• Aucun résultat trouvé

PART I: Supersymmetry

N/A
N/A
Protected

Academic year: 2022

Partager "PART I: Supersymmetry"

Copied!
3
0
0

Texte intégral

(1)

M2R PSA 10 f´evrier 2011, dur´ee 3h00 Physics beyond the standard model

All documents allowed

PART I: Supersymmetry

Formulae:

Space-time metric:

• ηµν = diag[1,−1,−1,−1]

In the Weyl representation:

γµ =

0 (σµ)αα. (¯σµ)αα. 0

, γ5 = δαβ 0 0 δα..

β

! , 1

µν = i(σµν)αβ 0 0 i(¯σµν)α..

β

!

with

µ)αα. = (I2, ~σ), (¯σµ)αα. = (I2,−~σ) where ~σ = (σ1, σ2, σ3) are the Pauil matrices. Furthermore,

µν)αβ = 1

4(σµσ¯ν−σνσ¯µ), (¯σµν)α..

β = 1

4(¯σµσν −σ¯νσµ).

Some spinor relations:

• χψ :=χαψα =ψχ, ¯χψ¯:= ¯χα.ψ¯α. = ¯ψχ, (χψ)¯ χ= ¯ψχ¯

• χσµψ¯:=χασµαα.ψ¯α., ¯χ¯σµψ := ¯χα.σ¯µαα. ψα

• (χσµψ)¯ =ψσµχ¯

• χσµψ¯=−ψ¯σ¯µχ

• χσµνψ =−ψσµνχ, ¯χ¯σµνψ¯=−ψ¯σ¯µνχ¯

• (χσµνψ) = ¯χ¯σµνψ¯

(2)

Problem 1: Variations on the SUSY algebra

a) Write down the (N = 1) SUSY algebra in terms of the 10 bosonic generators of the Poincar´e group (Pµ, Jµν) and the 4 fermionic generators (Qα, and ¯Qα.). Here Qα (α= 1,2), and ¯Qα.. =1,. 2) are 2-component Weyl spinors transforming according to. the (1/2,0) and (0,1/2)-representations of the Lorentz group, respectively.

b) In 4-component notation we define the Majorana spinor QM,a (a= 1,2,1,. 2):. QM =

Qαα.

.

Show that the Dirac-adjoint spinor is given by ¯QM = (Qβ,Q¯β.).

c) Show that

[Pµ, QM] = 0, [Jµν, QM] = −1

2 Σµν QM, {QM,Q¯M} = 2γµPµ

with γµ and Σµν := 4iµ, γν] in the Weyl representation.

Hint: Consider {QM,a,Q¯M,b} for fixed a, b= 1,2,1,. 2..

d) The SUSY algebra can be expressed entirely in terms of commutators with the help of anti-commuting parameters ξα, ¯ξα. and ηα, ¯ηα.:

α, ξβ}={ξα, Qβ}=. . .= [Pµ, ξα] = 0. Evaluate the following commutators using the algebra in a):

(i) [Pµ, ξQ] = [Pµ,ξ¯Q]¯ (ii) [Jµν, ξQ], [Jµν,ξ¯Q]¯ (iii) [ξQ, ηQ] = [ ¯ξQ,¯ η¯Q]¯ (iv) [ξQ,η¯Q]¯

where we use the summation convention ξQ :=ξαQα, ¯ξQ¯ := ¯ξα.α..

Please turn page

(3)

Problem 2: A supersymmetric Lagrangian

a) Write down the Wess-Zumino Lagrangian for massless (m = 0) and non-interacting (g = 0) fields A and ψ

b) In this case (m= 0, g = 0) the SUSY transformations are given by δξA = √

2 ξψ , δξψ = −i√

2 σµξ ∂¯ µA

Here, we use again the summation convention and free indices αhave been suppressed.

Write down the transformation rules for the conjugate fields which can be obtained by hermitian conjugation:

(i) δξA = (δξA)=. . . (ii) δξψ¯= (δξψ)=. . . c) Show that

√1 2δξ

(∂µA)(∂µA)

=−ξ¯ψ¯A−ξψ A+∂µK1µ with :=∂µµ. Specify K1µ.

d) Show that

√1 2δξ

iψ¯σ¯µµψ

= ¯ξψ¯A+ξψ A+∂µK2µ Specify K2µ.

Hint: σµσ¯νµν+ 2σµν , ¯σµσνµν + 2¯σµν and σµν =−σνµ, ¯σµν =−¯σνµ. e) Conclude that the action is invariant under this symmetry: δξS = 0.

Références

Documents relatifs

Un titrage est un dosage pour lequel la détermination de la concentration utilise une transformation chimique entre deux solutions, l’une dont la concentration est

Keywords : component compatibility, component interfaces, software architecture, component-based software, Petri nets, deadlock detection..

[r]

Pour le dernier sommet, il faut d´ eterminer l’intersection de (OB) et (EF ) puis d´ eterminer l’´ equation param´ etrique de la droite parall` ele ` a (OS) et qui passe par

Classic stochastic gradient methods [Karimi et al., 2016]: O(1/k) without strong-convexity using basic method.. Coordinate descent methods [Karimi et

Summary VR stochastic methods for nonconvex problems Surprises for proximal setup Nonconvex problems on manifolds Large-scale: parallel + sparse data Large-scale: distributed;

The Seoul meeting in 1987 finalized the standard nomenclature of the eight extra meridians, developed the standard nomenclature of selected auricular points, acupuncture

Although the 2021 version of the Clinical Component will be delivered virtually, CAPR has taken the necessary steps to ensure that the exam will remain a valid method of