• Aucun résultat trouvé

1.1 Brief Overview of the Next Chapters . . . . 3

N/A
N/A
Protected

Academic year: 2021

Partager "1.1 Brief Overview of the Next Chapters . . . . 3"

Copied!
6
0
0

Texte intégral

(1)

Contents

1 Introduction 1

1.1 Brief Overview of the Next Chapters . . . . 3

2 Turbulence: an Overview, and Tools for Its Study 7 2.1 Etymology of a Word . . . . 7

2.2 Turbulence in the scientific research . . . . 9

2.2.1 Hot Wire Anemometry . . . 10

2.2.2 Energy Cascade Concept and Local Isotropy . . . 11

2.3 Navier-Stokes and Turbulence . . . 18

2.3.1 Interesting snippets in the story of Numerical Methods . . . 19

2.3.2 Direct Numerical Resolution of Navier-Stokes Equations . . . . 21

2.3.3 Reynolds Averaged Navier Stokes Equations . . . 22

2.4 Large Eddy Simulation . . . 26

2.4.1 Resolved Turbulent Kinetic Energy Budget . . . 33

2.5 Sub Grid Stress Modeling . . . 35

2.5.1 Fully Dissipative Sub Grid Stress Models . . . 35

2.5.1.1 Smagorinsky Model . . . 36

2.5.1.2 Filtered Structure Function Model . . . 39

2.5.1.3 Dynamic Modeling . . . 41

2.5.1.4 Un-resolved DNS . . . 42

2.5.2 Self-Similar Sub Grid Stress Model . . . 43

2.5.3 Conclusive Remarks on the Sub Grid Stress Models . . . 45

2.6 Coherent Structures . . . 46

2.6.1 A quick overview . . . 46

2.7 High Performance Computing and Parallelism . . . 48

2.8 Free and Open Source Software . . . 54

2.8.1 Digital Rights Management and Future of Free Computing . . . 56

I Study of Coherent Structures with the Legacy LES code 59 3 Coherent Structures 63 3.1 The Coherent Structures Idea . . . 63

3.2 Vortex Dynamics and Coherent Structures . . . 66

3.2.1 Vorticity Definition . . . 67

vii

(2)

3.3 Classical Vortex . . . 69

3.3.1 Peak of Vorticity . . . 70

3.3.2 Pressure Minimum . . . 72

3.3.3 Vorticity Peak & Pressure Minimum . . . 73

3.4 Advanced Vortex Modeling . . . 73

3.4.1 The Vortex Core . . . 76

3.5 Advanced Vortex Detection Criteria . . . 77

3.5.1 Gradient of Velocity Tensor: Eigenvalues Approach . . . 77

3.5.2 Gradient of Velocity Tensor: Second Invariant Approach . . . . 79

3.5.3 Jeong & Hussain Approach . . . 80

3.6 Latest Developments for Vortex Definition . . . 82

3.7 Vortex Detection Procedure . . . 83

3.7.1 Histograms . . . 88

3.7.2 Trigger Level Determination . . . 90

3.8 Single Structure Identification and Classification Procedure . . . 93

3.8.1 Structure Core . . . 94

3.8.2 Structure External Layer . . . 96

3.8.2.1 Practical Implementation . . . 99

3.9 Statistical Tools . . . 102

3.9.1 Structures’ Geometry . . . 102

3.9.2 Structure’ Fluid Dynamics Properties . . . 104

3.9.3 Joint Probability Distribution Functions ( JPDF s) . . . 107

3.9.4 Vortical Structures Orientation in Space . . . 108

3.9.4.1 Equivalent Ellipsoid . . . 110

3.9.4.2 Procedure Justification . . . 111

3.9.5 Conditional Sampling . . . 112

3.9.6 Vortical Structures Ensemble Averaging . . . 116

3.9.6.1 Initialization . . . 116

3.9.6.2 Iterative Procedure . . . 118

3.9.7 Ensemble Average and Coherent Structures . . . 120

4 Numerical solution of LES equations 123 4.1 Incompressible Filtered Navier-Stokes Equation Solution Method . . . 123

4.1.1 Predictor-Corrector Procedure . . . 124

4.1.2 Modified Pressure update mechanism & Time Advancement . . 126

4.1.2.1 Stability Limits . . . 128

4.1.2.2 Time Stepping procedure Time Accuracy . . . 129

4.2 Spatial Discretization . . . 132

4.2.1 Aliasing and Arakawa Formulation . . . 133

4.3 Numerical Discretization . . . 134

4.4 Improved Accuracy . . . 135

4.5 Upwinding, Sub Grid Stress Model and Boundary Conditions for the

Modified Pressure . . . 145

(3)

Contents ix

4.6 Multi Domain Technique . . . 147

4.6.1 Specifics of the Multi Domain for the VKI’s Environmental & Applied Fluid Dynamics Department LES legacy code . . . 149

4.6.2 Early Critiques to the VKI’s Environmental & Applied Fluid Dynamics Department LES legacy code’s Multi Domain tech- nique . . . 151

4.7 Averaging Procedure for the VKI’s Environmental & Applied Fluid Dy- namics Department LES legacy code . . . 152

4.7.1 Flows with a Dominant Frequency . . . 156

4.8 Comparison between Large Eddy Simulation and reference Direct Nu- merical Simulation or Experiments. . . 157

4.8.1 Statistics and Staggered Grid . . . 160

5 Simulation of coherent structures in attached wall shear layer 161 5.1 Turbulent Plane Channel General Informations . . . 161

5.2 Effects of Sub Grid Stress Model and Discretization Accuracy on Large Eddy Simulation results . . . 164

5.3 Intermediate Medium Res. Channel Grid . . . 171

5.3.1 Eulerian Statistics for the Medium Res. Channel Grid . . . 172

5.3.2 Single Structure Data Statistics for the Medium Res. Channel Grid . . . 176

5.3.3 Considerations for the statistics collected . . . 185

5.3.4 Effect of the Vortex Detection Criterion . . . 188

5.4 Final High Res. Channel Grid . . . 190

5.4.1 Eulerian Statistics for the High Res. Channel Grid . . . 192

5.4.2 Single Structure Data Statistics for the High Res. Channel Grid 192 5.5 0

th

Order Coherent Structure Ensemble Averaging for Turbulent Plane Channel. . . 199

5.5.1 Considerations for the statistics collected . . . 203

5.6 Conclusions . . . 208

6 Flow Behind a Bluff Body 209 6.1 Points of Interests in Simulating Bluff Bodys . . . 209

6.2 Computational And Numerical Setup . . . 211

6.2.1 Simulation Layout . . . 212

6.2.2 Multi Domain Approach for Bluff Bodys . . . 214

6.2.3 Grid around the Bluff Body . . . 216

6.3 Data Processing and Bulk Coefficients . . . 217

6.3.1 Particular Approach to the Statistics’ Sampling for the wake behind a Bluff Body . . . 219

6.4 Velocity Profiles Comparisons . . . 221

6.4.1 Concluding remarks on the quality of the BB6 Simulation . . . 227

6.5 Flow description and related properties . . . 232

(4)

6.6 Alternative approach to the vortical structure identification for the Bluff

Body wake . . . 236

6.6.1 Technique Description . . . 236

6.7 Normal approach to structure identification . . . 241

6.7.1 Detection Algorithm and Trigger Level choice . . . 242

6.7.2 Bluff Body Global statistics . . . 248

6.7.3 Coherent Structures & Bluff Body . . . 249

6.8 Conclusive Remarks on the flow around a Bluff Body . . . 253

7 Conclusions for Part I 255 II Mioma, a complete software Frame Workfor a new LES solver 259 8 MiOma 263 8.1 The lifespan of a Large Eddy Simulation solver. . . 263

8.2 The MiOma (R)Evolution . . . 266

8.2.1 Transition from Fortran to C . . . 268

8.2.2 Free and Open Source Software . . . 268

8.3 Professional Code Development Approach . . . 269

8.3.1 Concurrent Versions System (CVS) . . . 269

8.3.1.1 M.i.O.m.a. Chronology . . . 271

8.3.2 Documenting the code . . . 274

8.3.3 Embedding the Documentation inside the Code . . . 276

8.3.3.1 doxygen’s Return On Investment . . . 277

8.3.3.2 doxygen’s Generated Documentation . . . 278

8.3.3.3 M.i.O.m.a. and doxygen’s perspective . . . 281

8.3.4 gcc, Makefiles and “Paranoid” Flags . . . 282

8.3.4.1 C Compiler . . . 282

8.3.4.2 gcc Compile Flags and Optimization Levels . . . 283

8.3.4.3 M.i.O.m.a. is makefile Driven . . . 284

8.3.5 Warning and Error Handling At Run Time . . . 289

8.3.6 Agile Programming & Code Reuse . . . 290

8.3.7 Robust & Fault Tolerant Programming . . . 291

8.4 M.i.O.m.a. Software Dependencies . . . 292

8.4.1 Software Libraries . . . 295

8.4.1.1 Portable Extensible Toolkit for Scientific computations(PETSc) and Functions Hierarchy . . . 295

8.4.1.2 Data Format : Unidata Network Common Data Format297 8.4.1.3 Miscellaneous Libraries . . . 300

8.4.2 MAXIMA . . . 302

8.4.3 Development and Debugging Software . . . 307

(5)

Contents xi

8.4.4 Plotting and Flow Visualization Tools for M.i.O.m.a. . . 309

8.4.5 Post-Production, Optimization & Collaborative Software . . . . 313

8.4.6 M.i.O.m.a. Dedicated Forums and Bug-Tracking Servers . . . . 315

8.4.6.1 Online Tutorials . . . 317

8.5 Conclusions . . . 319

9 MiOma Approach to the Numerical solution of LES equations 321 9.1 Continuity with the Past . . . 321

9.2 M.i.O.m.a. and Homogeneous Directions . . . 323

9.3 Load Balancing and Domain Auto-Partitioning . . . 325

9.4 Incompressibility Constrain Handling in the MiOma Solver . . . 328

9.4.1 Modified Pressure Boundary Conditions in the MiOma Optic . 331 9.4.2 Incompressibility Constrain Linear Solver Solution Strategy . . 332

9.5 Viscous and Convective Terms Treatments in MiOma . . . 333

9.5.1 Use of High Resolution Central Scheme for the convective terms 334 9.6 On the fly generation of Inlet Profiles . . . 337

9.7 Miscellanea and Concluding Remarks . . . 341

10 First Simulations produced in the MiOma Environment 347 10.1 Testing the core of the MiOma Frame Work, the LES solver. . . 347

10.2 MiOma Simulation of a Turbulent Plane Channel at Re

τ

= 180 . . . 348

10.2.1 Early test of Parallel Efficiency . . . 351

10.3 Flat Mounted Cube in a Channel Simulation . . . 353

10.3.1 MiOma Flat Mounted Cube in a Channel Multi Domain Dis- cretization . . . 356

10.3.2 Inlet Conditions . . . 359

10.3.3 Flat Mounted Cube in a Channel Results . . . 361

10.4 Concluding Remarks . . . 368

11 Future Perspectives and Conclusions for Part II 369 11.1 Conclusions . . . 369

III Back Matter 375 12 Conclusions to the Thesis 377 Bibliography 381 A Sub Grid and Resolved Mean Flow Kinetic energy Budgets 393 A.1 SGS kinetic Energy Budget . . . 393

A.2 Kinetic Energy of the Mean Resolved Flow . . . 395

(6)

B Resolved Turbulent Kinetic Energy Budget 397 B.1 Derivation . . . 397

C MAXIMA Usage 401

C.1 Implicit Filtering Filter Size : ∆

x

or 2∆

x

? . . . 401

D Estimation of Algorithmic errors 407

D.1 Algorithmic Error for the Recursive Statistics using error graphs. . . 407 E High Res. Channel Grid Supplementary data 411 E.1 Velocities fluctuations Budgets . . . 411

F M.i.O.m.a. Documentation 417

F.1 Man Pages generation methods . . . 417 F.2 General Documentation using doxygen . . . 425 F.3 doxygen’s Data-Structure Documentation . . . 432 G Data Format, debugging tools and Concurrent Versions System (CVS)

Evaluation 437

G.1 Overview . . . 437

H MAXIMA In Details 461

H.1 Overview . . . 461

I OpenDX Usage 515

I.1 Overview . . . 515 J MiOma Function Optimization Approach 525 J.1 MiOma Solver Divergence Computing Function . . . 525

Index 533

Références

Documents relatifs

'LVHDVHVRI 2HVRSKDJXV 6WRPDFKDQG

*ORPHUXODUGLVHDVHUHQDO IDLOXUHDQGRWKHUGLVRUGHUVRI NLGQH\DQGXUHWHU0DODGLHV JORPpUXODLUHVLQVXIILVDQFH UpQDOHHWDXWUHVDIIHFWLRQVGX

modélise en coupe ce terril par un morceau de la parabole d'équation y =−x 2 +25 Si Alexis, même du haut de ses 1 m 80 , se place trop prés du pied du terril, il ne voit plus

Please click on the different chapters for access to the

ةرمتسملا ةبقارملا ةيناثلا. مسلاا

Si c’est correct, le joueur peut avancer du nombre de cases indiqué sur le dé de la carte. Sinon, il reste à

Les archéologues quadrillent le terrain pour situer..

Découvrir du monde GS (numération): associer le nombre à la quantité.. Consigne : Colorie la case qui indique le bon