• Aucun résultat trouvé

TESTING THE COINTEGRATING RANK WHEN THE ERRORS ARE UNCORRELATED BUT NONINDEPENDENT

N/A
N/A
Protected

Academic year: 2021

Partager "TESTING THE COINTEGRATING RANK WHEN THE ERRORS ARE UNCORRELATED BUT NONINDEPENDENT"

Copied!
47
0
0

Texte intégral

(1)

HAL Id: hal-00517094

https://hal.archives-ouvertes.fr/hal-00517094

Submitted on 13 Sep 2010

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE ERRORS ARE UNCORRELATED BUT NONINDEPENDENT

Hamdi Raïssi

To cite this version:

Hamdi Raïssi. TESTING THE COINTEGRATING RANK WHEN THE ERRORS ARE UNCORRE-

LATED BUT NONINDEPENDENT. Stochastic Analysis and Applications, Taylor & Francis: STM,

Behavioural Science and Public Health Titles, 2009, 27, pp.24-50. �hal-00517094�

(2)

HAMDIRAÏSSI,

Université Lille3

Abstrat

We study the asymptoti behaviour of the redued rank estimator of the

ointegratingspaeandadjustmentspaeforvetorerrororretiontimeseries

modelswithnonindependentinnovations. Itis shownthatthedistributionof

the adjustment spae an be quite dierent for models with iid innovations

and models with nonindependent innovations. It is also shown that the

likelihoodratiotestremainsvalidwhentheassumptionofiidGaussianerrors

is relaxed. MonteCarlo experimentsillustratethe nitesampleperformane

ofthelikelihoodratiotestusingvariouskindsofweakerrorproesses.

Keywords:Cointegration,reduedrankregression,likelihoodratiotest,strong

mixingondition,vetorerrororretionmodel.

1. Introdution

Multivariateproessesareoftenusedineonometriappliationsbeausetheyallow

tounderstandtheinterationsbetweendierentvariables. Inordertodesribelongrun

eonomirelationships,theointegrationtheoryhasbeendevelopedbyGranger(1981),

Engle and Granger(1987), Ahnand Reinsel (1990). This theory postulatesthat, in

someases,astationary proess oflowerdimensionis obtainedbyonsidering linear

ombinationsoftheomponentsofamultivariatenonstationaryproess. Thenumber

ofindependentlinearombinationsistheointegratingrankandisanimportantpiee

ofinformationfortheanalysisofeonomidata.

The dominant test for the ointegrating rank is the likelihood ratio (LR) test

developed by Johansen (1988, 1991), Perron and Campbell (1993), Lütkepohl and

Saikkonen (1999) in the framework of vetor error orretion models (VECM). For

theointegrationanalysis,theerrorstermsaregenerallysupposed tobeindependent

and identially distributed (iid). When applied to eonomi data (see for instane

Johansen andJuselius (1990),Clementsand Hendry (1996)orTrenkler(2003)),this

iidassumptionseemstoorestritivebeausemaroeonomitimeseries oftenexhibit

onditionalheterosedastiityand/orother formsofnonlinearity.

Rahbek,HansenandDennis(2002)studied theeetof ARCH innovations onthe

LRtest. AnimportantoutputoftheirworkisthattheLRtestremainsvalidwhenthe

errorproessisamartingaledierene. Howevertheassumptionthattheerrorproess

isamartingaledierenepreludesotherformsofdependene. Indeedthereexistmany

exampleswheretheassumptionofiidormartingalediereneontheinnovationsisnot

satised(see for instane Franq, Roy and Zakoïan (2005) in the univariateARMA

aseor Franq and Raïssi(2005)in theVARase). The rstaim ofthis paper isto

studythevalidityoftheLRtest inageneralontextofunorrelatederrors.

Postaladdress: UniversitéLille 3,EQUIPPE UniversitésdeLille BP60149 VilleneuveD'Asq

Cedex,Frane. E-mail:hamdi.raissietu.univ-lille3.fr.

(3)

The seond aim is to study the asymptoti behaviour of the usual estimators of

the ointegration and adjustment spaes, in the general framework of VECM with

unorrelated, but possibly dependent errors. We will ompare our ndings to the

usualiidaseandresultsofSeo (2007)whihshowsin partiularthattheasymptoti

distribution of the redued rank estimator of the ointegrating spae is robust to

onditional heteroskedastiity. We will use the standardredued rank proedure to

estimatetheointegrationspae,relaxingtheassumptionofiidgaussianinnovations.

Thestrutureofthepaperisasfollows. InSetion2wepresentthemodelandwe

derivetheestimatorsoftheparameters.InSetion3wegivetheasymptotibehaviour

oftheLRtest. Insetion4westatetheonsistenyoftheointegrationspaeandthe

adjustment spae. In Setion 5Monte Carloexperimentsare performed. Theproofs

arerelegatedtotheappendix.

Inthesequelthefollowingnotationsareused. Weak onvergene isdenoted by

andwedenote by

P theonvergeneinprobability. For afullolumn rankmatrixA

of dimensiond×r withd > r, wedene theorthogonal omplement A, whih is a

fullolumnrankmatrixofdimensiond×(d−r)andsuhthatAA= 0. Thesymbol

denotes the usual Kroneker produt and ve(A) denotes the vetor obtained by

stakingtheolumnofthematrixA. Wedenotebytr(B)thetraeofasquarematrix B. Wedenoteby[m]theintegerpartofagivenrealm.

2. Charaterization ofthe model

WeonsiderthefollowingVECMwithlineartrend

∆Xt= Π0Xt−1+

p−1

X

i=1

Γ0i∆Xt−io0o1t+ǫt (2.1)

where µo0 and µo1 are d-dimensional parametervetors. The proesst) is usually

assumediidwithmeanzeroand positivedenite ovarianematrixΣǫ. Inthesequel

wewillonsideraweakerassumptionfortheerrorproess. TheΓ0i,i∈ {1, ..., p−1},

ared×dshortrunparametersmatries. Byonventionthesumvanishesin(2.1)when p= 1. Thefollowingassumption givesusthegeneralframeworkofourstudy.

AssumptionA1 (Cointegrationandrestritiononthetrendparameters)

(a) The matrixΠ0 is ofrankr0 (0≤r0< d). Ifr0 >0 thenΠ0 an bewritten as

Π00β0 whereα0 andβ0 arefullolumnrankmatriesofdimensiond×r0.

(b) The autoregressivepolynomialA(z) = (1−z)Id−Π0z−Pp−1

i=1 Γ0i(1−z)zi, is

suhthat|A(z)|= 0 impliesthat |z|>1orz= 1.

() Thematrixα0⊥Γ0β0⊥ isoffullrankd−r0,whereΓ0=Id−Pp−1 i=1Γ0i.

(d) The vetor µo1 is suh that µo1 = −α0τ0, where τ0 6= 0 is an r0-dimensional vetor.

Note that if r0 = 0 the relation (2.1) is a vetor autoregressive model for the proess(∆Xt). Condition(d)isthelessrestritiveonditionontheparametersofthe

deterministipartof(2.1)whihallowsfortrendingbehaviourfor(Xt). Indeedunder

(4)

representation

Xt=C

t

X

i=1

ǫio1t+ρo0+Yt+A, (2.2)

where C =β0⊥0⊥Γ0β0⊥)−1α0⊥. ThetermA dependson initialvaluesand is suh

thatβ0A= 0. Thestationaryproess(Yt)isoftheform Yt=

X

i=0

ϕ0iǫt−i,

whereC(z) =P

i=0ϕ0iziisonvergentfor|z|≤1 +δ,forsomeδ >0. Notethat(2.2)

impliesthat(Xt)isanI(1)proess. From(a)and(d)weanwrite (2.1)as

∆Xt00β0′∗Z1t+

p−1

X

i=1

Γ0i∆Xt−it (2.3)

whereZ1t= (Xt−1 ,−t+ 1) andβ0= (β0, τ0). Thed-dimensionalvetorofonstants

ν0 and the r0-dimensional vetor τ0 are funtions of the parameters in (2.1). Note

that in (2.2) the vetorρo1 is suh that β0ρo10. Then it an beseen from (2.2)

that0Xt−E(β0Xt))is trendstationary and the r0-dimensional proess0′∗Z1t− E(β0′∗Z1t))isstationary. Wesayin thisasethattheointegratingrankisr0. Inthis

studywetest,forsomer(0≤r < d),thenullhypothesis H0:r0=r vs. H1:r0> r.

Notethatin(2.3)theparametersα0,β0andτ0arenotidentied. Indeedforagiven

α01, β01, and sine we assumed that these matries havefull rank, wean takeany

nonsingularmatrixζ ofdimensionr0×r0suhthat β0201ζ andα0201)−1

willgivethesamematrixΠ0. Togetridofthisproblemoneanonsiderthefollowing

normalization

β0c = (β0c , τ0c) = ((β0(cβ0)−1),(β0c)−1τ0) and α0c0β0c,

wherethedimensionald×r0matrixcissuhthatcβ0hasfullrank. Thisnormalization ensuresidentiabilityin thesense thatwehaveβ01c02c. Toseethis, notethat

cβ01c =cβ02c =Ir0 ⇒ cβ01(cβ01)−1=cβ01ζ(cβ01ζ)−1

⇒cβ01

(cβ01)−1−ζ(cβ01ζ)−1

= 0. (2.4)

Thensinecβ01isafullrankmatrix,thisimpliesthat

(cβ01)−1−ζ(cβ01ζ)−1= 0. (2.5)

Multiplying(2.5)byβ01 ontheleft,weobtainβ01c02c. Onetheparameterβ0c is

identied,itiseasytoseethatα0c andτ0c arealsoidentied. It shouldbealsonoted

that theointegrationspaeandtheadjustmentspae,that isthespaesspanned by

respetivelyβ0c andα0c, donotdependonthehoieofthematrixc.

(5)

In general the assumption thatt) is iid gaussian may appear to be toostrong.

IndeeditisquestionabletoassumethatalinearombinationofXt−1, . . . , Xt−p isthe

bestpreditorofXt. Inadditionnotethat, fromapratialpointofview,theorderp

isoften identiedusing teststhat are onlybasedontheautoorrelationsoft). For

instaneletusonsiderthedailyexhangeratesofU.S.DollarstooneBritishPound

andofU.S.DollarstooneEurofromJanuary2,2001toApril12,2007. Thelengthof

theseriesisT = 1578. TheanalyzeddataareplottedinFigure7.10. Weadjustedthe

model (2.1) to theseries with r0 = 1 and p= 2 using thesoftware JMulTi. Figures

7.11-7.12display the autoorrelations and rossorrelationsof the residuals. Figures

7.13-7.14displaytheautoorrelationsand rossorrelationsofthesquaredomponent

oftheresiduals. InviewofFigures7.11-7.12thehypothesisofunorrelatederrorsseems

plausible. Indeed most of the autoorrelations and rossorrelations are inside the

5%signianelimits. Howeversinemanyautoorrelationsandrossorrelationsare outsidethe5%signiane limitsin Figures 7.13-7.14,thehypothesisof independent errorsis learlyrejeted.

Rahbeket al (2002)onsidered VECMwith martingaledierene innovations. In

ourframeworkwewillonsideramoregeneralassumptionallowingforalargelassof

errorproesses.

Assumption A2 The error proesst) is stritly stationary and suh that Cov(ǫt, ǫt−h) = 0forallt∈Zandallh6= 0.

Suh errorproessesareommonly namedweakwhitenoise. Note that Granger's

representationtheorem stillholds whenthe assumptionofiid gaussianinnovationsis

replaed by A2. Thefollowingare examplesof error proesseswhih verifyA2 but

arenotiid.

Example2.1. Considertheproesst)dened bytherelation

ǫt=at+ Φ{ǫt−1⊙at}, (2.6)

wheredenotesthe Hadamardprodut, (at)is ad-dimensional iidentered proess suhthat |E(aitajt)|≤1, andthematrixΦis diagonalofdimensiond×dand suh

thatii |<1. TakingΦ0=Id,theequation(2.6)hasastationarysolutionoftheform

ǫt=P

i=0Φiat−i⊙ · · · ⊙at.Itis easyto seethattheǫt'sareunorrelated. However

Cov(ǫ2it, ǫ2it−1) =E(a2it)Cov((1 + Φiiǫit−1)2, ǫ2it−1)6= 0,

ingeneral,showingthattheproesst)isnotiid.

Example2.2. The univariate all-pass models (see for instane Breidt, Davis and

Trindade (2001)) onstitute an important lass whih an be extended to the mul-

tivariate ase. Assume that the proesst) is the unique solution to the following

equation

ǫt−φ01ǫt−1− · · · −φ0qǫt−q =wt0q−1φ−10q wt−1+· · ·+φ01φ−10qwt−q+1−φ−10qwt−q,

where φ(z) = Id−φ01z· · · −φ0qzq is suh that φ(z)6= 0 for| z |≤ 1. The entered

proess (wt)is iidwith varianeΣw. Assume alsothat the matriesφ01, . . . , φ0q are

diagonal. Writingthespetraldensityforeahomponentit),it anbeshownthat

(6)

theproesst)isunorrelated(seeAndrews,DavisandBreidt(2006)). Howeverify0

isnotgaussiantheproesst)isnotindependent. Toseethis onsiderthefollowing bivariatesimpleexample

ǫt−φǫt−1=wt−φ−1wt−1

where φ =

φ1 0 0 φ2

and | φ1 |< 1, | φ2 |< 1. Let us introdue ϑt = ǫ1t− φ1ǫ1t−1. Sinet)is unorrelated, the proesst) followsan ausalM A(1). Then

we have ǫ1t = P

i≥0φiϑt−i. Straightforwardomputations show that E(ǫ1tϑ2t−1) = E[ǫ1t1t−1−ǫ1t−2)2] =Ew3t(1−φ−21 )(1+φ1)andE(ǫ1tϑ3t−1) =E[ǫ1t1t−1−ǫ1t−2)3] = (Ewt4−3)(1−φ−21 )2φ1. Usingthefat that ϑt−1 belongsto theσ-eld generated by1u, u < t},wehaveE{ϑ2t−1E(ǫ1t1t−1,· · ·)} 6= 0forEwt36= 0andE{ϑ3t−1E(ǫ1t| ǫ1t−1,· · ·)} 6= 0for Ew4t 6= 0. Thusthet)proessis notamartingaledierene in

general.

2.1. Derivation of thequasi maximumlikelihood(QML) estimators

Now we turn to the derivation of the QML estimators of α0c and β0c. We use

here the QML method beause we assume that the errors terms are unorrelated

but not neessary gaussian independent. Note that the estimation proedure we

will desribe is performed under H0. In the framework of the VECM we shall see

that the methodology in Johansen (1988,1991) in the iid ase remains valid under

unorrelatederrorsassumption. Wewill usethe followingnotation. Let Z0t= ∆Xt,

Z2t = (∆Xt−1 , . . . ,∆Xt−p+1 ,1), Ψ0 = (Γ01, . . . ,Γ0p−1, ν0) where Xt = 0 for t ≤ 0.

Theexpression(2.3)beomeswiththesenotations

Z0t0cβ0c′∗Z1t+ Ψ0Z2tt. (2.7)

HereweanremarkthatsineXtisI(1)thentheproessesZ0tandZ2tarestationary.

Using(2.7)andgiventheobservationsX1, . . . , XT wewritethequasilog-likelihoodas follows

logL(Ψ, αc, βcǫ) =−1

2Tlog|Σǫ|

−1 2tr

( T X

t=1

Σ−1ǫ (Z0t−αcβc′∗Z1t−ΨZ2t)(Z0t−αcβ′∗c Z1t−ΨZ2t) )

,

where

βc= (βc, τc)= ((β(cβ)−1),(βc)−1τ) and αc=αβc.

Themaximum likelihood estimationmethod fortheVECM with unorrelatederrors

impliatesseveralsteps. WerstestimatetheparametersinthematrixΨ0andobtain

Ψ(αˆ c, βc) =M02M22−1−αcβ′∗c M12M22−1

where

Mij =T−1

T

X

t=1

ZitZjt .

(7)

Now dening by R0t and R1t the residualsof respetivelytheregressionsof Z0t and

Z1tonZ2t,wegettheonentratedlog-likelihood

logL(αc, βcǫ) = −1

2Tlog|Σǫ|

−1 2tr

( T X

t=1

Σ−1ǫ (R0t−αcβc′∗R1t)(R0t−αcβc′∗R1t) )

(2.8)

where

R0t=Z0t−M02M22−1Z2t and R1t=Z1t−M12M22−1Z2t.

Sine the R1t's are the residuals of the regressionof the Z1t's on the Z2t's, and

noting that the proess (Z1t) is I(1) and the proess (Z2t) is I(0), then theproess (R1t) is I(1). The expression of the onentrated log-likelihood orresponds to the regressionequation

R0t0cβ0c′∗R1t+ ˜ǫt, (2.9)

sothatweobtainthefollowingunfeasibleestimatorsofα0candΣǫin(2.9)byordinary

leastsquares

ˆ

αc0c) =S01β0c0c′∗S11β0c)−1, (2.10) Σˆǫ0c) =S00−αˆc0c)(β0c′∗S11β0c)ˆαc0c)

where

Sij =T−1

T

X

t=1

RitRjt .

Notethatreplaingαc andΣǫ bytheirestimatesin(2.8)wewrite

logL(ˆα(βc), βc,Σˆǫc)) =−1

2Tlog|Σˆǫc)| −1 2dT.

Finallytheparametersin β0c an beestimatedusingtheresultsofthewellknown

reduedrankmethodofAnderson(1951). Inthisendweshallminimizethefollowing

expression

|Σˆǫc)|=|S00−S01βcc′∗S11βc)−1β′∗c S10|.

Usingtherelation

A11 A12

A21 A22 =|A11||A22−A21A−111A12|=|A22||A11−A12A−122A21|,

wend

|S00−S01βcc′∗S11βc)−1β′∗c S10|=|S00| |β′∗c (S11−S10S00−1S01c |

c′∗S11βc| .

UnderthenullhypothesisandusingLemma7.1theexpressionc′∗(S11−S10S00−1S01c| /|βc′∗S11βc |isminimizedforthefollowingnormalizedexpression

βˆc= ( ˆβc,τˆc)= (( ˆβ(cβ)ˆ −1),(( ˆβc)−1τ))ˆ ,

(8)

where

βˆ= ( ˆβ,τ)ˆ =S

1 2

11 (v1, . . . , vr)

andv1, . . . , vr areeigenvetorsorrespondingto ther largestsolutionsλˆ1≥ · · · ≥λˆr

oftheeigenvalueproblem

|λI−S

1 2

11 S10S00−1S01S

1 2

11 |= 0. (2.11)

Inadditionthematrixcβˆisoffullrank. Weobtainαˆc=S01βˆ0c( ˆβ0c′∗S11βˆ0c)−1. Noting

thatwehave|Σˆǫ( ˆβc)|=Qr

i=1(1−λˆi),thelikelihood ratiotestforris givenby Q

2

rT = Qr

i=1(1−λˆi) Qd

i=1(1−λˆi)=

d

Y

i=r+1

(1−λˆi)−1.

Thentotestthenullhypothesis,weonsider theLR teststatisti

−2 logQr=−T

d

X

i=r+1

log(1−ˆλi),

where ˆλ1 ≥ · · · ≥λˆd arethed greatersolutionsof theeigenvalueproblem (2.11). In

thenextsetionwewillstudy theasymptotibehaviouroftheLR teststatisti.

3. Asymptotipropertiesof the LR statisti

To state the main results of the paper, the assumption that the proesst) is

unorrelated is not enough. Indeed we haveto ontrol the serial dependene of the

proesst). To this end we introdue the mixing oeients αξ(h) for a given

stationaryproesst)

αξ(h) = sup

A∈σ(ξu,u≤t),B∈σ(ξu,u≥t+h)

|P(A∩B)−P(A)P(B)|,

whihmeasuresthetemporaldependeneoftheproesst). Denetkq = (Ekξtkq)1/q,

wherek.kdenotestheEulideannorm. Thenweneedtomakethefollowingassumption

ontheproesst).

Assumption A3 The proesst) satisestk2+ν+η < ∞ and the mixing oef-

ientsof theproesst)are suh that P

h=0ǫ(h)}ν/(2+ν)<∞ for some ν >

0 and η >0.

Note that the kind of dependene induedby A3 is mild for the error proesst).

ThefollowingpropositiongivesustheasymptotidistributionoftheLRteststatisti.

Proposition 3.1. UnderA1,A2andA3,theLRteststatistihasthesameasymp-

totidistributionasin the iidgaussianase, that is

−2 logQr0 ⇒tr (Z 1

0

F(dB) Z 1

0

F Fdu

−1Z 1 0

F(dB) )

, (3.1)

Références

Documents relatifs

Par ailleurs, plusieurs auteurs recommandent que le rôle de l’infirmière soit élargi au sein de l’équipe interdisciplinaire de gestion de la douleur AETMIS, 2006; Brown et al,

When we consider target densities which are very smooth, in comparison to the error density, the estimator discussed in the present paper does, on small or medium sample sizes,

Selected cases of the electron density changes in the iono- spheric F-region over the Kola Peninsula and Karelia in Rus- sia at latitudes from 63 ◦ to 71 ◦ N observed by satellite

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

From the empirical results and the simulation experiments, we draw the conclusion that the proposed portmanteau test based on squared residuals of an APGARCH(p, q) (when the power

Since dismissing intentional control leads to cursory and irresponsible behavior (Baumeister et al., 2009; Vohs &amp; Schooler, 2008) and to less intentional involvement in the

Multivariate Portmanteau test for Autoregressive models with un- correlated but nonindependent errors...

T h e allowable unit stress in any wood column or strut shall be computed from the following for- mulae in which concentric loading is assumed, and shall