• Aucun résultat trouvé

Cells as Machines: towards Deciphering Biochemical Programs in the Cell

N/A
N/A
Protected

Academic year: 2022

Partager "Cells as Machines: towards Deciphering Biochemical Programs in the Cell"

Copied!
24
0
0

Texte intégral

(1)

Cells as Machines:

towards Deciphering

Biochemical Programs in the Cell

François Fages

Inria Saclay-Ile de France http://lifeware.inria.fr

To master the complexity of cell processes, investigate:

• Programming theory concepts

• Formal methods of circuit and program verification

• Parameter search and optimization algorithms

• Theory of analog computation (new in this course)

(2)

Context: Systems Biology

Gain system-level understanding of multi-scale biological processes in terms of their elementary interactions at the molecular level. [Kitano 1999]

Cell mitosis [Lodish et al. 03] controlled by protein complex cdk1-cycB

Follow-up of Human Genome Project (90s), beyond genomic data:

à Creation of protein-protein interaction databases, RNAs, …

à Model repositories of cell processes : e.g. biomodels.net1000 models à Systems Biology Markup Language (SBML): model exchange format

à Modeling software (Cell designer, Cytoscape, Copasi, KaSim, BIOCHAM,…) à Simulation of a whole-cell mycoplasma genitalium [Karr Covert et al 12]

(3)

Biochemical reactions

• Binding, complexation: 𝐴 + 𝐵 → 𝐶

𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation: 𝐴 → 𝐵 + 𝐶

+ ↔

(4)

Biochemical reactions

• Binding, complexation: 𝐴 + 𝐵 → 𝐶

𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation: 𝐴 → 𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴 → 𝐵 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

(5)

Biochemical reactions

• Binding, complexation: 𝐴 + 𝐵 → 𝐶

𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation: 𝐴 → 𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴 → 𝐵 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis: 𝐴 → 𝐴 + 𝐵

𝐸2𝐹𝑎 → 𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

(6)

How to Program with Biochemical Reactions?

• Binding, complexation: 𝐴 + 𝐵 → 𝐶

𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation: 𝐴 → 𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴 → 𝐵 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis: 𝐴 → 𝐴 + 𝐵

𝐸2𝐹𝑎 → 𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation: 𝐴 → _

(7)

Biochemical reaction rates

• Binding, complexation: 𝐴 + 𝐵 4.6.7 𝐶

𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation: 𝐴 4.6 𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴 8.6/(4;6) 𝐵

𝑐𝑑𝑘1𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis: 𝐴 8.6=/(4;6=) 𝐴 + 𝐵

𝐸2𝐹𝑎 → 𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation: 𝐴 4.6 _

(8)

Biochemical reaction rates

• Binding, complexation: 𝐴 + 𝐵 4.6.7 𝐶

𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation: 𝐴 4.6 𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴 8.6/(4;6) 𝐵

𝑐𝑑𝑘1𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis: 𝐴 8.6=/(4;6=) 𝐴 + 𝐵

𝐸2𝐹𝑎 → 𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation: 𝐴 4.6 _

(9)

Biochemical reaction rates

• Binding, complexation: 𝐴 + 𝐵 4.6.7 𝐶

𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation: 𝐴 4.6 𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴 8.6/(4;6) 𝐵 (𝐴 + 𝐸 → 𝐶 → 𝐵 + 𝐸)

𝑐𝑑𝑘1𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis: 𝐴 8.6=/(4;6=) 𝐴 + 𝐵

𝐸2𝐹𝑎 → 𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation: 𝐴 4.6 _

(10)

Biochemical reaction rates

• Binding, complexation: 𝐴 + 𝐵 4.6.7 𝐶

𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation: 𝐴 4.6 𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴 8.6/(4;6) 𝐵

𝑐𝑑𝑘1𝑐𝑦𝑐𝐵 → 𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis: 𝐴 8.6=/(4;6=) 𝐴 + 𝐵

𝐸2𝐹𝑎 → 𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation: 𝐴 4.6 _

(11)

Boolean Semantics: presence-absence of molecules A Ù B → C Ù A/¬A Ù B/¬B Asynchronous Transition System

Semantics of Reactions A+B 𝒇(𝑨,𝑩) C

(12)

Boolean Semantics: presence-absence of molecules A Ù B → C Ù A/¬A Ù B/¬B Asynchronous Transition System

Petri Net Semantics: numbers of molecules A , B → C++, A--, B--

Multiset rewriting CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

Semantics of Reactions A+B 𝒇(𝑨,𝑩) C

(13)

Boolean Semantics: presence-absence of molecules A Ù B → C Ù A/¬A Ù B/¬B Asynchronous Transition System

Petri Net Semantics: numbers of molecules A , B → C++, A--, B--

Multiset rewriting CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

Stochastic Semantics: reaction probabilities, time of next reaction in a given state Si

Continuous Time Markov Chain (CTMC) A , B𝒑 𝑺𝒊 , 𝒕(𝑺𝒊) C++, A--, B--

Semantics of Reactions A+B 𝒇(𝑨,𝑩) C

(14)

Boolean Semantics: presence-absence of molecules A Ù B → C Ù A/¬A Ù B/¬B Asynchronous Transition System

Petri Net Semantics: numbers of molecules A , B → C++, A--, B--

Multiset rewriting CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

Stochastic Semantics: reaction probabilities, time of next reaction in a given state Si

Continuous Time Markov Chain (CTMC) A , B𝒑 𝑺𝒊 , 𝒕(𝑺𝒊) C++, A--, B--

Semantics of Reactions A+B 𝒇(𝑨,𝑩) C

(15)

Boolean Semantics: presence-absence of molecules A Ù B → C Ù A/¬A Ù B/¬B Asynchronous Transition System

Petri Net Semantics: numbers of molecules A , B → C++, A--, B--

Multiset rewriting CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

Stochastic Semantics: reaction probabilities, time of next reaction in a given state Si

Continuous Time Markov Chain (CTMC) A , B𝒑 𝑺𝒊 , 𝒕(𝑺𝒊) C++, A--, B--

Continuous Semantics: concentrations, continuous evolution

Ordinary Differential Equations (ODE)

𝐴 ̇ = ∑

𝑖 NOPQ

f

𝑟

𝗑 δ

𝑟

(𝐴𝑖)

Semantics of Reactions A+B 𝒇(𝑨,𝑩) C

(16)

Abstraction Relationships

Stochastic traces Petri net traces abstract

concrete

Boolean traces

Theory of abstract Interpretation Abstractions as Galois connections

[Cousot Cousot POPL’77]

Thm. Galois connections between the syntactical, stochastic, Petri Net and Boolean semantics

[FF Soliman CMSB’06,TCS’08]

Reaction sets

ODE traces

(17)

Abstraction Relationships

Stochastic traces Petri net traces abstract

concrete

Boolean traces

Theory of abstract Interpretation Abstractions as Galois connections

[Cousot Cousot POPL’77]

Thm. Galois connections between the syntactical, stochastic, Petri Net and Boolean semantics

[FF Soliman CMSB’06,TCS’08]

Reactions

ODE traces

(18)

Abstraction Relationships

Stochastic traces

ODE traces Petri net traces

abstract

concrete

Boolean traces

Thm. Under large number conditions the ODE semantics approximates

the mean stochastic behavior

[Gillespie 71]

Reactions

(19)

Abstraction Relationships

Stochastic traces

ODE traces Petri net traces

abstract

concrete

Boolean traces

Thm. Under large number conditions the ODE semantics approximates

the mean stochastic behavior

[Gillespie 71]

Reactions

(20)

TD 1: Lotka-Volterra Prey-Predator Model

1. Connect to http://lifeware.inria.fr/biocham4

2. Open examples/MPRI

3. Run the notebook TD1_lotka_volterra.ipynb

4. Change parameters using %slider k1 k2 k3

5. Add immigration and emigration reactions

(21)

Hybrid Models

Stochastic traces

ODE traces Petri net traces

abstract

concrete

Boolean traces

• Hybrid Boolean-continuous models (hybrid automata)

Boolean gene expression + continuous protein activation

• Hybrid stochastic-continuous models (CTMC+ODE)

Stochastic gene expression + continuous protein activation Specification of hybrid simulators

with reactions+events in SBML

[Chiang FF Huang Soliman 13 cmsb]

Reactions

(22)

Hybrid Models

Stochastic traces

ODE traces Petri net traces

abstract

concrete

Boolean traces

• Hybrid Boolean-continuous models (hybrid automata)

Boolean gene expression + continuous protein activation

• Hybrid stochastic-continuous models (CTMC+ODE)

Stochastic gene expression + continuous protein activation Specification of hybrid simulators

with reactions+events in SBML

[Chiang FF Huang Soliman 13 cmsb]

Reactions

(23)

Compiling Real Functions in Reaction Systems

biocham: compile_from_expression(cos,time,cos(t)).

present(cos(t)_p,1).

_=[z_p_2]=>cos(t)_p.

_=[z_m_2]=>cos(t)_m.

_=[cos(t)_m]=>z_p_2.

_=[cos(t)_p]=>z_m_2.

biocham: present(x_p, 4).

biocham: compile_from_expression(cos,x,cos(x)).

present(cos(x)_p, 1).

_=[g_m]=>g_p. _=[g_m+cos(x)_m]=>z_p_4.

_=[x_p]=>g_p. _=[g_p+cos(x)_p]=>z_p_4.

_=[g_p]=>g_m. _=[x_p+cos(x)_m]=>z_p_4.

_=[x_m]=>g_m. _=[x_m+cos(x)_p]=>z_p_4.

_=[g_m+z_p_4]=>cos(x)_p. _=[g_m+cos(x)_p]=>z_m_4.

_=[g_p+z_m_4]=>cos(x)_p. _=[g_p+cos(x)_m]=>z_m_4.

_=[x_m+z_m_4]=>cos(x)_p. _=[x_m+cos(x)_m]=>z_m_4.

_=[x_p+z_p_4]=>cos(x)_p. _=[x_p+cos(x)_p]=>z_m_4.

_=[g_m+z_m_4]=>cos(x)_m. _=[x_p+cos(x)_p]=>z_m_4.

(24)

Roadmap of the Lectures

19 Jan 2017:

Introduction to biochemical programming

Continuous semantics by ordinary differential equations

Chemical master equation and moment closures

Exercises: kinetics of enzymatic reactions 26 Jan 2017:

Hierarchies of model reductions by subgraph epimorphisms

Hierarchy of semantics and types by abstract interpretation

Reaction hypergraph and influence graph

Exercises: analysis of MAPK signaling models 2 Feb 2017:

Specification of qualitative dynamical behaviors in temporal logic CTL

Symbolic model-checking and model reductions preserving CTL properties

Specification of quantitative dynamical behaviors in first-order temporal logic LTL(Rlin)

Exercises: verification and synthesis of cell cycle models 9 Feb 2017:

Parameter search in high dimension with LTL(Rlin) constraints

Robustness of LTL(Rlin) properties

Compiling programs in biochemical reactions

Conclusion on hot research topics

Exercises: designing a biosensor in non-living vesicles

Références

Documents relatifs

Sept patients ont été traités par une combinaison de la technique d’Ilisarov et de péroné libre vascularisé, la consolidation a été atteinte dans tous les cas,

une solution possible avec de plus faibles pertes et des.. permet de réduire les pertes diélectriques dans la deuxième couche ruban .étalaiqu. Par rapport aux avantages déj à.

Dans le but de tester l’algorithme et le modèle de simulation, les itinéraires du Chapitre 7.2 sont utilisés et analysés en détail. Dans ces tests, la position, la vitesse

2)) L L''iin nd diiccaatteeu urr m meen nssu ueell d dee ll''eem mp pllo oii iin nttéérriim maaiirree een n ffiin n d dee m mo oiiss est élaboré par la Dares à partir

In a gen- eral two-dimensional birth and death discrete model, we prove that under specific assumptions and scaling (that are characteristics of the mRNA- protein system) an

Obwohl nicht in allen analysierten Studien eine adäquate Verblindung stattgefunden hat, geht die Autorin davon aus, dass die Untersuchungsgruppen abgese- hen von

ruminantium proteins encoded by the map1 multigene family, expressed in vitro in 31.. bovine endothelial and tick

In this paper, we review the development over the last decade of the biochemical abstract machine (Biocham) software environment for modeling cell biology molecular reaction