• Aucun résultat trouvé

Multivariate Portmanteau test for Autoregressive models with uncorrelated but nonindependent errors

N/A
N/A
Protected

Academic year: 2021

Partager "Multivariate Portmanteau test for Autoregressive models with uncorrelated but nonindependent errors"

Copied!
33
0
0

Texte intégral

(1)

HAL Id: hal-00517078

https://hal.archives-ouvertes.fr/hal-00517078

Submitted on 13 Sep 2010

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

models with uncorrelated but nonindependent errors

Christian Francq, Hamdi Raïssi

To cite this version:

Christian Francq, Hamdi Raïssi. Multivariate Portmanteau test for Autoregressive models with un-

correlated but nonindependent errors. Journal of Time Series Analysis, Wiley-Blackwell, 2007, 28,

pp.454-470. �hal-00517078�

(2)

DENT ERRORS

CHRISTIANFRANCQ,

GREMARSUniversitéLille3

HAMDIRAÏSSI,

∗∗

GREMARSUniversitéLille3

Abstrat

Inthispaperweonsiderestimationandtestoftformultipleautoregressive

timeseriesmodelswithnonindependentinnovations.Wederivetheasymptoti

distributionoftheresidualautoorrelations. It isshownthatthis asymptoti

distributionanbequitedierentformodelswithiidinnovationsandmodelsin

whihtheinnovationsexhibitonditionalheterosedastiity orother formsof

dependene. Consequently,theusual hi-squaredistributiondoesnotprovide

adequate approximation to the distributionof the Box-Piere goodness-of-t

portmanteau test in the presene of nonindependent innovations. We then

proposeamethodtoadjusttheritialvaluesoftheportmanteautests. Monte

Carlo experiments illustrate the nite sample performane of the modied

portmanteautest.

Keywords: VetorweakARmodel,Goodness-of-ttest,Residualautoorrela-

tion,Diagnosti Cheking,Box-PiereandLjung-Boxportmanteautests.

1. Introdution

In multivariate time series analysis,the Vetorial AutoRegressive (VAR) models are

muhemployed(seeLütkepohl(1993)). TheVARmodelspostulatethatthed-dimen-

sionalvetorXtoftheobservationsattimetanberepresentedasalinearombination of ppast valuesXt−1, . . . , Xt−p plus anerror ǫt. A theoretial argument in favor of

the VAR models is that any stationary proess an be approximated by a VAR(p)

model with suiently largepand unorrelatederrors. Thereason ofthe suessof these modelsishoweverofpratialnature,andisertainly dueto thefatthat itis

relativelyeasytodealwithalinearfuntionofanitenumberofpastvalues.

ItishoweverlearthattheVARmodelsarenotuniversalandthatthehoieofthe

order pis ruial. Thus it isimportantto hekthe validity of aVAR(p)model, for

agivenorderp. Inmultivariate,thehoieofpispartiularlyimportantbeausethe numberofparameters,pd2,quiklyinreaseswithp,whihentailsstatistialdiulties.

Thispaperisdevotedtotheso-alledportmanteautestsonsideredbyChitturi(1974)

andHosking(1980)forhekingtheoverallsignianeoftheresidualautoorrelations

of a VAR(p) model (see also Ahn (1988), Hosking (1981a, 1981b), Li and MLeod

(1981)).

Postaladdress: GREMARS,UFRMSES,UniversitéLille3,Domaine duPontdebois,BP149,

59653Villeneuved'AsqCedex,Frane

∗∗

Postaladdress: GREMARS,UFRMSES,UniversitéLille3,DomaineduPontdebois,BP149,

59653Villeneuved'AsqCedex,Frane

(3)

ForthestatistialanalysisofVARmodels,theerrorsǫtaregenerallysupposedtobe

independent(as in Lütkepohl (1993),Denition 3.1). Thisindependene assumption

is restritive beause it preludes onditional heterosedastiity and/or other forms

ofnonlinearity(see Franq, Royand Zakoïan (2005)andFranqand Zakoïan (2005)

forthestatistialinfereneofunivariateARMAmodelswith unorrelatedbut nonin-

dependent errors,and see Dufour andPelletier (2005)forweak VARMA modelling).

Themaingoalofthepresentpaperisto studythebehaviouroftheabove-mentioned

goodness-of-tportmanteautestswhentheǫt'sarenotindependent. Wewillseethat theresultsobtainedbythestandardportmanteautestsanbequitemisleadinginthis

framework.A modiedversionofthese testsisproposed.

Brüggemann, Lütkepohl and Saikkonen (2004) is an important reent referene

dealing with portmanteau tests and other tests for residual autoorrelation in VAR

models with iid innovations when somevariables are ointegrated. Inthis paperwe

donotonsiderointegratedvariables,buttheindependeneassumptionoftheǫt'sis

relaxed.

Therest of thepaperis organizedas follows. Setion 2 provides examplesof AR

models withunorrelatedbut nonindependenterrors,presentsseveralexpressions for

theleastsquares (LS)estimatorofthe ARoeients,and givesonditionsensuring

theonsisteny andasymptoti normality oftheLS estimator. Setion 3studies the

asymptotibehaviourof the ARresiduals. Weobtainthe asymptotidistribution of

vetorsof residual autoorrelations, under the assumption of the tted AR(p) is an

adequatelinearmodel with awellhosenorder p. The resultsareapplied in Setion

4to obtainthe asymptoti distribution of the portmanteau tests and to modify the

ritialvaluesofthesetestswhentheyareappliedtoVARmodelswithnonindependent

errors. Setion5isdevotedtothepratialimplementationofthemodiedversionof

thetests. Setion6proposesnumerialillustrations. Thetehnialproofsarerelegated

totheappendix.

Thefollowing notationswill be used throughout. For amatrix A of generi term A(i, j)weuse thenormkAk=P

|A(i, j)|. Thespetralradiusof asquarematrixA

is denoted by ρ(A), its traeis denoted by Tr. We denote by A⊗B the Kroneker

produt oftwomatriesA andB, veA denotesthevetorobtainedbystakingthe

olumnsofA,andA⊗2standsforA⊗A(seee.g. Harville(1997)formoredetailsabout

thesematrixoperators). Thesymboldenotestheonvergeneindistribution.

2. LSestimator of weak VARmodels

ConsiderthevetorialAR(p)model Xt=

Xp

i=1

A0iXt−it forallt∈Z={0,±1,±2, . . .} (2.1)

where theǫt'sare d-dimensionalerror terms,theXt'sared-dimensional vetors,and theA0i'sared×dmatries. Itisustomarytosaythat (Xt)isastrongAR(p)model

ift)isastrongwhitenoise,thatis, ifitsatises

TheauthorsaregratefultotheProfessorLütkepohlwhosequestionsheaskedduringtheMadrid

(4)

A1:t) isa sequeneof independent and identially distributed (iid)random vetors,t= 0andVart) = Σǫ.

Wesaythat(2.1)isaweak AR(p)model ift)isaweakwhitenoise,thatis, ifit

satises

A1':t= 0,Vart) = Σǫ,and Covt, ǫt−h) = 0forallt∈Zandallh6= 0.

Assumption A1 is learly stronger than A1'. The lass of strong AR models is

oftenonsidered toorestritivebypratitioners. IndeedAssumption A1amountsto

assume that the best preditor of Xt is a linearombinationof its p pastvalues. If pis hosenlargeenough,it is reasonableto onsider that thebest preditor ofXt is

wellapproximatedbyafuntion ofXt−1, . . . , Xt−p,butitisquestionabletoassumea linearformforthisfuntion. Itiswellknownthatnumerousnonlinearproessesadmit

weaklinearrepresentations(seeExample2.1below). Weaklinearrepresentationsare

alsoobtainedfromtransformationsofstronglinearproesses(seeExample2.2below).

In Examples 2.1-2.3 below, Assumption A1' holds but A1 is not satised. Other

examplesofunivariateweak linearmodels an befound in Franq, Roy andZakoïan

(2005),andreferenestherein.

For the statistial analysis of multivariate AR time series models, it is therefore

of interest to replae the standard strong white noise assumption A1 by the more

exible weak white noiseassumption A1'. Inthis paperwe fous on theestimation

andvalidationstagesofthestatistialanalysisoftheseweakmultivariateARmodels.

2.1. Examples of weak VARmodels

Theexamplesgivenin thissetionaremainly hosenfortheirsimpliity. Therst

oneisaweakwhitenoiseinspiredbyexamplesgivenbyRomanoandThombs(1996)

intheunivariatease. Theseondissimplytheausalrepresentationofanonausal

AR(1) proess. This example shows that A1 must by replaed by A1' when one

wantsto make,withoutlossofgenerality, theusualassumption that therootsof the

ARpolynomialareoutsidetheunit irle. Thethird belongstothelass ofGARCH

models.

Example2.1. Intheunivariatease,Romanoand Thombs(1996)builtweak white

noisest) bysetting ǫttηt−1· · ·ηt−k wheret) is astrongwhite noiseand k ≥ 1. This approah an be extended to the d-multivariate framework by setting ǫt = B(ηt)· · ·B(ηt−k+1t−k,wheret= (η1t, . . . , ηd t)}tisad-dimensionalstrongwhite noise, and B(ηt) = {Bijt)} is a d×d random matrix whose elements are linear

ombinationsof theomponentsof ηt. It isobvioustohekthat ǫtis awhitenoise,

butingeneralthisnoiseisnotastrongone. Indeed,assumingforsimpliitythatk= 1

andB11t) =η1t andB1jt) = 0forallj >1,wehave

Cov ǫ21t, ǫ21t−1

=

21t 2Var

η21t 6= 0,

whihshowsthattheǫt'sarenotindependent.

Example2.2. (NonausalAR(1))LettheAR(1) model

Xt=AXt−1t, ǫt iidand E(ǫt) = 0, E(ǫtǫt) = Σǫ,

(5)

where A is an invertiblematrix whose all the eigenvalues λi,1 ≤i ≤d, are greater

thanone in modulus. Thisequation hasastationary andantiipativesolutionof the

formXt=−P

i=1A−iǫt+i. Theautoovarianefuntion of(Xt)isthengivenby ΓX(h) =A−h

X

i=1

A−iΣǫA−i, h≥0.

Let ǫt = Xt−A−1Xt−1. We have E(ǫt) = 0, Vart) = ΓX(0) + ΓX(1)(A−1) + A−1ΓX(1) +A−1ΓX(1)(A−1), andCovt, ǫt−h) = 0 forh6= 0. Thus Xt admits the

ausal AR(1) representation Xt = A−1Xt−1t. However, in general, ǫt is not a

martingale dierene. To see this, assume for simpliity that the matrix A is suh

that |a11| >1 and a1j =aj1 = 0, ∀j ∈ {2,· · · , d}. Wethen have EX13t−1 = (1− a311)−131t, EX1tX12t−1=a−211(1−a311)−131tandE(ǫ1tX12t−1) =EX1tX12t−1− a−111EX13t−16= 0when31t6= 0. Inthisaseǫt isnotamartingaledierenebeause E(ǫ1tX12t−1) =E

X12t−1E ǫ1tt−1, . . . 6= 0. Thusthewhitenoiseǫt isnotstrong.

Example2.3. Intheunivariatease,theGARCHmodelsonstituteimportantexam-

plesofweakwhitenoises. Thesemodelshavenumerousextensionstothemultivariate

framework. The simplest of these extensions is ertainly the multivariate GARCH

model with onstant orrelation proposed by Jeantheau (1998). In this model the

proesst)veriesthefollowingrelationǫt= ∆tηtwhereηt= (η1t, . . . , ηd t) isaniid

entered proesswith Vari t) = 1, andt isadiagonal matrixwhose elementsσii t

verify

 σ211t

.

.

.

σdd t2

=

 c1

.

.

.

cd

+ Xq

i=1

Ai

 ǫ21t−i

.

.

.

ǫ2d t−i

+ Xp

j=1

Bj

 σ211t−j

.

.

.

σdd t−j2

.

TheelementsofthematriesAiandBj,aswellastheci's,aresupposedtobepositive.

In addition suppose that the stationarity onditions hold (see Jeantheau (1998) for

more details). The stationary solution of this GARCH equation satises A1, but doesnotsatisfyA1ingeneral. ConsiderforinstanetheARCH(1)asewithA1 suh

that a11 6= 0and a12 =· · · =a1n = 0. Thenit iseasy to seethat Cov21t, ǫ21t−1) =

Cov

(c1+a11ǫ21t−112t, ǫ21t−1 =a11Varǫ21t6= 0,whihshowsthattheiidassumption A1is notsatised.

2.2. Derivation of theLS estimator

Itiswellknownthat(Xt)an bewrittenas aMA(∞)oftheform Xt=

X

i=0

ψ0iǫt−i, ψ00=Id, X

i=0

0ik<∞, (2.2)

undertheassumption

A2: detA0(z)6= 0forall|z| ≤1,where A0(z) =Id−Pp

i=1A0izi.

Denote by θ0 = ve (A01· · ·A0p) the vetor of the unknown AR parameters. For any θ ∈ Rd2p, let A1 = A1(θ), . . . , Ap = Ap(θ) be d×d matries suh that θ =

ve(A1, . . . , Ap). With thisnotation(2.1)an berewrittenas Xt=

Xt−1 , . . . , Xt−p

⊗Id θ0t (2.3)

(6)

usingtheelementaryrelationve(ABC) = (C⊗A)veB formatriesofappropriate dimensions.

One of the most popular estimation proedure is that of the least squares (LS)

estimator. For linear proesses of the form (2.1), the LS estimator of θ oinides

withthegaussianquasi-maximumlikelihood(QML)estimator. Giventheobservations

X1, . . . , Xn,theLS/QMLestimatorsofθandΣǫ aredenedby

(ˆθn,Σˆǫ) = arg min

θ,Σǫ

(

nlog (det Σǫ) + Xn

t=1

ǫt(θ)Σ−1ǫ ǫt(θ) )

where

ǫt(θ) =Xt− Xp

i=1

AiXt−i.

To give an expliit expression for these estimators, the d-dimensional AR(p) model

(2.1)anberewrittenasthedp-dimensionalAR(1)model

t= ˜A0t−1+ ˜ǫt, (2.4)

where

0=





A01 · · · A0p−1 A0p

Id 0

.

.

.

0 Id 0



, X˜t=



 Xt

Xt−1

.

.

.

Xt−p+1



, ˜ǫt=



 ǫt

0

.

.

.

0



.

NotethatA2isequivalenttoρ A˜0

<1. LetΣˆX˜t,X˜th= n1Pn

t=1tt−h andwrite ΣˆX˜t1

instead of ΣˆX˜t1,X˜t1

. Note that ΣˆX˜t1

is a onsistent estimator of ΣX˜t = EX˜tt,whihisgivenby

ve ΣX˜t

=

I(dp)2−A˜0⊗A˜0

−1

ve˜ǫt), Σǫ˜t=

Σǫ 0d(p−1)

0d(p−1) 0d(p−1)×d(p−1)

.

It iseasy tosee that theLSestimatorsof theAR parametersofmodels(2.1)and

(2.4)aregivenby

b˜ A=





Ab1 · · · Abp−1 Abp

Id 0

.

.

.

0 Id 0



= ˆΣX˜t,X˜t−1

Σˆ−1˜

Xt1, (2.5)

provided ΣˆX˜t1

is non singular, and that the LS estimators of the varianes of the

noises(˜ǫt)andt)aregivenby Σbǫ˜= Σbǫ 0d(p−1)

0d(p−1) 0d(p−1)×d(p−1)

!

= ˆΣX˜t−ΣˆX˜t,X˜t1Σˆ−1˜

Xt1

ΣˆX˜t1,X˜t, (2.6)

withtheonventionthat Xt= 0whent≤0 ort > n.

(7)

2.3. Asymptoti behaviorofthe LS estimator

Toestablishthestrongonsistenyoftheestimatorsdenedin (2.5)and(2.6),we

needthefollowingassumptions.

A3: MatrixΣǫ ispositivedenite.

A4: Thesequenet)isstritlystationary andergodi.

Note that A4 isentailedby A1, but notby A1. A straightforwardonsequeneof theergoditheoremisstatedinthefollowingproposition.

Proposition 2.1. UnderassumptionsA1-A2-A3orA1'-A2-A3-A4,thematrixΣˆX˜t

isalmost surelynonsingular, andalmost surely

A→A˜0, Σb˜ǫ→Σ˜ǫ and θˆn→θ0

asn→ ∞.

ToobtaintheasymptotinormalityoftheLSestimatorofθ,additionalassumptionsare neededwhent)isnotiid. Intheunivariatease,FranqandZakoïan(1998)showed

the asymptoti normality under mixing assumptions. We will extend this result to

VARmodels. ThemixingoeientsofastationaryproessX = (Xt)aredenotedby αX(h) = sup

A∈σ(Xu,u≤t),B∈σ(Xu,u≥t+h)|P(A∩B)−P(A)P(B)|.

Thereader isreferredto Davidson(1994)for details aboutmixing assumptions. Let

kXkr= (EkXkr)1/r,where kXkdenotestheEulideannorm.

A5: TheproessX= (Xt)issuhthatP

h=0X(h)}ν/(2+ν)<∞andkXtk4+2ν

<∞forsomeν >0.

Theasymptotidistribution oftheLSestimatorisgiveninthefollowingproposition.

Proposition 2.2. Under assumptionsA1A3 orunderA1' andA2A5,

√nve b˜ A−A˜0

⇒ N(0,Ω), (2.7)

where

Ω = X

h=−∞

En Σ−1X˜

t

t−1t−h−1 Σ−1X˜

t ⊗˜ǫt˜ǫt−ho

. (2.8)

Moreover

√n θˆn−θ0

⇒ N 0,Σθˆn

, (2.9)

where

Σθˆn = X

h=−∞

En Σ−1X˜

t

t−1t−h−1 Σ−1X˜

t ⊗ǫtǫt−ho

. (2.10)

(8)

Notethatunder A1,wehave

Ω = Σ−1˜

Xt ⊗Σ˜ǫt.

and

Σθˆn = Σ−1X˜

t ⊗Σǫt. (2.11)

ThisstandardresultanbefoundinJohansen(1995,Theorem2.3p. 19).

Example2.4. The following example illustrates the dierene between the asymp-

totivariane(2.10)intheweakaseandtheasymptotivariane(2.11)ofthestrong

AR ase. Consider a bivariate AR(1) model Xt = AXt−1t, with true AR(1)

parameterA0= 0andǫt=B(ηt). . . B(ηt−k+1t−k oftheformgiveninExample2.1.

WehaveXt= ˜Xtt. For simpliity assumethat B(ηt) = Diag1t, η2t)and that η is gaussianwith Var1t) =Var2t) = 1 and Cov1t, η2t) =ρ ∈(−1,1). Thus,

using13tη2t = 3ρ and12tη22t = 1 + 2ρ2, we ndthat Var1t) = Var2t) = 1,

Cov1t, ǫ2t) =ρk+1,and,using(2.10), Σθˆn = E

Σ−1ǫt ǫt−1ǫt−1Σ−1ǫt ⊗ǫtǫt

= Σ−1ǫt ⊗I2

E

t−1⊗ǫt) (ǫt−1⊗ǫt) Σ−1ǫt ⊗I2

,

withΣǫ=

1 ρk+1 ρk+1 1

andE

t−1⊗ǫt) (ǫt−1⊗ǫt) equalto



3k ρ(3ρ)k ρ(3ρ)k ρ2(1 + 2ρ2)k ρ(3ρ)k (1 + 2ρ2)k ρ2(1 + 2ρ2)k ρ(3ρ)k ρ(3ρ)k ρ2(1 + 2ρ2)k (1 + 2ρ2)k ρ(3ρ)k ρ2(1 + 2ρ2)k ρ(3ρ)k ρ(3ρ)k 3k



.

Whenk= 1thematrixΣθˆn

isequalto

ΣW := 1

2+ 1)(1−ρ4

−2ρ4+ 3ρ2+ 3 ρ22+ 3) −3ρ4ρ2 ρ2(−2ρ42+ 1) ρ22+ 3) 2+ 1 ρ2(−2ρ42+ 1) −ρ2(3ρ2+ 1)

−ρ2(3ρ2+ 1) ρ2(−2ρ42+ 1) 2+ 1 ρ22+ 3) ρ2(−2ρ42+ 1) −3ρ4ρ2 ρ22+ 3) −2ρ4+ 3ρ2+ 3

.

Byomparison, forthestrongAR(1)withaniidnoisewithvariane

Σǫ=

1 ρ2 ρ2 1

,

theasymptotivarianeΣθˆn

isgivenby

ΣS := 1 1−ρ4



1 ρ2 −ρ2 −ρ4 ρ2 1 −ρ4 −ρ2

−ρ2 −ρ4 1 ρ2

−ρ4 −ρ2 ρ2 1



.

Figure 2.1displays theratioΣW(1,1)/ΣS(1,1) asfuntion ofρ. Itis learfrom this

examplethattheasymptotivarianeoftheLSestimatormaybequitedierentwhen

Références

Documents relatifs

From these simulation experiments and from the asymptotic theory, we draw the conclusion that the standard methodology, based on the QMLE, allows to fit VARMA representations of a

All of the sample autocorrelations should lie between the bands (at 95%) shown as dashed lines (green color) and solid lines (red color) for the modified tests, while the

Section 2 shown that the least squares estimator for the parameters of a weak FARIMA model is consistent when the weak white noise ( t ) t∈ Z is ergodic and stationary, and that the

In this section we present the wild bootstrap method for periodically autoregressive models as an alternative to the residual bootstrap procedure from the previous section..

We construct efficient robust truncated sequential estimators for the pointwise estimation problem in nonparametric autoregression models with smooth coeffi- cients.. For

R EMARK 1.6.– It should be emphasized that to estimate the function S in [1.1.1] we use the approach developed in Galtchouk and Pergamenshchikov (2011) for the sequential

Then, using the oracle inequality from [4] and the weight least square estimation method we show that for the model selection procedure with the Pinsker weight coefficients the

Abstract: We construct a robust truncated sequential estimators for the pointwise estimation problem in nonpara- metric autoregression models with smooth coefficients.. For