• Aucun résultat trouvé

part 2

N/A
N/A
Protected

Academic year: 2022

Partager "part 2"

Copied!
46
0
0

Texte intégral

(1)Stochastic optimization: Beyond stochastic gradients and convexity Part 2 SUVRIT SRA Laboratory for Information & Decision Systems (LIDS). Massachusetts Institute of Technology. Acknowledgments: Sashank Reddi (CMU). Joint tutorial with: Francis Bach, INRIA; ENS. NIPS 2016, Barcelona. ml.mit.edu.

(2) Outline 1. Introduction / motivation – Strongly convex, convex, saddle point. 2. Convex finite-sum problems 3. Nonconvex finite-sum problems – Basics, background, difficulty of nonconvex – nonconvex SVRG, SAGA – Linear convergence rates for nonconvex – Proximal surprises – Handling nonlinear manifolds (orthogonality, positivity, etc.). 4. Large-scale problems – Data sparse parallel methods – Distributed settings (high level). 5. Perspectives 2 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(3) Nonconvex finite-sum problems min. ✓2Rd. n X 1 ` yi , DN N (xi , ✓) n i=1. + ⌦(✓). x1 x2. …. …. …. F (x; ✓). xd. ≈. 3 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(4) Nonconvex finite-sum problems min. ✓2Rd. Related work –. Original SGD paper. n X 1 g(✓) = fi (✓) n i=1. (Robbins, Monro 1951). (asymptotic convergence; no rates) –. SGD with scaled gradients ( ✓t. ⌘t Ht rf (✓t ) ) + other tricks:. space dilation, (Shor, 1972); variable metric SGD (Uryasev 1988); AdaGrad (Duchi, Hazan, Singer, 2012); Adam (Kingma, Ba, 2015), and many others… (typically asymptotic convergence for nonconvex) –. Large number of other ideas, often for step-size tuning, initialization (see e.g., blog post: by S. Ruder on gradient descent algorithms). Our focus: going beyond SGD (theoretically; ultimately in practice too) 4 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(5) Nonconvex finite-sum problems min. ✓2Rd. Related work (subset) –. (Solodov, 1997). n X 1 g(✓) = fi (✓) n i=1. Incremental gradient, smooth nonconvex (asymptotic convergence; no rates proved). –. (Bertsekas,Tsitsiklis, 2000). Gradient descent with errors; incremental (see §2.4, Nonlinear Programming; no rates proved). –. (Sra, 2012). Incremental nonconvex non-smooth (asymptotic convergence only). –. (Ghadimi, Lan, 2013). SGD for nonconvex stochastic opt. (first non-asymptotic rates to stationarity). –. (Ghadimi et al., 2013). SGD for nonconvex non-smooth stoch. opt. (non-asymptotic rates, but key limitations) 5. Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(6) Difficulty of nonconvex optimization 3 2 1 0. So,-2 try to see how fast we can satisfy this necessary condition -3 -1. -4 -6. -4. -2. 0. 2. 4. 6. Difficult to optimize, but. rg(✓) = 0 Suvrit Sra (ml.mit.edu). necessary condition – local minima, maxima, saddle points satisfy it.. Beyond stochastic gradients and convexity: Part 2. 6.

(7) Measuring efficiency of nonconvex opt. E[g(✓t ). Convex: Nonconvex: (Nesterov 2003, Chap 1); (Ghadimi, Lan, 2012). ⇤. (optimality gap). 2. (stationarity gap). g ]✏. E[krg(✓t )k ]  ✏. Incremental First-order Oracle (IFO). (x, i). (Agarwal, Bottou, 2014) (see also: Nemirovski, Yudin, 1983). (fi (x), rfi (x)). Measure: #IFO calls to attain 𝜖 accuracy 7 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(8) IFO Example: SGD vs GD (nonconvex) min. ✓2Rd. ✓t+1. SGD = ✓t ⌘rfit (✓t ). ‣ O(1). IFO calls per iter ‣ O(1/𝜖2) iterations ‣ Total: O(1/𝜖2) IFO calls ‣ independent. of n. n X 1 g(✓) = fi (✓) n i=1. ?. ✓t+1 = xt. GD ⌘rg(✓t ). ‣ O(n) IFO calls per ‣ O(1/𝜖) iterations. liter. Total: O(n/𝜖) IFO calls ‣ depends strongly on n ‣. (Ghadimi, Lan, 2013,2014). (Nesterov, 2003; Nesterov 2012) assuming Lipschitz gradients. E[krg(✓t )k2 ]  ✏ Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2. 8.

(9) Nonconvex finite-sum problems min. ✓2Rd. ✓t+1. SGD = ✓t ⌘rfit (✓t ). n X 1 g(✓) = fi (✓) n i=1. ✓t+1 = xt. GD ⌘rg(✓t ). Do these benefits extend SAG, SVRG, SAGA, et al. to nonconvex finite-sums? Analysis depends heavily on convexity (especially for controlling variance). 9 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(10) SVRG/SAGA work again! (with new analysis). 10 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(11) Nonconvex SVRG for s=0 to S-1 s+1 s ✓0 ✓m ✓˜s ✓s m. for t=0 to m-1 Uniformly randomly pick i(t) 2 {1, . . . , n} n s+1 ✓t+1 = ✓ts+1. end end. h. ⌘t rfi(t) (✓ts+1 ). i X 1 rfi(t) (✓˜s ) + rfi (✓˜s ) n i=1. The same algorithm as usual SVRG (Johnson, Zhang, 2013) 11 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(12) Nonconvex SVRG for s=0 to S-1 s+1 s ✓0 ✓m ✓˜s ✓s m. for t=0 to m-1 Uniformly randomly pick i(t) 2 {1, . . . , n} n s+1 ✓t+1 = ✓ts+1. end end. h. ⌘t rfi(t) (✓ts+1 ). i X 1 rfi(t) (✓˜s ) + rfi (✓˜s ) n i=1. 12 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(13) Nonconvex SVRG for s=0 to S-1 s+1 s ✓0 ✓m ✓˜s ✓s m. for t=0 to m-1 Uniformly randomly pick i(t) 2 {1, . . . , n} n s+1 ✓t+1 = ✓ts+1. end end. h. ⌘t rfi(t) (✓ts+1 ). i X 1 rfi(t) (✓˜s ) + rfi (✓˜s ) n i=1. 13 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(14) Nonconvex SVRG for s=0 to S-1 s+1 s ✓0 ✓m ✓˜s ✓s m. for t=0 to m-1 Uniformly randomly pick i(t) 2 {1, . . . , n} n s+1 ✓t+1 = ✓ts+1. end end. h. ⌘t rfi(t) (✓ts+1 ). i X 1 rfi(t) (✓˜s ) + rfi (✓˜s ) n i=1. 14 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(15) Nonconvex SVRG for s=0 to S-1 s+1 s ✓0 ✓m ✓˜s ✓s m. for t=0 to m-1 Uniformly randomly pick i(t) 2 {1, . . . n, n} s+1 ✓t+1 = ✓ts+1. end end. h. i X 1 ⌘t rfi(t) (✓ts+1 ) rfi(t) (✓˜s ) + rfi (✓˜s ) n i=1. 15 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(16) Nonconvex SVRG for s=0 to S-1 s+1 s ✓0 ✓m ✓˜s ✓s m. for t=0 to m-1 Uniformly randomly pick i(t) 2 {1, . . . n, n} s+1 ✓t+1 = ✓ts+1. end end. h. i X 1 ⌘t rfi(t) (✓ts+1 ) rfi(t) (✓˜s ) + rfi (✓˜s ) n i=1. |. {z t. E[. t]. =0. }. 16 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(17) Nonconvex SVRG for s=0 to S-1 s+1 s ✓0 ✓m ✓˜s ✓s m. for t=0 to m-1 Uniformly randomly pick i(t) 2 {1, . . . n, n} s+1 ✓t+1 = ✓ts+1. end end. h. i X 1 ⌘t rfi(t) (✓ts+1 ) rfi(t) (✓˜s ) + rfi (✓˜s ) n i=1 |. {z. }. Full gradient, computed once every epoch 17 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(18) Nonconvex SVRG for s=0 to S-1 s+1 s ✓0 ✓m ✓˜s ✓s. Key quantities that determine how the method operates. m. for t=0 to m-1 Uniformly randomly pick i(t) 2 {1, . . . n, n} s+1 ✓t+1 = ✓ts+1. end end. h. i X 1 ⌘t rfi(t) (✓ts+1 ) rfi(t) (✓˜s ) + rfi (✓˜s ) n i=1 |. {z. }. Full gradient, computed once every epoch 18 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(19) Key ideas for analysis of nc-SVRG Previous SVRG proofs rely on convexity to control variance New proof technique – quite general; extends to SAGA, to several other finite-sum nonconvex settings! Larger step-size ➥ smaller inner loop (full-gradient computation dominates epoch). Smaller step-size ➥ slower convergence (longer inner loop) (Carefully) trading-off #inner-loop iterations m with step-size η leads to lower #IFO calls! (Reddi, Hefny, Sra, Poczos, Smola, 2016; Allen-Zhu, Hazan, 2016) Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2. 19.

(20) Faster nonconvex optimization via VR (Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016) Algorithm. Nonconvex (Lipschitz smooth). SGD. O. GD. O. SVRG SAGA MSVRG. 1 ✏2 n ✏. O n+. n2/3 ✏. O n+. n2/3 ✏. ⇣. O min. ⇣. 2/3. 1 n ✏2 , ✏. Remarks. ⌘⌘. E[krg(✓t )k2 ]  ✏. New results for convex case too; additional nonconvex results For related results, see also (Allen-Zhu, Hazan, 2016) 20 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(21) Linear rates for nonconvex problems min. ✓2Rd. n X 1 g(✓) = fi (✓) n i=1. The Polyak-Łojasiewicz (PL) class of functions g(✓). 1 g(✓ )  krg(✓)k2 2µ ⇤. (Polyak, 1963); (Łojasiewicz, 1963). μ-strongly convex. Examples:. PL holds. Stochastic PCA, some large-scale eigenvector problems. (More general than many other “restricted” strong convexity uses) (Karimi, Nutini, Schmidt, 2016) (Attouch, Bolte, 2009) (Bertsekas, 2016) Suvrit Sra (ml.mit.edu). proximal extensions; references more general Kurdya-Łojasiewicz class textbook, more “growth conditions” 21. Beyond stochastic gradients and convexity: Part 2.

(22) Linear rates for nonconvex problems g(✓). 1 g(✓ )  krg(✓)k2 2µ. Algorithm. Nonconvex. O. SGD. O. GD SVRG SAGA MSVRG. O n+ O n+ ⇣. O min. 1 ✏2. O. O ⇣. 2/3. ✏ n2/3 ✏ 1 ✏2. g ]✏. Nonconvex-PL. 1 ✏2 n ✏ n. ⇤. E[g(✓t ). ⇤. 2/3. , n✏. ⌘. ⇣. n 2µ. O (n + ⇣ O (n +. log. 1 ✏. ⌘. n2/3 1 ) log 2µ ✏ n2/3 1 ) log 2µ ✏. ––. ⌘. ⌘. Variant of nc-SVRG attains this fast convergence! (Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016) 22 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(23) Empirical results. CIFAR10 dataset; 2-layer NN 23 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(24) 2 )k f(✓ kr t. Empirical results. CIFAR10 dataset; 2-layer NN 24 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(25) Empirical results. CIFAR10 dataset; 2-layer NN 25 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(26) krf(✓t )k2. Empirical results. CIFAR10 dataset; 2-layer NN. 26 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(27) Non-smooth surprises! min. ✓2Rd. 1 n. n X. fi (✓) + ⌦(✓). i=1. Regularizer, e.g., k · k1 for enforcing sparsity of weights (in a neural net, or more generally); or an indicator function of a constraint set, etc. 27 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(28) Nonconvex composite objective problems min. ✓2Rd. |. n X 1 fi (✓) + ⌦(✓) n i=1. {z. nonconvex. }. convex. ✓t+1 = prox t ⌦ (✓t ⌘t rfit (✓t )) Prox-SGD 1not known!* Prox-SGD convergence prox ⌦ (v) := argminu ku vk2 + ⌦(u) 2. prox: soft-thresholding for k · k1 ; projection for indicator function – Partial results: (Ghadimi, Lan, Zhang, 2014) (using growing minibatches, shrinking step sizes) * Except in special cases (where even rates may be available) 28 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(29) Nonconvex composite objective problems min. ✓2Rd. |. n X 1 fi (✓) + ⌦(✓) n i=1. {z. nonconvex. }. convex. Once again variance reduction to the rescue? Prox-SVRG/SAGA converge* and that too faster than both SGD and GD! The same * some care needed Suvrit Sra (ml.mit.edu). ⇣. O n+. n. 2/3. ✏. ⌘. once again! (Reddi, Sra, Poczos, Smola, 2016). Beyond stochastic gradients and convexity: Part 2. 29.

(30) Empirical results: NN-PCA. 10. 1 > SGD min w 2 kwk1,SAGA w 0 10. -5. 10. -10. 10. -15. SVRG. f (x) ! f (^ x). f (x) ! f (^ x). covtype (581012,54). 5. 10. 15. 20. n X. -5. xi x> i. i=1. -15. 0. 5. 10. 15. # grad/n. # grad/n. y-axis denotes distance f (✓). SGD SAGA SVRG. w. 10 -10. 10. 0. rcv1 (677399, 47236) !. ˆ to an approximate optimum f (✓). Eigenvecs via SGD: (Oja, Karhunen 1985); via SVRG (Shamir, 2015,2016); (Garber, Hazan, Jin, Kakade, Musco, Netrapalli, Sidford, 2016); and many more! Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2. 30.

(31) Finite-sum problems with nonconvex g(θ) and params θ lying on a known manifold min. ✓2M. 1 g(✓) = n. n X. fi (✓). i=1. Example: eigenvector problems (the ||θ||=1 constraint) problems with orthogonality constraints low-rank matrices positive definite matrices / covariances 31 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(32) Nonconvex optimization on manifolds (Zhang, Reddi, Sra, 2016). min. ✓2M. Related work – – – – –. n X 1 g(✓) = fi (✓) n i=1. (Udriste, 1994) batch methods; textbook (Edelman, Smith, Arias, 1999) classic paper; orthogonality constraints (Absil, Mahony, Sepulchre, 2009) textbook; convergence analysis (Boumal, 2014) phd thesis, algos, theory, examples (Mishra, 2014) phd thesis, algos, theory, examples. – manopt – (Bonnabel, 2013). – and many more!. excellent matlab toolbox Riemannnian SGD, asymptotic convg.. Exploiting manifold structure yields speedups 32 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(33) Example: Gaussian Mixture Model pmix (x) :=. K X. k=1. Likelihood. ⇡k pN (x; ⌃k , µk ). max. Y. i. pmix (xi ). Numerical challenge: positive definite constraint on Σk. Riemannian (new). EM Algo. TX X. ⇠X. Sd+. [Hosseini, Sra, 2015] Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2. Cholesky T. LL. 33.

(34) Careful use of manifold geometry helps! K. EM. R-LBFGS. 2. 17s ⫽ 29.28. 14s ⫽ 29.28. 5. 202s ⫽ 32.07. 117s ⫽ 32.07. 10. 2159s ⫽ 33.05. 658s ⫽ 33.06. Riemannian-LBFGS (careful impl.) github.com/utvisionlab/mixest Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2. images dataset d=35, n=200,000 34.

(35) Careful use of manifold geometry helps! 10. 15. 20. 25 30 Iterations. 35. 40. 45. 50. 5. 0. 5. 10. 15. 20. 25 30 Iterations. 35. 101 SGD (⌘=1, T=100) EM, Original MVN LBFGS, Reformulated MVN CG, Reformulated MVN. Averaged log-likelihood Di↵erence. 100. 10. 1. 10. 2. 10. 3. 10. 4. 10. 5. 0. 5. 10. 15. 20. 25 30 Iterations. 35. 40. 45. 50. Riemannian-SGD for GMMs (multi-epoch) t ALL minus current ALL values with number of function and gradie. : ‘magic telescope’ (K = 5, d = 10). Middle: ‘year predict’ (K 35= 6, ral images (K = 10, d = 35). Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(36) Summary of nonconvex VR methods. ‣ ‣ ‣. ‣ ‣. nc-SVRG/SAGA use fewer #IFO calls than SGD & GD Work well in practice Easier (than SGD) to use and tune: can use constant step-sizes Proximal extension holds a few surprises SGD and SVRG extend to Riemannian manifolds too. 36 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(37) Large-scale optimization min. ✓2Rd. 1 g(✓) = n. n X. fi (✓). i=1. 37 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(38) Simplest setting: using mini-batches Idea: Use ‘b’ stochastic gradients / IFO calls per iteration useful in parallel and distributed settings increases parallelism, reduces communication ⌘t X rfj (✓t ) SGD ✓t+1 = ✓t |It | j2It. p For batch size b, SGD takes a factor 1/ b fewer iterations (Dekel, Gilad-Bachrach, Shamir, Xiao, 2012). For batch size b, SVRG takes a factor 1/b fewer iterations. Theoretical linear speedup with parallelism see also S2GD (convex case): (Konečný, Liu,Richtárik,Takáč, 2015) Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2. 38.

(39) Asynchronous stochastic algorithms SGD. ✓t+1 = ✓t. ⌘t X rfj (✓t ) |It | j2It. ‣ Inherently sequential algorithm ‣ Slow-downs in parallel/dist settings (synchronization) Classic results in asynchronous optimization: (Bertsekas,Tsitsiklis, 1987) ➡ ➡. Asynchronous SGD implementation (HogWild!) Avoids need to sync, operates in a “lock-free” manner Key assumption: sparse data (often true in ML). but It is still SGD, thus has slow sublinear convergence even for strongly convex functions 39 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(40) Asynchronous algorithms: parallel Does variance reduction work with asynchrony?. Yes!. ASVRG (Reddi, Hefny, Sra, Poczos, Smola, 2015) ASAGA (Leblond, Pedregosa, Lacoste-Julien, 2016) Perturbed iterate analysis (Mania et al, 2016) – a few subtleties involved – some gaps between theory and practice – more complex than async-SGD. Bottomline: on sparse data, can get almost linear speedup due to parallelism (π machines lead to ~ π speedup) 40 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(41) Asynchronous algorithms: distributed common parameter server architecture (Li, Andersen, Smola,Yu, 2014) Classic ref: (Bertsekas,Tsitsiklis, 1987). D-SGD:. – workers compute (stochastic) gradients – server computes parameter update – widely used (centralized) design choice – can have quite high communication cost. Asynchrony via: servers use delayed / stale gradients from workers (Nedic, Bertsekas, Borkar, 2000; Agarwal, Duchi 2011) and many others (Shamir, Srebro 2014) – nice overview of distributed stochastic optimization41 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(42) Asynchronous algorithms: distributed To reduce communication, following idea is useful: Data. Workers. D1. D2. W1. W2. Servers. S1. Dm. …. …. Worker nodes solve compute intensive subproblems. Wm. Sk. Servers perform simple aggregation (eg. full-gradients for distributed SVRG). DANE (Shamir, Srebro, Zhang, 2013): distributed Newton, view as having an SVRG-like gradient correction Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2. 42.

(43) Asynchronous algorithms: distributed Key point: Use SVRG (or related fast method) to solve suitable subproblems at workers; reduce #rounds of communication; (or just do D-SVRG). Some related work (Lee, Lin, Ma,Yang, 2015). (Ma, Smith, Jaggi, Jordan, Richtárik,Takáč, 2015). (Shamir, 2016). D-SVRG, and accelerated version for some special cases (applies in smaller condition number regime) CoCoA+: (updates m local dual variables using m local data points; any local opt. method can be used); higher runtime+comm. D-SVRG via cool application of without replacement SVRG! regularized least-squares problems only for now. Several more: DANE, DISCO, AIDE, etc. Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2. 43.

(44) Summary VR stochastic methods for nonconvex problems Surprises for proximal setup Nonconvex problems on manifolds Large-scale: parallel + sparse data Large-scale: distributed; SVRG benefits, limitations. If there is a finite-sum structure, can use VR ideas!. 44 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(45) Perspectives: did not cover these! Stochastic quasi-convex optim. (Hazan, Levy, Shalev-Shwartz, 2015) Nonlinear eigenvalue-type problems (Belkin, Rademacher,Voss, 2016) Frank-Wolfe + SVRG: (Reddi, Sra, Poczos, Smola,2016) Newton-type methods: (Carmon, Duchi, Hinder, Sidford, 2016); (Agarwal, Allen-Zhu, Bullins, Hazan, Ma, 2016);. many more, including robust optimization, infinite dimensional nonconvex problems geodesic-convexity for global optimality polynomial optimization many more… it’s a rich field! 45 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(46) Perspectives Impact of non-convexity on generalization Non-separable problems (e.g., minimize AUC); saddle point problems (Balamurugan, Bach 2016) Convergence theory, local and global Lower-bounds for nonconvex finite-sums Distributed algorithms (theory and implementations) New applications (e.g., of Riemannian optimization) Search for other more “tractable” nonconvex models Specialization to deep networks, software toolkits 46 Suvrit Sra (ml.mit.edu). Beyond stochastic gradients and convexity: Part 2.

(47)

Références

Documents relatifs

We are interested in a framework of online learning with kernels for low-dimensional but large-scale and potentially adversarial datasets. We study the computational and

The essential idea underlying the proposed approach is to decompose the original nonconvex stochastic problem into a sequence of (simpler) deterministic subproblems. In this case,

In South Africa, however, at Sterkfontein 5, and in the member 2 of Swartkrans, several upper cheek teeth match the small teeth of Melka Kunture in size and protocone length..

In our case study, the ParkingAvailability context declares that data must be gathered from presence sensors in a 10- minute time window according to a periodic delivery model

MM5 model could be partly explained by the discrepancies in the used ice sheet mask i.e. in the classification of ice/land/ocean land surface type. Along the south-eastern coast,

1 B and C presents the voltage dependence of the mean values for peak amplitude of the Ca 2+ release flux and for its time to peak, respectively, in WT (n = 20) and

European colonial"opening of the Orient" and Jerusalem's unique religious status that new interest began to focus upon the Holy City. This is the major reason why, toward

Abstract. We investigate the large-time behavior of three types of initial-boundary value problems for Hamilton-Jacobi Equations with nonconvex Hamiltonians. We consider the Neumann