relativeerrorsfor f2onthecylinderwithFibonacci, Halton,Greedy

Minimalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 6.513e−02 8.764e−03 3.830e−01 1.597e−01 610 2.900e−02 2.964e−03 2.267e−01 4.026e−02 2584 1.436e−03 6.975e−04 1.502e−01 2.273e−02

Table 9

Relativeerrorsfor f3onthecylinderwithFibonacci, Halton,Greedy

Minimalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 1.792e−02 2.930e−04 1.150e−01 4.584e−02 610 2.359e−03 1.125e−05 8.751e−02 1.633e−02 2584 3.287e−04 6.267e−07 4.895e−02 7.310e−03

Table 10

Relativeerrorsfor f4onthecylinderwithFibonacci, Halton,Greedy

Minimalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 6.611e−03 1.506e−04 3.879e−02 2.047e−01 610 1.457e−02 8.382e−06 2.524e−02 8.602e−02 2584 4.730e−04 4.671e−07 2.339e−02 5.468e−02

Fig. 3. 610 points on the sphere.

(11)

Table 11

Relativeerrors for f1 on thespherewith Fibonacci,Halton,Greedy

Minimalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 2.833e−03 6.448e−04 1.595e−03 1.974e−02 610 1.001e−03 7.411e−05 1.202e−03 7.526e−03 2584 1.017e−04 8.504e−06 1.324e−03 4.495e−03

Table 12

Relativeerrors for f2 on thespherewith Fibonacci,Halton,Greedy

Minimalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 1.476e−01 1.089e−02 8.406e−02 1.281e−01 610 4.415e−02 8.045e−05 4.872e−03 1.080e−01 2584 6.847e−04 3.115e−06 5.177e−03 4.666e−02

Table 13

Relativeerrors for f3 on thespherewith Fibonacci,Halton,Greedy

Minimalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 3.282e−03 1.025e−04 2.834e−03 4.531e−02 610 1.755e−03 5.727e−06 2.251e−03 1.244e−02 2584 7.294e−05 3.190e−07 1.325e−03 8.174e−03

Table 14

Relativeerrors for f4 on thespherewith Fibonacci,Halton,Greedy

Minimalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 1.549e−03 1.425e−03 1.912e−03 1.113e−01 610 6.631e−03 7.970e−05 3.702e−03 4.988e−02 2584 2.725e−04 4.442e−06 4.756e−03 1.955e−02

Fig. 4. 610 points on the torus.

(12)

Table 15

Relativeerrorsforf1onthetoruswithFibonacci,Halton,Greedy

Min-imalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 2.152e−01 1.777e−01 6.894e−02 2.030e−01 610 1.888e−01 1.780e−01 5.367e−02 1.768e−01 2584 1.788e−01 1.780e−01 4.014e−02 1.687e−01

Table 16

Relativeerrorsforf2onthetoruswithFibonacci,Halton,Greedy

Min-imalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 1.218e−01 1.690e−01 3.081e−02 1.778e−01 610 1.453e−01 1.410e−01 4.728e−02 1.272e−01 2584 1.414e−01 1.411e−01 2.297e−02 1.562e−01

Table 17

Relativeerrorsforf3onthetoruswithFibonacci,Halton,Greedy

Min-imalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 3.033e−02 3.426e−02 4.949e−03 4.531e−01 610 2.716e−03 8.821e−03 1.349e−02 2.811e−01 2584 8.763e−03 6.453e−03 1.673e−03 1.049e−01

Table 18

Relativeerrorsforf4onthetoruswithFibonacci,Halton,Greedy

Min-imalk2-energypointsandMCmethod.

N Halton Fibonacci GM k2 MC

144 6.015e−01 5.339e−01 2.435e−01 5.692e−01 610 5.109e−01 5.237e−01 1.874e−01 4.779e−01 2584 5.252e−01 5.238e−01 1.319e−01 5.238e−01

Table 19

Timeinsecondstocomputethegreedyminimalk2-energypoints.

N Cone Cylinder Torus Sphere

144 0.217 0.218 0.248 0.208

610 20.067 21.046 19.340 19.284 2584 1519.112 1513.211 1571.449 1511.768

5.1. Greedyminimalks-energypoints:tuningtheparameters

Intheprevioussectionwesets

=

2 becauseofthedimension,butwecanconsideratuningofs andseehowtheerrors

change asa function of s. The script demo2 of the Matlab package GMKs, previously mentioned,allows us to makethe

experimentsthatwearegoingtopresent.

InFigs. 5–8, weseethebehavioroftherelativeerrorsoftheintegralsfors

∈ [

0

,

10

]

,withstep0

.

05,using200greedy

minimalks-energypoints.

6. Conclusion

In this paper we tested the QMC integration on manifolds by mapped low-discrepancy points and greedy minimal

ks-energypoints.

Analyzingtherelativeerrorsweobservedthat ifwehaveameasurepreservingmapitisbettertouselow-discrepancy

sequences, especiallytheFibonacciones, thangreedyminimal k2-energypoints. Ontheother hand,ifwedonot dispose

ofa measurepreserving map,asinthecaseofthetorus, orwe usemappedpoints byanotherparametrization, thebest

approximation are withthe greedy minimal k2-energypoints (as inthe case of the functions f1 and f2). The time for

extractingthegreedyminimal ks-energypoints grows asthe numberofpoints. Therefore,inthecaseofgreedyminimal

energypointsitisadvisabletouselesspointsespeciallyincaseofreducedcomputationalresources.Moreoverbyusingan

increasingnumberofgreedyminimalenergypointstheerrorsdecay,butslowerthanmappedlow-discrepancypoints.

(13)

Fig. 5. Relative errors using 200 points for the function f1.

Fig. 6. Relative errors using 200 points for the function f2.

(14)

Fig. 7. Relative errors using 200 points for the function f3.

Fig. 8. Relative errors using 200 points for the function f4.

(15)

Wehavealsonoticedthat keepingthe samenumberofpointsbuttuningtheparameter s,valuesbelowthemanifold

dimension(inourcases

=

2)shouldbeavoidablesincetherelativeerrorsareworsethanthosefors

>

2.Indeedfors

>

2

therelativeerrorsshowedtobe almostofthesameorderand, assuggestedby thetheory,the“optimal”s is aroundthe

manifolddimension.Theonlyexceptionisthesphere,whereweobtainedrelativeerrorsofthesameorderforallvaluesof

theparameter.

We wish also to underline that the QMC approach forintegration on manifolds is preferable to the MC method as

confirmedby all tests. Producingpoints well distributed ona manifold could be usefulnot only forQMCintegration on

manifoldsbutalsoforother approximationmethodsinvolvingsequences ofpoints onmanifoldssuch asradialbasis

func-tions (RBF)approximation ormeshless approximation ofPDEs. Theseare future worksthat we wish to investigatemore

deeply.

Acknowledgements

Wearegratefulto oneunknown refereeforthesuggestions thathavesignificantlyimproved thepaper.Thisworkhas

beensupported by the University of Padovaex 60% andthe GNCS-INdAM “Visiting Professors 2015”funds. The authors

wishtothankProf.EdwardB.SaffofVanderbiltUniversity andProf.RobertoMontiofUniversityofPadovaforthevaluable

discussions.ThisresearchhasbeenaccomplishedwithintheRITA“ResearchITaliannetworkonApproximation”.

References

[1]C.Amstler,P.Zinterhof,Uniformdistribution,discrepancy,andreproducingkernelHilbertspaces,J.Complex.17 (3)(2001)497–515.

[2]C.Bittante,S.DeMarchi,G.Elefante,Anewquasi-MonteCarlotechniquebasedonnonnegativeleast-squaresandapproximateFeketepoints,Numer. Math.,TheoryMethodsAppl.4 (9)(2016)640–663.

[3]S.V.Borodachov,D.P.Hardin,E.B.Saff,AsymptoticsfordiscreteweightedminimalRieszenergyproblemsonrectifiablesets,Trans.Am.Math.Soc. 360 (3)(2008)1559–1580.

[4]L.Brandolini,L.Colzani,G.Gigante,G.Travaglini,OnKoksma–Hlawkainequality,J.Complex.29 (2)(2013)158–172.

[5]J.Dick,F.Pillichshammer,DigitalNetsandSequences.DiscrepancyTheoryandQuasi-MonteCarloIntegration,CambridgeUniversityPress,2010.

[6]G.Elefante,CubatureonManifoldswithLowDiscrepancyandMinimalEnergyPoints,Master’sthesis,UniversityofPadua,Dec. 2015.

[7]H.Federer,GeometricMeasureTheory,Springer,1996.

[8]G.B.Folland,RealAnalysis:ModernTechniquesandTheirApplications,Wiley&Sons,1999.

[9]D.P.Hardin,E.B.Saff,Discretizingmanifoldsviaminimumenergypoints,Not.Am.Math.Soc.51 (10)(2004)1186–1194.

[10]D.P.Hardin,E.B.Saff,MinimalRieszenergypointconfigurationsforrectifiabled-dimensionalmanifolds,Adv.Math.193 (1)(2005)174–204.

[11]J.Korevaar,J.L.H.Meyers,Chebyshev-typequadratureonmultidimensionaldomains,J.Approx.Theory79 (1)(1994)144–164.

[12]L.Kuipers,H.Niederreiter,UniformDistributionofSequences,DoverPublications,2006.

[13]A.López-García,E.B.Saff,Asymptoticsofgreedyenergypoints,Math.Comput.79 (272)(2010)2287–2316.

[14]R.Marques,C.Bouville,M.Ribardiére,L.P.Santos,K.Bouatouch,SphericalFibonaccipointsetsforilluminationintegrals,Comput.Graph.Forum32 (8) (Dec. 2013)1–11.

[15]E.B.Saff,A.B.J.Kuijlaars,Distributingmanypointsonasphere,Math.Intell.19 (1)(1997)5–11.

[16]K.B.Stolarsky,Sumsofdistancesbetweenpointsonasphere,Proc.Am.Math.Soc.35 (2)(Oct. 1972)547–549.

[17]K.B.Stolarsky,Sumsofdistancesbetweenpointsonasphere.II,Proc.Am.Math.Soc.41 (2)(Dec. 1973)575–582.

[18]S.K.Zaremba,Ladiscrépanceisotropeetl’intégrationnumérique,Ann.Mat.PuraAppl.(4) (87)(1970)125–136.

Figure

Fig. 6. Relative errors using 200 points for the function f 2 .
Fig. 8. Relative errors using 200 points for the function f 4 .

Références

Documents relatifs

This approach can be generalized to obtain a continuous CDF estimator and then an unbiased density estimator, via the likelihood ratio (LR) simulation-based derivative estimation

Randomized quasi-Monte Carlo (RQMC) methods replace the independent random numbers by dependent vectors of uniform random numbers that cover the space more evenly.. When estimating

In contrast to this direct simulation scheme, where the particles represent the number density, a mass flow scheme was introduced in [2]: the particles represent the mass density

Keywords: random number generator, pseudorandom numbers, linear generator, multi- ple recursive generator, tests of uniformity, random variate generation, inversion,

Again, a key question is: How do we measure the uniformity of the point set P n ? Standard practice is to use a figure of merit that measures the discrepancy between the

Variance Reduction for Generalized Likelihood Ratio Method By Conditional Monte Carlo and Randomized Quasi-Monte Carlo... Variance Reduction for Generalized Likelihood Ratio Method

We compare two approaches for quantile estimation via randomized quasi-Monte Carlo (RQMC) in an asymptotic setting where the number of randomizations for RQMC grows large but the

1 Index terms — Electron emission yield, low energy electrons, Monte Carlo code, practical range..