• Aucun résultat trouvé

A COMPACT 5 kN-TEST FACILITY FOR SUPERCONDUCTING CONDUCTORS CARRYING UP TO 1.5 kA IN MAGNETIC FIELDS UP TO 14 T

N/A
N/A
Protected

Academic year: 2021

Partager "A COMPACT 5 kN-TEST FACILITY FOR SUPERCONDUCTING CONDUCTORS CARRYING UP TO 1.5 kA IN MAGNETIC FIELDS UP TO 14 T"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223644

https://hal.archives-ouvertes.fr/jpa-00223644

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A COMPACT 5 kN-TEST FACILITY FOR

SUPERCONDUCTING CONDUCTORS CARRYING UP TO 1.5 kA IN MAGNETIC FIELDS UP TO 14 T

W. Specking, R. Flükiger

To cite this version:

W. Specking, R. Flükiger. A COMPACT 5 kN-TEST FACILITY FOR SUPERCONDUCTING CON-

DUCTORS CARRYING UP TO 1.5 kA IN MAGNETIC FIELDS UP TO 14 T. Journal de Physique

Colloques, 1984, 45 (C1), pp.C1-79-C1-82. �10.1051/jphyscol:1984117�. �jpa-00223644�

(2)

A C O M P A C T 5 k N - T E S T FACILITY FOR S U P E R C O N D U C T I N G CONDUCTORS CARRYING UP T O 1,5 k A IN MAGNETIC FIELDS UP TO 14 T

W. Specking and R. F l t i k i g e r

Kernforsohungszentrum Karlsruhe, Institut far Technisehe Fhysik, P.O.B. 3640, V-7S00 Karlsruhe, F.R.G.

Résutnê - Un appareil permettant d'étudier l a v a r i a t i o n du courant c r i t i q u e le en fonction de l a tension uniaxiale (jusqu'à 5 kN) sur des conducteurs â des courants _< 1.5 kA et des champs magnétiques atteignant 14 T a été c o n s t r u i t . Quelques résultats actuels sur des conducteurs de Nb3Sn avec renforcement i n t é r i e u r son présentés.

A b s t r a c t - The v a r i a t i o n of t h e c r i t i c a l c u r r e n t , I

c

, i n dependence on t h e a p p l i e d s t r a i n , e , i s i m p o r t a n t f o r c h a r a c t e r i z i n g Nb3Sn s u p e r c o n d u c t i n g w i r e s . An apparatus f o r s t u d y i n g t h e s t r a i n s e n s i t i v i t y of I

c

up t o a magne- t i c f i e l d of 14 T under a mechanical load up t o 5 kN and an e l e c t r i c c u r r e n t up t o 1.5 kA i s d e s c r i b e d . Some actual r e s u l t s f o r i n t e r n a l l y r e i n f o r c e d I ^ S n conductors are p r e s e n t e d .

I - INTRODUCTION

For applications of Nb3Sn superconductors in large magnets the knowledge of critical current, I

c

, as a function of magnetic field, B, and applied strain, e, is essential because of the high Lorentz forces and the special characteristic of Nb3Sn under strain. In general, I

c

exhibits a maximum as a function of e / I , 2/. The maximum of the critical current occurs at a strain value, e

m

, which varies between zero and about 1 %, depending on the configuration and composition of the conductor /3 - 5/.

The ratio I

C o

/ I

C m

, where I

C o

represents the critical current at e = 0, lies between 0.1 and close to 1 and depends on both magnetic field and the conductor composition.

This behavior reflects the precompression on the Nb3Sn filaments by the matrix ma- terial caused by the difference in both thermal expansion coefficient, a , and Young's modulus of the various components during cooling from reaction to helium temperature. As a consequence, stress-induced modification of the crista! structure are observed /6/, which are finally responsible for the correlation of I

c

vs. s.

The aim of this paper is to present an apparatus for testing superconducting wires up to a load of 5 kN, a current of 1.5 kA in a magnetic field up to 14 T.

I I - APPARATUS

The main components of t h e t e s t f a c i l i t y are t h e c r y o s t a t , t h e t e n s i l e machine, the s u p e r c o n d u c t i n g magnet and t h e t e s t r i g ( F i g . 1 ) . The c r y o s t a t (Messer Griesheim) i s a normal LHe-bath c r y o s t a t w i t h a L H e - c o n t a i n e r o f 560 mm I. D. and a l e n g t h of 1450 mm and i s designed f o r two bar o v e r p r e s s u r e . The s p i n d l e d r i v e t e n s i l e machine ( S c h e n k - T r e b e l ) i s c o n s t r u c t e d f o r 10 kN and i s w o r k i n g i n load and s t r a i n c o n t r o l led mode. The Nb3Sn tape wound s u p e r c o n d u c t i n g magnet ( I n t e r m a g n e t i c General C o r p . ) i s of a s p l i t c o i l t y p e , which a l l o w s v a r i a b l e gaps of 0 , 10, 2 0 , and 30 mm. The main data f o r t h e 0 and 30 mm gap p o s i t i o n are shown i n Table 1.

The magnet i s mounted w i t h i t s a x i s i n a h o r i z o n t a l p o s i t i o n , t o a l l o w f o r v e r t i c a l access o f the t e s t r i g .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984117

(3)

Cl-80 JOURNAL DE PHYSIQUE

Table 1 - Main data o f superconducting s p l i t c o i l magnet f o r 0 and 30 mm gap u o s i t i o n .

Maximum Central F i e l d a t 4.2 K ( T ) Maximum Current a t 4.2 K (A) Homogeneity a t 50 mm DSV (%)

Magnetic Energy (MJ) Clear Bore Diameter (mm) Length (mm)

Outer Diameter (mm)

Change Rate up t o blax. F i e l d :

- V i r g i n Run (Min.)

- Subsequent Run (Min.)

gap 0 mm gap 30 mm

As the c e n t r a l f i e l d o f a s p l i t c o i l decreases w i t h i n c r e a s i n g qap, the smallest gap o f 10 mm i s used f o r t h e 5 kN t e s t r i g , which allows a c e n t r a l f i e l d up t o 14.2 T.

The 5 kN t e s t r i g (Kernforschungszentrum Karlsruhe) provides the sample w i t h mecha- n i c a l l o a d and e l e c t r i c c u r r e n t from o u t s i d e o f t h e c r y o s t a t . I t c o n s i s t s mainly o f a tube, 0. D.: 70 mm, w i t h t h e p u l l r o d f o r 5 kN and t h e vapor cooled c u r r e n t leads f o r 1.5 kA i n s i d e , having a f l a n g e a t t h e t o p f o r s u p p o r t i n g the t e n s i l e machine and a "sword" ( F i g . 2) housing t h e sample a t t h e lower p a r t . The cross s e c t i o n o f the sword i s given by the dimensions o f t h e magnet gap (10 mm

X

70 mm). I n t h i s sec- t i o n a bothway l e a d f o r l o a d and c u r r e n t , d e t e c t i o n l i n e s and a s t r a i n measurement have t o be placed. The end o f the p u l l r o d t r a n s f e r s i n t o a movable p u l l frame, hous-

Tensile Mach~ne

PulI Rod

Test Rig

Cryostat

SC-Magnet

Fig. 1 - Schematic arrangement o f aouaratus

Pull Rod

Movable Pull Frame

SC Current Lead

\

F i g . 2 - "Sword" o f 5 kN t e s t r i g

(4)

i t s e l f .

The current leads inside the sword are made from Nb Sn superconductor and copper braid. The ohmic losses i n t h i s area a t 1.5 kA and

?l

T amounts t o 2 Watt, of which 70 % are used f o r the contacts.

The length of the sample measures 200 mm, a t which 50 mm of each end i s soldered in a contact by a s p e m i l v e r solder (Fontargen, No. A 624). The f r e e length of 100 mm i s supported a t one side f o r balancing the Lorentz force, which reaches up t o 2

kN

i n the worst case. The contacts provide the sample as well with mechanical as with e l e c t r i c a l load. They are made from nonmagnetic s t a i n l e s s s t e e l and supplied with an i n l e t of copper around the sample. They can be removed f r o r the load frame

f o r soldering the sample.

The s t r a i n measurement of t h e sample occurs a t low temperature by means of a capa- c i t i v e probe. The probe and a parallel-sided metallic counter p l a t e form a plate capacitor, where the p1 a t e distance,

S ,

i s proportional t o i t s reactance (Eichhorn +

Hausmann, Fig. 2 ) . The advantages of a capacitive s t r a i n measurement are the inde- pendence of magnetic f i e l d , the negl i gible influence of the d i e l e c t r i c he1 i urn in com- parison t o a i r and the l i n e a r c h a r a c t e r i s t i c . A disadvantage i s the r e l a t i v e large dimension: For supplying the sample with 3 % s t r a i n (As = 3 mm) an outer diameter of the capacitive probe of 20 mm i s required. Thus the probe cannot be placed inside the 10 mm gap of the magnet but in the lower p a r t of the tube, and the counter p l a t e i s connected with a t h i n , powerless pipe t o the movable pull frame. This displace- ment, As, a t the capacitive probe, which i s proportional t o

E

of the sample, has t o be corrected. This correction considers a certain shear s t r a i n inside the solder connection, a deformation of the sample i t s e l f inside the contacts and s e t t l i n g ef- f e c t s of the contacts. Simultaneous s t r a i n measurements by s t r a i n gauges f o r a cer- tain s i z e of sample are in preparation.

I11 - MEASUREMENTS

After mounting the sample and cool i ng t h e magnet t o LHe-temperature the t e s t r i g can be inserted i n t o magnet gap. Then the t e n s i l e machine i s moved upon the top flange of the r i g . The c r i t i c a l current, I C Y i s measured under constant

E

and B.

Fig. 3 shows the importance of t h i s investigations a t three d i f f e r e n t l y , i n t e r n a l l y reinforced Nb3Sn conductors (Airco): Heat treatment: 720

O C

- 120 hrs i n argon, di- mensions: 3.5 mm

X

5.0 mm. The composition i s shown i n Table 2.

Table 2 - Composition of d i f f e r e n t l y reinforced conductors ('TZM: 0.5 % Ti ,

0.07 % Zr, 0.05 % C , balance MO)

The amount of Ta, used as diffusion b a r r i e r , i s negligible in t h i s context. The d i f - ferent reinforcement materials, which should protect the Nb3Sn against mechanical overloading, influence the Ic-E-characterisitc d r a s t i c a l l y . The prestress on Nb3Sn f o r samples SS and Inconel i s much higher than f o r the Cu-sample.(The Cu-sample was measured a t

E =

O only.) Since both materials, s t a i n l e s s s t e e l and inconel, possess

Bronze + NbgSn Vol. %

20 20 2 0 20 Sample

SS Inconel TZM Cu

Reinforcement Copper

Vol. % 68.0 67.5 75.8 80.0

Materi a1 Stainless Steel

Inconel TZF?')

-

Vol. %

12 .O

3.5

4.2 -

(5)

Cl-82

JOURNAL

DE PHYSIQUE

h i g h y i e l d s t r e n g t h s they remain e l a s t i c i n s p i t e the h i g h i n t e r n a l stresses i n t h e conductor, produced by the d i f f e r e n t thermal expansion between r e a c t i o n and LHe- temperature. The stresses due t o s t a i n l e s s s t e e l o r i n c o n e l are a d d i t i o n a l t o those o f t h e remaining m a t r i x (copper and bronze), thus r e s u l t i n g i n a h i g h e r degradation o f Ic a t

E

= 0. ICO/ICm amounts t o 47 % f o r t h e SS and 70 % f o r t h e Inconel con- ductor, t h e c o r r e s p o n d ~ n g values o f

E,

being 0.74 and 0.53 %, r e s p e c t i v e l y . The reason f o r t h e s m a l l e r i n f l u e n c e o f i n c o n e l w i t h respect t o s t a i n l e s s s t e e l i s i t s lower volume f r a c t i o n and t h e s l i g h t l y lower a-value. The thermal c o n t r a c t i o n o f TZM (molybdenum) i s t h r e e times s m a l l e r than t h a t o f copper o r bronze. Therefore TZM i s b u i l d i n g up a counterforce a g a i n s t copper and bronze d u r i n g c o o l i n g down.

That would mean f o r t h e TZ??-sample, t h a t the i n t e r n a l stresses produced by copper- bronze and TZM reinforcement are almost i n balance, an a d d i t i o n a l e x t e r n a l s t r e s s l e a d i n g t o a degradation o f I , d i r e c t l y . F u r t h e r i n v e s t i g a t i o n s a t tnese conductors are a l s o made a t o u r i n s t i t u t e /7/.

F i g . 3

I, vs.

E

f o r d i f f e r e n t l y r e i n - f o r c e d Nb3Sn conductors ( A i r c o ) a t B = 11.3 T.

The autors l i k e t o thank K. H. R e i c h l i n g f o r assistance a t design and c o n s t r u c t i o n o f t h e t e s t r i g and s u p p l y i n g t h e measurements and P. Turowski f o r p r o v i d i n g the Ai,rco conductors.

REFERENCES

/l/ G. Rupp, IEEE Trans. Mag. MAG-17, 1099 (1981).

121 T. Luhman , Adv. Cryog. Eng. E T . 28, 639 (1982).

/3/ R. F l u k i g e r , E. Drost, W. ~ o l d a c k e x and W. Specking, IEEE Trans. Mag.

MAG-19, 1441 (1982).

/4/ J. WTEkin, H. Sekine, and K. Tachikawa, J . Appl. Phys. 52, 6252 (1981).

/5/ R. F l u k i g e r , W. Goldacker, W. Specking, L. P i n t s c h o v i u s , T . M i l l e r , and J. W. Ekin, Proc. ICIlC 9, Kobe (Japan), 11-14 Way 1982, p. 19.

/6/ R. F l u k i g e r , W. Schauer, W. Specking, L. Oddi, L. Pintschovius, W. Wuller, and B. Lachal, Adv. Cryog. Eng. Vol. 9, 364 (1982).

/7/ P. Turowski, A. N y i l a s , M. Thoner, presented a t MT-8, Grenoble, Sept. 5-9, 1983,

p u b l i s h e d i n Journal de Physique.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Thus, the step structure observed -at 3.8 and 4.6 T is concluded to be caused by successive phase transitions from non- magnetic phase into thermally frustrating, incommen-

Either a cross-sectional study, in which only one snapshot of the network is looked at and analyzed; or a longitudinal study, in which several consecutive snapshots of the network

brium position reached by the vortices are the same, for a given value of Lorentz force, whatever are the initial positions chosen for the calculation.

Thus a multiband structure, consisting of one anisotropic part and one other part having larger warping and larger Fermi velocities, leads to an anomalous

Critical currents in superconducting networks and magnetic field

que dans ces circonstances, on dise, selon la vérité, que l'ami s'est réfugié dans la maison voisine, et interdit absolument tout mensonge et tout ce qui