• Aucun résultat trouvé

Vertical distribution of solid flux in a snow-wind flow

N/A
N/A
Protected

Academic year: 2021

Partager "Vertical distribution of solid flux in a snow-wind flow"

Copied!
17
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1961

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331628

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Vertical distribution of solid flux in a snow-wind flow Dyunin, A. K.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=b98c0bf1-e9c4-41f8-8315-52ae63f60910 https://publications-cnrc.canada.ca/fra/voir/objet/?id=b98c0bf1-e9c4-41f8-8315-52ae63f60910

(2)

S n o w d r i f t s can be a major s o u r c e of d i s r u p t i o n i n t h e opera.tl.on of t r a n s p o r t a t i o n s e r v i c e s and a g e n e r a l n u i s a ~ z c e i n t h e ' normal w i n t e r t i m e a c t i v i t y of a community. Such d r i f t s a r e formed whenever a wind, s t r o n g en.oug2.1 t o t r a n s p o r t h o r i z o n t a l l y a s i g - n i f i c a n t amount of snow, e n c o u n t e r s a n o b s t a c l e

which f o r c e s it t o d e p o s i t some of t h i s ' snow. The u s u a l approach talcen i n d e f e n d i n g a n a r e a o r s t r u c - t u r e a.gain.st; s n o w d r i f t i n g has been t o l o c a t e t h e s t r a u c t u r e p r o p e r l y s o t h a t t h e d r i f t problem w i l l be a minimum and t o e r e c t o b s t a c l e s , s u c h as snow- f e n c e s , t o c o r l t r o l where t h e snow w i l l be d e p o s i t e d . The approach t a k e n i n t h e development of t h e s e d e -

f e n c e s h a s been l a r g e l y e m p i r i c a l . ~ t t e n t i o n ' h a s been d i r e c t e d p r i m a r i l y t o t h e c h a r a c t e r of t h e a i r flow w i t h l i t t l e a t t e n t l o n b e i n g g i v e n t o t h e ma- t e r i a l t r a n s p o r t e d . I n some , c i r c u m s t a n c e s , i t would be a n a d v a n t a g e t o have a more complete d e f e n c e a - g a i n s t s n o w d r i f t i n g t h a n i s now a v a i l a b l e . I n t h e i r a t t e m p t s t o d e v e l o p t h i s d e f e n c e , e n g i n e e r s a r e g i v - i n g more c o n s i d e r a t i o n t o t h e t h e o r e t i c a l a s p e c t s of t h e problem and i n p a r t i c u l a r t o t h e r e l a t i o n - s h i p s between t h e a i r flow and t h e snow b e i n g t r a n s - p o r t e d

.

I t i s one of t h e r e s p o n s i b i l i t i e s of t h e Snow and I c e S e c t i o n o f t h e D i v i s i o n of B u i l d i n g R e s e a r c h t o c o l l e c t and make a v a i l a b l e i n f o r m a t i o n r e q u i r e d f o r t h e s o l u t i o n of snow and i c e problems e n c o u n t e r - ed i n e n g i n e e r i n g p r a c t i c e . T h i s r e p o r t g i v e s t h e - o r e t i c a l c a l c u l a t i o n s and e x p e r i m e n t a l o b s e r v a t i o n s on t h e t r a n s p o r t of snow by wind. S t p r e s e n t s f o r - mulae g i v i n g t h e dependence on wind speed and h e i g h t above ground of t h e amount of' snow moved i n a g i v e n t i m e . T h i s i s t h e second Iiussian p a p e r on t h i s sub-

J e c t t h a t h a s been p u b l i s h e d i n t h e N a t i o n a l Research Council t r a n s l a t i o n s e r i e s . The f i r s t p a p e r , a l s o by A . K . Dyunin, i s e n t i t l e d "Fundamentals of t h e Theory of Snowdraifting" (NRC T e c h n i c a l T r a n s l a t i o n

952)

.

The paper was t r a n s l a t e d by M r . G . Belkov of t h e T r a n s l - a t i o n S e c t i o n of t h e N a t i o n a l R e s e a r c h C o u n c i l L i b r a r y , t o whom t h e D i v i s i o n of B u i l d i n g Research w i s h e s t o r c c o r d i t s t h a n k s .

Ottawa,

(3)

Title:

Author:

Reference :

Translator:

NATIONAL FU33EAHCH COUNCIL OF CANADA

Technical Translation

999

Vertical distribution of solid flux In a snow-wind flow

(0 raspredelenii raskhoda snegovetrovogo potoka po vysote)

A.K. Dyunin

Trudy Transportno-Energeticheskogo Instltuta,

(4):

49-58, 1954

(4)

VERllICAL DISTRIHUTION 01' SOLID ITLUX I N A SNOW-WIND FLOW I n t h i s p a p e r a n a t t e m p t i s made t o a n a l y z e t h e o r e t i c a l l y t h e d i s t r i b u t i o n w i t h h e i g h t of t h e s o l i d f l u x i n a snow-wind f l o w . The a n a l y t i c a l r e s u l t s a r e compared w i t h f i e l d o b s e r v a t i o n s . The g e n e r a l e x p r e s s i o n f o r t h e s o l i d f l u x of a snow-wind f l o w q* a t a c e r t a i n h e i g h t above t h e s u r f a c e y h a s t h e form

where p i s t h e weight of snow c o n t a i n e d i n a u n i t volume of a i r Y a t h e i g h t y , i n g/m

,

7 i s t h e a v e r a g e t r a n s l a t i o n a l v e l o c i t y of snow p a r t i c l e s

Y

i n m/sec. L e t u s d e f i n e t h e v a l u e of p

.

Y

It h a s been e x p e r i m e n t a l l y proven t h a t r i v e r s i l t and a l s o s a n d , d u s t and snow i n moving a i r

(1'3'6)

a r e r a i s e d i n t h e form

I1

of c l o u d s " . The " c l o u d " of p a r t i c l e s i s c a s t up by s u r f a c e e d d i e s and p e n e t r a t e s i n t o t h e mean f l o w .

The d i m e n s i o n s 1 of t h e s e p e n e t r a t i n g masses i n c r e a s e i n a p - p r o x i m a t e p r o p o r t i o n t o t h e h e i g h t y which i s confirmed by t h e ob- s e r v a t i o n s of P r o f . A . Y a . M i l o v i c h ( I , page

33),

i . e . we have t h e f o l l o w i n g dependence where a and f3 a r e c o n s t a n t p a r a m e t e r s . Assume t h e p e n e t r a t i n g rnasses ( " c l o u d s " ) t o be c y l i n d e r s w i t h a c r o s s - s e c t i o n a l a r e a of a 12 ( s e e F i g . 1) and c o n s i d e r a p l a n e

*

I n r a i l t r a n s ~ o r t l i t e r a t u r e t h e s o l i d f l u x of a snow-wind f l o w i s f r e q u e n t l y - c a l l e d " i n t e n s l t y of snow t r a n s f e r " and i s meas- u r e d i n g/crn ml.n.

(5)

s e c t i o n .

Let p be t h e weight of snow p a r t i c l e s i n a u n i t of volume of t h e p e n e t r a t i n g mass ( a t t h e h e i g h t of i t s c e n t r e of g r a v i t y y ) .

Then t h e t o t a l welght of p a r t i c l e s p e r u n i t of c y l i n d e r l e n g t h

When t h e h e i g h t i s i n c r e a s e d by Oy, we have

N e g l e c t i n g t h e s m a l l components of h i g h e r o r d e r we g e t

F),+dy

=

a p y f 3 - 1 - 2 a I p y - A / T a 1 2 . Ap.

Assuming t h a t t h e f l u i d ( a i r ) o u t s i d e t h e p e n e t r a t i n g cloud has a n e g l i g i b l e q u a n t i t y of i m p u r i t i e s , we f i n d t h a t t h e t o t a l weight of p a r t i c l e s i n t h e "cloud" does n o t change, i . e .

~ u - p y + ~ ,

from which one can immediately o b t a i n

2a lp, . A I -- - a i s . A p .

P a s s i n g t o t h e l i m i t when O ~ - * O , we g e t t h e d i f f e r e n t i a l e q u a t i o n

But a c c o r d i n g t o t h e f o r e g o i n g 1 = ay f B and d l = ady,. Consequent-

I n t e g r a t i n g we g e t

Let = c , where c i s a l i n e a r magnitude. To d e f i n e t h e a r b i - t r a r y c o n s t a n t co we s t a t e t h e boundary c o n d i t i o n s ; Py = Po when y = O . Then

(6)

This forainula was derlived by V .N. Goncharov (reference (1)

,

page 194). Hcrc 1% is given In

a

:;ornewhat altered and simplified f orrn

.

The same author also derived the following phenomenalogical formula for determining v (reference (l), page 160).

Y

Let a particle move at the velocity of v at the height y

Y

where the rate of flow is v

.

The aerodynamic forces F acting on Y'

the particle, as was shown theoretically by S.A. Chaplygin

( 5 )

and experimentally confirmed by A.I. Losievskii ( 2 )

,

depend on the square

2

of the relative velocity (V

-

vy)

.

Y'

where a , is a constant coefficient for the given particles and fluid

.

If the mass of particles is equal to m, then according to the impulse theory ~ d t . - - m.dv,,, Expressing F by

(3)

we get - . After integration 1

+'?

n, S \ I y - v '- -Y' I+-!'!! a, c

where s = v t, c' is an integration constant. We assume that

Y'

during the period of time t there will be no change in the flow direction. In a quasi steady state turbulent flow the averaged magnitude

s

=

v

t can be considered constant.

Y'

Then

vy = T "YI

where c'rn/a,.s

I --I-

-

(7)

For t h e d c f l n i t i o n of' v w e u s e t h e logarithmic formula of P r o f .

Y

S . A . Sapozhnllcova ( r e f e r e n c e ( 4 ) , page 7 2 ) :

( 5 )

where

v,

-

t h e average v e l o c i t y a t u n i t h e i g h t above t h e ground ( f o r example 1 m e t r e ) ,

6

-

a l i n e a r c h a r a c t e r i s t i c of t h e roughness of t h e s u r f a c e . Consequently

One should keep i n mind t h a t t h i s formula i s v a l i d o n l y f o r v a l u e s of y > 6 . A schematic graph of t h e f u n c t i o n ( 6 ) i s shown i n F i g . 2 .

A t a c e r t a i n h e i g h t y o . t h e s o l i d f l u x of a flow r e a c h e s a maximwn qo and t h e n d e c r e a s e s a s y m p t o t i c a l l y approaching t h e Oy a x i s . The magnitude yo we f i n d by t a k i n g t h e d e r i v a t i v e w i t h r e - Ig f? ( y o

-+

c)---- -- 2 (Ig y - Ig 2 , ) , r) Y 0 Whence :

The graph shown i n F i g .

3

was constr'ucted a c c o r d i n g t o t h i s f o r m u l a . With t h i s graph, knowing c and 6 , we can d e t e r m i n e y o .

The v a l u e of a maximwn f l u x qo i s

D i v i d i n g

( 6 )

by

( 8 )

w e g e t

k'or d e t e ~ m i n i n g t h e t o t a l s o l l d discharge Q i n a wind-snow

Y

(8)

stratum froin 6y to y one must Integrate equation

(9)

within this range :

Keeping In mind

(7)

one can write

when y -+

I n I f -

( ;)

,,-,,,

.Qm = 240 Yo (yo -1- c) 7---

We will show that for the purpose of simplifying calculations in processing the experimental data one can replace formula ( 9 ) with the following approximate formula which is structurally simi- lar to expression (2):

where

Formula (12) is valid only under the condition yo< y. Let us assume that in the range of O < y < yo the flux q depends linearly on height y,

Y

Y = q o - Y o

(9)

Substituting

(13) in

( 1 5 ) wc g e t (11).

F i g . 4 shows a comparison of g r a p h s p l o t t e d from formulae

( 9 )

and ( 1 2 ) u s i n g v a r i o u s v a l u e s of c and 6 . Curves c o r r e s p o n d i n g t o formula ( 1 2 ) a r e p l o t t e d i n dashed l i n e s . I t can be r e a d i l y s e e n t h a t t h e dashed l i n e c u r v e s a r e v e r y c l o s e t o t h e s o l i d l i n e c u r v e s c o r r e s p o n d i n g t o formula ( 9 ) . The v a l u e of c , when c and 6 a r e known can be d e t e r m i n e d from t h e g r a p h ( F i g .

5 )

p l o t t e d from e x p r e s s i o n

(13)

and ( 7 ) .

The e x p e r i m e n t a l d a t a of TsNII MPS ( c e n t r a l Research I n s t i t u t e of t h e M i n i s t r y of ail roads) and TEI ZSFAN ( T r a n s p o r t a t i o n - p o w e r I n s t i t u t e of t h e E a s t S i b e r i a n S e c t t o n o f t h e Academy of s c i e n c e s ) make i t p o s s i b l e t o f i n d n u m e r i c a l l y t h e a v e r a g e v a l u e of c and 6

f o r a snow-wind f l o w .

F i g .

6

shows t h e d a t a o f anemometer measurements o f wind ve- l o c i t i e s a t v a r i o u s h e i g h t s . The c i r c l e s w i t h d o t s a r e p l o t t e d from t h e d a t a of TsNII MPS ( o r e n b u r g Railway, F e b r u a r y 1952) and t h e s o l i d c i r c l e s from t h e d a t a of T E I ZSFAN ( ~ o m s k Railway, Decem- b e r 1952

-

J a n u a r y

1953).

I n e a c h c a s e t h e v e l o c i t y a t t h e h e i g h t of 0 . 5 m i s t a k e n as u n i t y . The a b s o l u t e v a l u e s of t h e s e v e l o c i t i e s v a r y w i t h i n t h e r a n g e of 4 . 4

-

1 0 . 7 m/sec. F i g .

6

shows t h a t t h e wind v e l o c i t y o v e r a smooth snow s u r f a c e h a s on t h e a v e r a g e a l o g - a r i t h m i c dependence on t h e h e i g h t y .

S u b s t i t u t i n g i n formula

( 5 )

t h e dependence of wind speed on h e i g h t g i v e n i n F i g .

6,

we f i n d t h a t l o g 6 =-4.85, 6 = 0.00141 cm.

B l i z z a r d d a t a w a s used t o d e t e r m i n e c . The b l i z z a r d m e t r e of t h e t y p e VO, used by TsNII MPS* and TEI ZSFAN, h a s a n e n t r a n c e a p e r t u r e 2 cm h i g h . By p l a c i n g t h e n o z z l e r i g h t on t h e snow s u r - f a c e ( " s u r f a c e b l i z z a r d m e t r e " ) we do n o t c o n s e q u e n t l y d e t e r m i n e t h e maximum f l u x qo b u t t h e a v e r a g e f l u x qO-*

,

which i s d e t e r m i n e d t h e o r e t i c a l l y from formula ( 1 0 )

(10)

wllerc y o , c

,

6 a r c expre:;scti Ln c e n t l r n c t r e s

.

V . N . Conctlnrov found ( r e f c r c n c e ( l ) , page 4 1 ) t h a t t h e v a l u e of c i n a 1iqut.d flow depends primarily on t h e d e p t h of t h e l i q u i d .

P I G . 7 shows t h e d a t a o f V . N . Goncharov o b t a i n e d by two d l f i ' e r e n t methods. T h e more r e l i a b l e of t h e methods was t h a t of suspendcd p a r t i c l e s , t h e a n a l y s i s o f which w i l l n o t be d e a l t w i t h h e r e . * The maximum d e p t h of f l o w i n t h e experiments of V . N . Goncharov was

44

cm. For t h i s d e p t h , c = 2 . 5 cm.

P i g . 7 a l s o c o n s i d e r s t h e dependence o f c on t h e r o u g h n e s s of t h e s u r a f a c e . It i s interesting t o n o t e t h a t f o r a snow-wind f l o w , t h e c a l c u l a t i o n s g i v e c

-

2 . 7 cm on t h e a v e r a g e , a b o u t t h e same v a l u e a s f o r flow i n a v e r y deep f l u i d body.

I n T a b l e I t h e t h e o r e t i c a l l y c a l c u l a t e d v a l u e s of

3

a r e qo-2

compared w i t h t h e c o r r e s p o n d i n g mean v a l u e s of t h i s r a t i o c a l c u l a t e d from experimental. d a t a of TsNII MPS and TEI ZSFAN. E'or t h e t h e o r e t i - c a l c a l c u l a t i o n i.t was assumed t h a t c = 2 . 8 cm; 6 = 0.001.41 cm. Ac-

N

c o r d i n g t o t h e g r a p h i n P i g . j yo ; 0 . 2 8 crn. The c o r r e s p o n d i n g v a l u e

of c , =

4 . 7

cm.

According t o formu1.a ( 1 6 ) qo-* = 0 .767 qo

.

These d a t a a r e shown i n F i g .

8.

The r e s u l t s of o b s e r v a t i o n s a g r e e s a t i s i ' a c t o r i . l y w i t h t h e o r y .

The v a l u e of c a p p a r e n t l y d o e s n o t depend i n any e s s e n t i a l way on t h e a b s o l u t e v a l u e of t h e v e l o c i t y of' tkie snow-wind flow as can be s e e n from F i g .

9

where t h e t h e o r e t i c a l c u r v e s q = f ( Y , v , ) a r e compared wi.l;h e x p e r i m e n t a l l y found p o i n t s of s i n g l e m e a s u r e n ~ e n t s of a s o l i d f l u x a t v e l o c i t l c s oT' v, ( a t t h e h e i g h t o f 1 m ) 6 . 3

-

12 m/

s e c . The b l i z z a r d measurements wcrc c a r r l e d o u t by T E I ZSFAN.

I.. The d i s t r l i b u t i o n wl.t'L-1 h e i g h t or' t h e s o l i d f l u x of' a snow-

----

---

*

The v a l u e of' c

,

as shown by V

.N

.

Goncharov, c h a r a c t e r l z c s t h e chnngc w i t h h e i g h t 01' a

:I

lllcar v e r t i c a l . p u l s a t i n g component of tkie v e l o c i t y o r turbul.cnt; ['A ow

.

(11)

wind flow, as any other mixed flow, depends on the profile of the averaged translational vel-ocities and the linear characteristic of turbulence C of the wind flow.

2. The precise expression for the total solid flux in a layer

0

-

y has the form

This formula can be replaced by the approximate formula

3.

Curves constructed from these formulae agree satisfactorily with experimental data obtained under field conditions.

4 . In using these formulae one can carry out 'he maJor part of the blizzard-measuring observations with the use of surface-bliz- zard measuring instruments and from these data one can precisely determine the total solid flux of a snow-wind flow.

References

---

1. Goncharov, V.N

.

Dvizhenie nanosov ( ~ h e movement of silt), 1938. 2. Losievskii, A.l. Laboratornoe issledovanie protsessov obrazo-

vaniya perekatov (~aboratory lrivestigation of the formation of sand bars), 1934.

3.

Prandtll

,

I,. Gidroaerbornckhanika, Chapter

5,

1951.

4.

SapozhnLkova, S . A . Mikrokllmat i mestnyi klimat (~icroclimate and local climate), 1950.

5.

Chaplygin, S . A .

K

teorli metelei (on the theory of blizzards). Sobr. such. Vol. 11,

1948.

(12)

Table I

The motion of penetrating masses saturated with admixtures

Organizations carrying out observations TsNII MPS TEI Z S F A N I I TsNII MPS TEI ZSFAN I I I I I I Y J cm 0 - 2

6

6

11 16 21 31 41 51 No. of observations

43

6

47

43

10

4

4

4

x.

in0 (10-2 Mean of experimental data 100

26

-6

24.2 11.55

5

-54

4

5'7 2.1 0.49

0.45

Theoretical calc

.

100 25.2

25.2

10

.g

6.1

4

.O 2

.o

1.2 0.8

(13)

Fig. 2

A

schematic graph of the function q = f(y)

P l g . 3

(14)

F i g .

4

A g r a p h comparing f o r m u l a e

( 9 )

and ( 1 2 )

F i g .

5

(15)

A p r o f i l e of average t ; r ' a t ~ u L a t i o n a L v c : l o c i t i c s of' t h e snow-wj nd f l o w a c c o r d i n g to t h e du1,a of 'LIE_I %SFAN a n d TsNLI. MPS

(16)

Graph C = f (h)

0 o The value of C determined by the method of measuring the falling rate of particles

0

0 o o in

a

flow.

(on

a smooth surface and on a

a m e V

+

surface made up of 5

-

r/ rnrn grain sizes)

v

+

The value of'

C

determined by the method of suspended particles

e

A

smooth surface and a surface of

5

-

7

rnrn

grain sizes

v Surface of 18

-

12 mrn grain sizes

+

Surface of

31

-

22 mrn grain sizes

1

o The average value of C for a snow-wind flow

Pig. '7

Value of c depending on tile depth of flow (according to

the

data of

V

.N. Goncharov)

(17)

Fig.

8

f * CO

"1

Graph of t h e f u n c t i o n -LL- 100 = f ( y ) qo- 2 m . . o V, = 1 2 m/sec

----

x V,

= 11.28 rn/sec

-

.-.

V, =

8.73

m/sec

....

V, =

6 . 3

m/sec F i g .

9

Graph of' t h e I'unct Lon q =: f ' ( y - v , )

I I -- The t h e o r e t i c a l curve x = 2 . 8 cm x Experimental d a t a of T E I ZSPAN

=

Experimental d a t a of T s N I I MPS I5 - -

k

t----

n sg r J t . f m : 5'04

Figure

Fig.  8 f *  CO &#34;1  Graph  of  t h e   f u n c t i o n   -LL-  100  =  f ( y )   qo-  2 m

Références

Documents relatifs

Left: a set of monitors (the squared nodes) send probes towards a target IP address t and obtain the four interfaces of router r(t). In particular, one has to distinguish between

We have discussed quadratic functions; this is not equiv- alent to ellipsoid level sets. We point out that whenever the sampling is made thanks to the uniform distribution, the

From the construction of VFC for M 0 1,k (X, A; J ) in Subsection 1.4, it is imme- diate that the difference between the standard and reduced genus-one GW-invariants of X must be

The parameterizations are either based on diagnostic equations relating the SSA to parameters like snow type and density or on prognostic equations that de- scribe the change of

See Risk Management Guide, Professional Surveyors Canada Section 4 available on the PSC website in .pdf format.. Outline the differences between a private corporation and a

-Furthermore, transliteracy questioning attempts to focus on content present on networks and digital spaces, and to exert less control on modes of management and

*Doctors won’t be able make a medicine which helps man to live more than 200 years.. 2- In the future/ each family/ have/ a computer

However, with a single-well interferometric imaging method, the elevation angle and radial distance to a micro- seism source are well constrained through the use of a mul- titude