• Aucun résultat trouvé

On the status sequences of trees

N/A
N/A
Protected

Academic year: 2022

Partager "On the status sequences of trees"

Copied!
11
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the status sequences of trees

Aida Abiad

a

,

b

,

c

,∗ , Boris Brimkov

d

, Alexander Grigoriev

e

aDepartmentofMathematicsandComputerScience,EindhovenUniversityofTechnology,TheNetherlands bDepartmentofMathematics:Analysis,LogicandDiscreteMathematics,GhentUniversity,Belgium cDepartmentofMathematicsandDataScience,VrijeUniversiteitBrussel,Belgium

dDepartmentofMathematicsandStatistics,SlipperyRockUniversity,SlipperyRock,PA,USA eDepartmentofDataAnalyticsandDigitalization,MaastrichtUniversity,Maastricht,TheNetherlands

a rt i c l e i nf o a b s t ra c t

Articlehistory:

Received11September2020

Receivedinrevisedform11November2020 Accepted15December2020

Availableonline28December2020 CommunicatedbyT.Calamoneri

Keywords:

Tree

Statussequence Complexity Statusinjective Graphpartition

The statusofavertex vinaconnectedgraphisthe sumofthedistancesfromv toall other vertices. The status sequence ofa connected graph is the list of the statuses of all theverticesofthegraph. Inthispaper weinvestigatethe statussequencesoftrees.

Particularly,weshowthatitisNP-completetodecidewhetherthereexistsatreethathasa givensequenceofintegersasitsstatussequence.Wealsopresentsomenewresultsabout trees whosestatussequencesarecomprised ofafew distinctnumbersormanydistinct numbers.Inthisdirection,weshowthatanystatusinjectivetreeisuniqueamongtrees.

Finally, weinvestigatehow orbitpartitions and equitable partitions relate tothe status sequence.

©2020TheAuthor(s).PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sequencesassociatedwithagraph,suchasthedegreesequence,spectrum,andstatussequence,containusefulinforma- tionaboutthegraph’sstructureandgiveacompactrepresentationofthegraphwithoutusingvertexadjacencies.Extracting andanalyzingtheinformationcontainedinsuchsequencesisacrucialissueinmanyproblems,suchasgraphisomorphism.

In thispaper, westudy thestatussequences oftrees,andanswer severalquestions aboutstatusrealizability, uniqueness, andtheirrelationtovariousgraphpartitions.

Thegraphsconsideredinthispaperarefinite,simple,looplessandconnected.LetG

= (

V

,

E

)

beagraph.Thestatusvalue (alsocalledtransmissionindex)ofavertexv inG,denoteds

(

v

)

,isthesumofthedistancesbetweenvandallothervertices, i.e., s

(

v

) =

uVd

(

v

,

u

)

,whered

(

v

,

u

)

istheshortestpathdistancebetweenv andu inG.Thisconcept wasintroduced by Hararyin1959 [18].Thestatussequenceof G,denoted

σ (

G

)

,isthelistofthe statusvaluesofall verticesarrangedin nondecreasingorder.Statussequencesofgraphshaverecentlyattractedconsiderableattention,see,e.g.,[26,28,31,33].Status sequenceshavealsobeenusedininterestingpracticalapplications,suchasefficientlydeterminingwhetheracompanysells aparticulartypeofcircuitboard;in[2],itwasshownthatalgorithmsforboardequivalencebasedongraphinvariantssuch asthestatussequencerequiremuchlesstimeandmemorycomparedtoalgorithmsthatusethecompletetopologyofthe circuit boards.Similarapproachescould beapplied toother graphisomorphismapplications,such asidentifying whether a chemicalcompoundisfound withina chemicaldatabase. Statussequenceshavealsobeenstudied andused inspectral graph theory,e.g., in thedefinition of thedistance Laplacianmatrix andthe study of its eigenvalues (cf. [4,6,27]). More

*

Correspondingauthor.

E-mailaddresses:a.abiad.monge@tue.nl(A. Abiad),boris.brimkov@sru.edu(B. Brimkov),a.grigoriev@maastrichtuniversity.nl(A. Grigoriev).

https://doi.org/10.1016/j.tcs.2020.12.030

0304-3975/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

(2)

generally,status sequenceshavebeen implicitlyorexplicitlyusedin studyingmetricdimension [16,19,20,24],variants of theCops&Robbersgame[9,30],andrelatedproblems.

AconnectedgraphG isstatusinjectiveifthestatusvaluesofitsverticesarealldistinct.Wedenotebyk

(

G

)

thenumberof distinctstatusvaluesof

σ (

G

)

.Theparameterk

(

G

)

isalsoknownastheWienerdimensionofG,see[3].Agraphistransmission- regular ifk

(

G

) =

1,i.e., ifthestatusvaluesofallits verticesareequal.Transmission-regular graphshavebeenstudiedby severalauthors(see,e.g.,[1,5,21,22]).Asequence

σ

ofintegersisstatusrealizableifthereexistsagraphG with

σ (

G

) = σ

. LetFbeafamilyofconnectedgraphsandGbeagraphinF.AgraphGisstatusuniqueinFifforanyH

F,

σ (

H

) = σ (

G

)

impliesthatH

G,i.e.,HandG areisomorphic.Forexample,pathsarestatusuniqueinthefamilyofallconnectedgraphs, sinceapathofordernistheonlygraphoforderncontainingavertexofstatusvaluen

(

n

1

)/

2.

Ingeneral, comparedtotheadjacencylistortheadjacencymatrixofagraph,thereissomelossofinformationinthe statussequence.Forexample,onecannotobtainthedistancedegreesequenceofagraphfromitsstatussequence[28].Itis alsowellknownthatnon-isomorphicgraphsmayhavethesamestatussequence.Nevertheless,thestatussequencecontains important informationabout the graph,andthe study ofgraphs with specialstatus sequences has produced interesting results. For instance,it is known that spidersare statusunique intrees [31]. In ([7], p. 185) the authors proposed the problemoffindingstatusinjectivegraphs.ThisproblemwasaddressedbyPachter [28],whoproved thatforanygraph G thereexistsastatusinjectivegraphHthatcontains Gasaninducedsubgraph.

Buckley andHarary [8] posed the following problemin a paperthat discusses various problemsconcerning distance conceptsingraphs.

Problem 1.1 (Statussequence recognition).Characterize status sequences, i.e., find a characterization that determines whetheragivensequenceofpositiveintegersisthestatussequenceofagraph.

Motivatedbytheabovefacts,inthispaperweconsiderthefollowingquestionraisedbyShangandLinin[31]:

Problem1.2.Arestatusinjectivetreesstatusuniqueinallconnectedgraphs?

Theaboveproblemwas recentlyansweredinthenegativein[29],wheretheauthorsprovideaconstructionofpairsof a treeandanontreegraphwiththe samestatussequence.Inthispaper,we providenewresultsonthe directionofthe aboveproblemforextremaltrees.Inparticular,weshowthatstatusinjectivetreesarestatusuniqueintrees.

Moreover,wealsoinvestigatethefollowingspecialcaseofProblem1.1:

Problem1.3(Treestatusrecognition).Givenasequence

σ

ofpositiveintegers,doesthereexistatreeT suchthat

σ (

T

) = σ

?

Recognitionproblemssimilarto1.1and1.3havebeenstudiedforsome othergraphsequences.Forexample,Erdösand Gallai[12] andHakimi[17] gaveconditionstodeterminewhetheragivensequenceisthedegreesequenceofsomegraph.

Sequencesrelatedtodistancesinagraphhavealsobeenstudied,see,e.g.,[8].Inthosepapers,theauthorsnotonlytackle therecognition problems,butalsoconstructfastalgorithmsforfindinggraphs thatrealize givensequences.Following the samedirection,weaddressthefollowingquestionregardingstatussequences:

Problem1.4(Statusrealizabilityintrees).Givenasequenceofintegers

σ

,eitherconstructatreeT such that

σ (

T

) = σ

orreportthatsuchatreedoesnotexist.

Wearealsointerestedinthefollowingproblemrelatedtothestatusuniquenessofagraph:

Problem1.5.Whatarenecessaryand/orsufficientconditionsforasetofverticesofagraphtohavethesamestatus?

The main results of thispaper are as follows.We first consider the problemof determining whether ornot a given sequenceisthestatussequenceofatree,andinvestigatethecomplexityofthisproblemintermsofthesymmetryofthe constructedtree.Inparticular,weshow thatforhighlysymmetrictreeswithk

(

G

) =

2

,

3,andforhighlyasymmetrictrees withk

(

G

) =

n,theproblemispolynomiallysolvable,whileforgeneralmid-symmetricclassestheproblemisNP-complete.

Furthermore,weshowthatinthehighlyasymmetriccaseswithk

(

G

) =

n,ifatreerealizingagivenstatussequenceexists, thistreeis uniquelydefined. Inthissense, weexplore thecomplexity landscapeofthe statussequenceproblemintrees basedontreesymmetries.Finally,wealsoinvestigatewaystoapproachtheproblemusingpartitionsanddecompositions, whichisoftenanaturalplantoattackhardproblems.

Thepaperisorganizedasfollows.InSection2,weprovethatTreestatusrecognitionisNP-complete.InSection3,we presentseveralpolynomiallysolvablespecialcasesofStatusrealizabilityintrees,specificallyforsymmetricandasymmet- ric trees.InSection4,we explorehow variouswell-known graphpartitionsrelate tothe statussequence.Wefinishwith someconcludingremarksinSection5.

(3)

Fig. 1.Gadget of the reduction from3-Partition.

2. Complexityof TREESTATUSRECOGNITION

The eccentricityofa vertexv ina graphG,denoted

(

v

)

,isthe maximumdistancefromv to anyvertex,i.e.,

(

v

) =

max

{

d

(

v

,

w

) :

w

V

(

G

)}

.ThediameterofG,denoteddiam

(

G

)

,isthemaximumeccentricityofavertexofG,i.e.,diam

(

G

) =

max

{ (

v

) :

v

V

(

G

) }

.TheradiusofG,denotedrad

(

G

)

,istheminimumeccentricityofavertexofG,i.e.,rad

(

G

) =

min

{ (

v

) :

v

V

(

G

)}

.Equivalently,if T

= (

V

,

E

)

isatree,theradius(sometimesalsocalledthedepthof T)isthesmallestnumberr suchthatthereexistsavertexv

V suchthatd

(

v

,

u

)

rforallu

V;thisisthesameassayingthatthediameterofthe treeisatmost2r.ThecenterofGisthesetofverticeswhoseeccentricityisequaltorad

(

G

)

.

In this section, we show that determining whether or not a given sequence is the status sequence of a tree is NP- complete.Inparticular,westudy thecomplexityofTreestatusrecognitionwhenthetreesarerestrictedtohaveradius3.

WerefertothelatterproblemasSRT-R3. Theorem2.1.SRT-R3isNP-complete.

Proof. SRT-R3is clearly in NP, asthestatus sequence ofa tree ofradius 3 canbe computed inlinear time. We reduce the well-known stronglyNP-complete problem3-Partitionto SRT-R3. 3-Partition(cf. [13])reads:Given amultiset A

= {

a1

,

a2

, . . . ,

an

}

ofpositiveintegers,doesthereexistapartitionofAintotripletssuchthatalltripletshavethesamesum?

Without loss of generality, assume n is divisible by 3 and letm

=

n

/

3, A

=

n

i=1ai and B

=

A

/

m. Since 3-Partition is stronglyNP-complete,wemayassumethattheinputoftheproblemisgiveninunaryencoding,i.e.,linearin A.Notethat 3-PartitionremainsstronglyNP-completeevenifB

/

4

<

ai

<

B

/

2 foralli

∈ {

1

,

2

, . . . ,

n

}

.

Givenan instance I of3-Partition,we constructan instanceof SRT-R3whoseinput sequence

σ

is comprisedof the following1

+

m

+

n

+

A integers:

3A

+

7m withmultiplicity1;

4A

2B

+

11m

7 withmultiplicitym;

5A

2B

2ai

+

15m

8 withmultiplicity1,foreachi

∈ {

1

,

2

, . . . ,

n

}

;

6A

2B

2ai

+

19m

9 withmultiplicityai,foreachi

∈ {

1

,

2

, . . . ,

n

}

.

Clearly,thesize ofthe sequence

σ

issubquadraticin A,andthuspolynomial intheunaryencodedsizeof I.Wewill show that I is a yes-instanceof 3-Partitionif andonly if

σ

isa yes-instance ofSRT-R3. Suppose firstthat I is a yes- instance of3-Partition, i.e., thereisa partition ofA intom tripletssuch that thesumof integersin eachtriplet equals B.Consider thefollowingtreeT.Takearootvertexwithexactlym child-nodeswhichrepresentmtriplets.Foreachchild- noderepresentingatriplet,createexactlythreedescendantsrepresentingtheelementsofthetriplet.Finally,foreachvertex representinganelementai ofatriplet,createexactlyai descendants,whicharetheleavesofthetree.Byconstructionthe treeisofradius3.SeeFig.1foranillustration.

Thestatusoftherootequals1

·

m

+

2

·

3m

+

3

·

iai

=

3A

+

7m.Thestatusofanyvertexrepresentingatripletequals 1

·

4

+

2

· (

B

+

m

1

) +

3

·

3

(

m

1

) +

4

· (

m

1

)

B

=

4A

2B

+

11m

7.Therearemsuchvertices.Thestatusofavertex representinganelementaiequals1

·(

ai

+

1

) +

2

·

3

+

3

·(

B

ai

+

m

1

) +

4

·

3

(

m

1

) +

5

·(

m

1

)

B

=

5A

2B

2ai

+

15m

8.

Finally,thestatusofaleafadjacenttoavertexrepresentingai equals1

·

1

+

2

·

ai

+

3

·

3

+

4

· (

B

ai

+

m

1

) +

5

·

3

(

m

1

) +

6

· (

m

1

)

B

=

6A

2B

2ai

+

19m

9.Thus,treeT ofradius3realizes

σ

.

Before tackling the opposite direction ofthe proof, we first recall some useful properties ofthe status values ofthe verticesinatree.ThemedianofaconnectedgraphG isthesetofverticesofG withthesmalleststatus.

Lemma2.2([11]).If v1 isavertexinthemedian ofa treeT , v1

,

v2

, . . . ,

vr isapathin T ,andv2 isnot amedianofT ,then s

(

v1

) <

s

(

v2

) < · · · <

s

(

vr

)

.

Lemma2.3([31]).Supposethatv1andv2areadjacentverticesinatreeT

= (

V

,

E

)

.LetT1andT2betwocomponentsofT after deletionoftheedge

(

v1

,

v2

)

,andletv1

V

(

T1

)

andv2

V

(

T2

)

.Then,s

(

v1

)

s

(

v2

) = |

V

(

T2

)| − |

V

(

T1

)|

.

Now,suppose,

σ

isayes-instanceofSRT-R3andatreeT isitsrealization.Withoutlossofgenerality, wemayassume A

>

3B

+

19m

+

9, forotherwisewe addto everyelement ofthemultisetan additive constant3B

+

19m

+

9 preserving

(4)

thehardnessofthe3-partitioncaseandrepeatthearguments.Forthesesufficientlylargevalues A,thevertexwithstatus 3A

+

7m istheonly medianof T.Moreover, byLemma2.2foralli

∈ {

1

,

2

, . . . ,

n

}

,theverticesofstatus6A

2B

2ai

+

19m

9 aretheleavesofT.Furthermore,byLemma2.3foralli

∈ {

1

,

2

, . . . ,

n

}

,anyvertexofstatus6A

2B

2ai

+

19m

9 isadjacenttoavertexofstatus5A

2B

2ai

+

15m

8 asthedifferenceinstatusbetweenaleafanditsancestorequals the size of the tree minus 2, which in T equals A

+

4m

1. Next, we notice that for any i

∈ {

1

,

2

, . . . ,

n

}

, the vertex of status 5A

2B

2ai

+

15m

8 cannot be directly adjacent to the medianwithstatus 3A

+

7m as the difference in statuses istoolarge contradictingLemma2.3.Thisimpliesthat foranyi

∈ {

1

,

2

, . . . ,

n

}

,theancestorofavertexofstatus 5A

2B

2ai

+

15m

8 canonlybeavertexofstatus4A

2B

+

11m

7 andallverticesofthelatterstatusareadjacent tothemedian.Sinceallverticesadjacenttothemedianhavethesamestatus4A

2B

+

11m

7,eachoftheseverticeshas exactlythesametotalnumberofdescendants,namelyB

+

3.

Consider anedge betweenavertexv ofstatus5A

2B

2ai

+

15m

8

,

i

∈ {

1

,

2

, . . . ,

n

}

,andits ancestoru ofstatus 4A

2B

+

11m

7.By Lemma2.3, thenumber ofleavesx adjacentto v equals thesize ofthe treeafterdeletion of v together withallits xdescendantsminusthestatusdifferencebetween v anduandminusoneforcountingv itself.The sizeofthetreeafterdeletionofv withallitsdescendantsisA

+

4m

+

1

x

1

=

A

+

4m

x.Thedifferenceinstatusofv anduis5A

2B

2ai

+

15m

8

(

4A

2B

+

11m

7

) =

A

2ai

+

4m

1.Therefore,x

=

A

+

4m

x

(

A

2ai

+

4m

1

)

1

=

2ai

x,yielding x

=

ai.

Summarizingthefindings,thefollowingpropertiesnecessarilyholdforT: 1. ThemedianofT isthevertexofstatus3A

+

7m;

2. Therearemverticesofstatus4A

2B

+

11m

7 adjacenttothemedian;

3. ThereareexactlyB

+

3 descendantsforeveryvertexofstatus4A

2B

+

11m

7;

4. Onlyverticesofstatus5A

2B

2ai

+

15m

8

,

i

∈ {

1

,

2

, . . . ,

n

}

,canbeimmediatesuccessors/descendantsofavertex ofstatus4A

2B

+

11m

7;

5. Foreveryvertexviofstatus5A

2B

2ai

+

15m

8

,

i

∈ {

1

,

2

, . . . ,

n

}

,thereareexactlyaileavesofstatus6A

2B

2ai

+

19m

9 adjacenttovi.

Finally, considera vertex u ofstatus 4A

2B

+

11m

7. Asstated above, thereare exactly B

+

3 descendants of u. By assumption (in 3-Partition) that B

/

4

<

ai

<

B

/

2 for all i

∈ {

1

,

2

, . . . ,

n

}

, vertex u has exactly three immediate succes- sors/descendants, say vi

,

vj

,

vk where i

,

j

,

k

∈ {

1

,

2

, . . . ,

n

}

, and thesevertices haveexactly ai

,

aj

,

ak descendant leaves, respectively.Thus,ai

+

aj

+

ak

=

B,whichcompletestheproof.

Theorem2.1straightforwardlyimpliesthefollowingcorollary.

Corollary2.4.TreestatusrecognitionisNP-complete.

Proof. InTheorem2.1,thereisnolossofgenerality:whenrealizingatreefromtheconstructedsequenceofintegers,we derivedproperties1–5implyingthattheonlytreespossiblyrealizingthesequencearetreesofradius3.

Notably,Theorem2.1hasalsostrongalgorithmicimplicationsforthefollowingoptimizationproblem.

Problem2.5(MinimumStatusCorrection).Givena sequence ofintegers

σ

,what is theminimumchange on

σ

(under anynormthatmeasuresdistancebetweensequences)thatmakes

σ

statusrealizableintrees?

Corollary2.6.UnlessP

=

N P ,thereisnopolynomialtimeconstantapproximationalgorithmforMinimumStatusCorrection. Proof. Any polynomial time constant approximation algorithm for Minimum Status Correction should recognize 0- correctioninstancesincluding“yes”-instancesofSRT-R3.ByTheorem2.1,SRT-R3isN P-complete.Thus,thealgorithmsolves an N P-completeproblemandP

=

N P.

3. Polynomialspecialcasesof STATUSREALIZABILIT YINTREES

Inthissection,weinvestigatesomespecialcaseswherestatusrealizabilityintreescanbesolvedinpolynomialtime.

Inparticular,an efficientalgorithmforfinding suchatreeisprovidedinthecasethatallelements ofthegivensequence are distinct.Asasideresult, wefindthatthereisa uniquetreewiththegivenstatussequenceinthiscase,ifoneexists.

ThelatteraddressesanextremalcaseofProblem1.2,showingthatstatusinjectivetreesarestatusuniqueintrees.

Webeginwitharesultaboutasymmetrictrees.Thefollowingresultshowsthatgivenanintegersequencewithndistinct values,itcanbe determinedinpolynomialtimewhetherornotthissequenceisthestatussequenceofatreeT

= (

V

,

E

)

of ordern. Notethat such a tree, ifrealized,is highly asymmetric, asit cannot haveanynontrivial automorphisms; see Corollary4.2fordetails.Independentlyofus,thefollowingresulthasrecentlybeenprovenin[32].Wenotethattheproof ofTheorem3.1inthepresentpaperisconstructive,providinganexplicitlineartimealgorithmforthetreeconstruction.

(5)

Algorithm 1:Statusinjectivetree.

1 Input:Asequenceofintegersσ= {a1,a2,. . . ,an},witha1>a2> . . . >an.

2 Output:AtreeTwhosestatussequenceisσ,oranaffirmationthatsuchatreedoesnotexist.

3 fori=1,. . . ,ndo 4 Createavertexvi;

5 pi← ∅; piistheparentofviinT

6 ci0; ciisthenumberofdescendantsofviinT

7 fori=1,. . . ,n1do

8 Findj∈ {i+1,. . . ,n}suchthataj=ain+2(ci+1);

9 ifsuchindex jdoesnotexistthenreturnσisnotthestatussequenceofatree”else 10 pivj;

11 cjcj+ci+1;

12 returnT({1,. . . ,n},{(vi,pi):i=1,. . . ,n1})

Fig. 2.Illustration of Algorithm1for inputσ= {19,18,15,14,13,11,10}.

Theorem3.1.Statusinjectivetreesarestatusuniqueintrees.

Proof. Theproofisconstructive, i.e.,wepresentan algorithmwhoseinputisasequence

σ

ofndistinctpositiveintegers andthe output iseither a unique tree T realizing

σ

ora conclusion that thesequence is not astatus sequenceof any tree.

Algorithm1attemptstoconstructatreewhoseverticesv1

, . . . ,

vncorrespondtothestatusvaluesintheinputsequence

σ

(whichbyassumptionarealldistinct);thetreeisspecifiedbyassigningaparent pi toeachvertexvi,exceptthevertex vn whichistreatedastheroot.Thealgorithmalsostoresandupdatesthenumberofdescendants ofvertex vi (excluding vi itself)asthe variableci.Inthe mainloop ofthealgorithm, theverticesare considered accordingtodecreasing status values.

We will show by induction that after iteration i ofthe algorithm, the parents ofthe vertices v1

, . . . ,

vi are uniquely identifiedasp1

, . . . ,

pi,andthatthenumberofdescendantsofvi+1 among

{

v1

, . . . ,

vi

}

isci+1.

In thefirst iteration ofthe algorithm,by Lemma2.2,vertex v1 (correspondingto statusvalue a1) must be aleaf. By Lemma2.3,a1

ap1

= (

n

(

c1

+

1

))(

c1

+

1

)

,soap1

=

a1

n

+

2

(

c1

+

1

)

.Ifthisvalueisnotin

σ

,then

σ

isnotthestatus sequenceofatree.Otherwise,thevertexvj withstatusvaluea1

n

+

2

(

c1

+

1

)

istheparentofv1 andvertexv1becomes a descendantofvertex p1.Thus, afterthe firstiteration,theparentof v1 isuniquelyidentifiedas p1,andthenumberof descendantsofv2 among

{

v1

}

isc2 (becauseitiseither0,duethewaythevariableisinitialized(inline5),oritis1,i.e., v1,if p1

=

v2).

Suppose the statement is truefor iterations1

, . . . ,

i

1,and consideriteration i.By Lemma2.3and by the assump- tion that the numberofdescendants of vi among

{

v1

, . . . ,

vi1

}

is ci, itfollows that ai

api

= (

n

(

ci

+

1

))(

ci

+

1

)

, so api

=

ai

n

+

2

(

ci

+

1

)

. If this value is not in

σ

, then

σ

is not the status sequence of a tree (line 8). Other- wise, the vertex vj corresponding to statusvalue ai

n

+

2

(

ci

+

1

)

isthe parent pi of vi (line 9) and thedescendants of vi, including vi, become descendants of pi (line 10). See Fig. 2 for an illustration. Moreover, since the input of the equation used to compute pi (in line 7) is uniquely determined by assumption, and the equation is determinis- tic, it follows that pi is uniquely identified. By induction, it follows that Algorithm 1 uniquely constructs a tree from a sequence of distinct integers, if such a tree can be constructed. Thus, status injective trees are status unique among trees.

NotethatAlgorithm1terminatesin O

(

nlogn

)

timeandcanthereforebeusedconstructivelyandveryefficiently.

While Algorithm 1 is designedto tacklethe asymmetric (status injective) cases of Statusrealizabilityintrees, the remainder ofthissection addressespolynomiallysolvablesymmetriccasesofSRT-R3,whenthenumberofdistinct status valuesisboundedbyaconstantandthedegreeofthecentervertexisboundedbyaconstant.Notethatby Theorem2.1, theproblemSRT-R3isNP-completeingeneral,butthereductionrequiresahighnumberofdistinctstatusvaluesandahigh

(6)

degreecentervertexofthetree.Recallthatk

(

G

)

denotesthenumberofdistinctstatusvaluesofagraphG.Thefollowing resultprovidesatightlowerboundonk

(

T

)

foratreeT,whichwillbeusedinthesequel.

Recall thatwedefinethemedian ofaconnectedgraph G asthesetofverticesofG withthesmalleststatus.Itiswell knownthat atreeT haseitheronecenterortwoadjacentcenters;ifT hasone center,thendiam

(

T

) =

2rad

(

T

)

,if T has twocenters,thendiam

(

T

) =

2rad

(

T

)

1.

Lemma3.2.LetT beatreeonn vertices.Then,

k

(

T

)

diam

(

T

) +

1 2

,

andthisboundistight.

Proof. T hasatmosttwomedians,andifT hastwomedians thenthey arenecessarilyadjacent,since otherwiseapath fromonemediantoanothernonadjacentmedianwillviolatethestrictinequalitiesofLemma2.2.Letv beamedianvertex of T. Suppose v is acenter of T,andthat T hasa single center.We willfirst show that thereare atleast twovertices that areatdistancerad

(

T

)

fromv.Supposeforcontradictionthat wistheonlyvertexatdistancerad

(

T

)

fromv,andlet wbethevertexfurthestfromv besides w.Letv bethevertexadjacenttov alongthepathfromv to w.LetT1 bethe componentofT

v vcontainingv,andT2bethecomponentofT

v vcontainingv.Then,rad

(

T

)

d

(

v

,

u

) =

d

(

v

,

u

) +

1 for every u

V

(

T2

)

, andd

(

v

,

u

) =

d

(

v

,

u

) +

1

<

rad

(

T

) +

1 for every u

V

(

T1

)

(where d

(

v

,

u

) <

rad

(

T

)

follows from the assumption that w is the only vertex at distance rad

(

T

)

from v, andthe fact that T1 does not contain w). Thus, d

(

v

,

u

)

rad

(

T

)

forevery u

V

(

T

)

,which means v isalso acenter of T, acontradiction. Thus, there are atleasttwo vertices, w and w, that are at distance rad

(

T

)

from v. Hence, without loss of generality, we can suppose the vertex adjacentto v along thepath fromv to w isnot amedian(otherwise we wouldconsiderthepath fromv to w).Then, d

(

v

,

w

) =

rad

(

T

) =

diam2(T),andbyLemma2.2,eachoftheverticesonthepathfromv tow,includingv andincludingw, hasadifferentstatus.Thus,k

(

T

)

d

(

v

,

w

) +

1

=

diam2(T)

+

1

diam(T)+1 2

.

Now suppose v isacenterofT andthat T hastwocentervertices v andv.Let wbe avertexatmaximumdistance fromv.Sincethetwocentersofatreeareadjacent,thepathbetweenvandwpassesthroughv(otherwisethepathfrom vto w wouldbe longer).Then,d

(

v

,

w

) =

rad

(

T

) =

diam(2T)+1,andby Lemma2.2,each oftheverticesonthepathfromv to w,excluding v andincluding w,hasadifferentstatus.Thus,k

(

T

)

d

(

v

,

w

) =

diam(2T)+1,andsincek

(

T

)

isaninteger,it followsthatk

(

T

)

diam(T)+1 2

.Finally,suppose visnotacenterofT andlet wbeavertexatmaximumdistancefromv. Then,d

(

v

,

w

)

rad

(

T

) +

1

diam2(T)

+

1,andbyLemma2.2,eachoftheverticesonthepathfromv tow,excludingv and including w,hasadifferentstatus.Thus,k

(

T

)

d

(

v

,

w

)

diam2(T)

+

1

diam(T)+1 2

.Thebound istight,e.g., forstarsand paths.

Now,wearereadytoaddresspolynomialsolvabilityofSRT-R3withafixednumberofdistinctstatusvalues;thesetypes oftreesarehighlysymmetric.

Theorem3.3.Let

σ

beamultisetofn integersandk bethenumberofdistinctvaluesin

σ

.Then,itcanbedeterminedwhetheror not

σ

isthestatussequenceofatreewhichhasradiusatmost3anddegreeofthecentervertexatmost

δ

in2O(k3δ3)nO(δ)time.

Proof. Letr be a center vertex. Let usremind that the center ofa tree is the middle vertexor middle two vertices in everylongestpath.Notice,thecentervertexisnotnecessarilyamedianvertex.Letdeg

(

r

)δ

.Sincethecentervertexrhas boundeddegree

δ

, wecan enumerateoverall possibilities fortheset I of verticesatdistance1 fromr.There are n

δ

of suchsets,implyingnO(δ) timeforthisenumeration.Fromnowon,weassumethesetI isgiven.

Ina

σ

-realizedtreeT,considertwo vertices,i

I andanadjacent toit(non-root)vertexhaving status j,see Fig.3.

Forsimplicityofthenotation werefertothelattervertexas j,thoughitcanbeanyvertexofthatstatusandtherecould be many such vertices.We refer to a subtree of T induced by i

I, a vertexofstatus j andall leaves adjacentto that vertexas

(

i

,

j

)

-branch.Letai j be thenumberofstatus

verticesinan

(

i

,

j

)

-branch.ByLemma2.3,giventhestatuses of i and j,theparametersai j are uniquelydefinedforall

=

1

, . . . ,

k.Now,letanintegervariablexi j

0 bethenumberof

(

i

,

j

)

-branchesina

σ

-realizedtree T withagivenset I.Thefollowingintegerlinearprogram(ILP)solves theproblemof findinga

σ

-realizedtreeT withagivensetI:

(7)

Fig. 3.Example of a tree with three(i,j)-branches.

iI k

j=1

ai jxi j

=

n

∀ =

1

, . . . ,

k

;

k

=1 k

j=1

ai jxi j

=

n

+

s

(

r

)

s

(

i

)

1

2

i

I

;

xi j

∈ Z

+

i

I

,

j

=

1

, . . . ,

k

,

where n is the multiplicity of element

in

σ

\ ({

r

} ∪

I

)

. Here, the first equation preserves the given multiplicities of integers andstatuses in

σ

and T,respectively. Thesecond equation guarantees that forall i

I,the necessitycondition of Lemma2.3forthe edge

(

r

,

i

)

is satisfied.Thus, iftheILP fails tofind afeasible solution,the necessityconditions for realizabilityof

σ

inatreewithagivensetIalsofail.Ontheotherhand,givenasolutionxi j

,

i

I

,

j

=

1

, . . . ,

k,totheILP, thestraightforwardassignment ofxi j numberof

(

i

,

j

)

-branchesto i

I providesarealizationof

σ

in T.Thisimpliesthe correctnessoftheILP.

TheILPhasatmostk

δ

variables.Thus,byLenstra [25],theILPcanbesolvedin2O(k3δ3)time.

Westress thattheassumptions ofTheorem3.3donotrestrictthe hardnessresultfromSection 2.InTheorem2.1,the treealsohasradius3,butthenumberofdistinctstatusvalueskandthemaximumdegree

δ

ofthecentervertexarenot bounded.Thisgivesrisetothefollowingtwoopenquestions.First,isthereanintuitivecombinatorialalgorithm,notrelying onthe “black-box”ILPmachinery, thatsolves SRT-R3withk and

δ

fixed?Second,ifonlyone oftheparametersk or

δ

is fixed(notboth),isthereapolynomialtimealgorithmforsolvingSRT-R3?Below,wepartiallyaddressthissecondquestion byprovingthatfork

=

2 andfork

=

3 theproblemStatusrealizabilityintreescanbesolvedinpolynomialtimewithno additionalrestrictions.Notethatsuchtreesarealsohighlysymmetric.

Definition3.4.Adoublestarisagraphthatcanbe obtainedbyappendinga

1 pendentverticestoonevertexof K2 and b

1 pendentverticestotheothervertexof K2.Abalanceddoublestar isagraphthatcanbeobtainedbyappendinga

1 pendent verticesto eachvertexof K2.Let T be the familyoftrees whichcan be obtainedby appending b

1 pendent verticestoeachleafofastarortoeachleafofabalanceddoublestar.

GivenagraphG,theverticesinasetS

V

(

G

)

arecalledsimilar ifforanyu

,

v

S,thereexistsanautomorphismofG thatmapsu tov.

Nextwecharacterizetreeshavingsmallnumberk ofdistinct valuesinthestatussequence.Thegeneralcaseofgraphs withstatus sequencehaving a uniquevalue, that is,k

(

G

) =

1, was studiedin [1]. Inthat paperthe authors obtaintight upperandlowerboundsfortheuniquestatusvalueofthestatussequenceintermsofthenumberofverticesofthegraph.

Fortrees T havingk

(

T

) =

2,acharacterizationappearedin[23].However,weaddaproofforcompleteness.

Proposition3.5.LetT beatreeonn vertices.Thenk

(

T

) =

2ifandonlyifT isastarorabalanceddoublestar.

Proof. IfT isastarorabalanceddoublestar,thenalltheleavesofT aresimilarandthereforehavethesamestatus,and allnon-leafverticesarealsosimilarandhavethesamestatus.Moreover,itcaneasilybeverifiedthatthestatusvaluesofa leafanditsnon-leafneighboraredifferent.Thus,k

(

T

) =

2.

If T isa treewithk

(

T

) =

2,thenby Lemma3.2,diam

(

T

)

3.Ifdiam

(

T

) =

0 ordiam

(

T

) =

1,then T isisomorphic to K1 and K2, respectively,andin bothcasesk

(

T

) =

1. Ifdiam

(

T

) =

2,then T isa star.Ifdiam

(

T

) =

3, then T isa double star, i.e., T can be obtainedby starting froma path P4 withvertices v1

,

v2

,

v3

,

v4 (in pathorder) andappending a

0 pendentverticesto v2 andb

0 pendentverticestov3.Then,s

(

v1

) =

1

+

2

(

a

+

1

) +

3

(

b

+

1

)

,s

(

v2

) =

1

(

a

+

2

) +

2

(

b

+

1

)

, and1

(

b

+

2

) +

2

(

a

+

1

) =

s

(

v3

)

.Ifa

=

b,thennoneofthesenumbersareequal,sok

(

T

) >

2.Ifa

=

b,then T isabalanced doublestar.

Thefollowingresultextendsthecharacterizationin[23] fortreeswithk

(

T

) =

3.

(8)

Fig. 4.Structure of a tree with 3 distinct status values and diameter 4.

Theorem3.6.LetT beatreeonn vertices.Thenk

(

T

) =

3ifandonlyifT

T.

Proof. IfT

T,thenallleavesofT aresimilar,allverticeswhichareneighborsofleavesaresimilar,andallverticeswhich are neither leaves nor neighborsof leavesare similar. Moreover, it can be verified that the status valuesof thesethree similarityclassesofverticesaredifferent.Thus,k

(

T

) =

3.

LetT beatreewithk

(

T

) =

3.ByLemma3.2,diam

(

T

)

5.Ifdiam

(

T

)

3,thenT iseitherK1,orK2,orastar,oradouble star.In thefirstthreecases, T hasatmosttwo similarityclasses.IfT isa balanceddoublestar,then by Proposition3.5, k

(

T

) =

2.IfT isadoublestarwhichisnotbalanced,let v1 andv2 bethenon-leafverticesofT,let

1 bealeafadjacent tov1,and

2 bealeafadjacentto v2.Then,sincev1 andv2 haveadifferentnumberofleafneighbors,thestatusvaluesof v1,v2,

1,and

2 arealldistinct,contradictingtheassumptionthatk

(

T

) =

3.Thus,diam

(

T

) =

4 ordiam

(

T

) =

5.

Supposefirstthatdiam

(

T

) =

4.LetP beapathinT oflength4.Lettheverticesof P beu1

,

u2

,

r

,

u4

,

u5 inpathorder.

Then, becauseofthe diameterrestriction,u1 andu5 are leavesof T,all neighborsofu2 andu4 besides r, u1 andu5 (if any)areleaves,andallneighborsofrbesidesu2 andu4(ifany)areeitherleavesorverticeswhoseonlyneighborsbesides rareleaves. Lett

2 bethenumberofnon-leafneighborsofr(including u2 andu4)andletb

0 bethenumberofleaf neighborsofr.SeeFig.4foranillustration.

Supposefirstthatthereexisttwonon-leafneighborsofr,sayv1andv2,whichhavedifferentnumbersofleafneighbors.

Let a1 be the number ofleaf neighbors of v1 anda2 be the number ofleaf neighbors of v2. Let

1 be one of the leaf neighbors of v1 and

2 be one of the leafneighbors of v2. Let A be the total numberof leaves whichare adjacentto verticesotherthanv1,v2,andr.Then,

s

(

r

) =

1

(

t

+

b

) +

2

(

a1

+

a2

+

A

) =

t

+

b

+

2a1

+

2a2

+

2A

s

(

v1

) =

1

(

a1

+

1

) +

2

(

t

+

b

1

) +

3

(

a2

+

A

) =

2t

+

2b

+

a1

+

3a2

+

3A

1 s

(

v2

) =

1

(

a2

+

1

) +

2

(

t

+

b

1

) +

3

(

a1

+

A

) =

2t

+

2b

+

3a1

+

a2

+

3A

1 s

(

1

) =

1

+

2

(

a1

) +

3

(

t

+

b

1

) +

4

(

a2

+

A

) =

3t

+

3b

+

2a1

+

4a2

+

4A

2 s

(

2

) =

1

+

2

(

a2

) +

3

(

t

+

b

1

) +

4

(

a1

+

A

) =

3t

+

3b

+

4a1

+

2a2

+

4A

2

.

Sincea1

=

a2,wehavethats

(

v1

) =

s

(

v2

)

,s

(

1

) =

s

(

2

)

,s

(

v1

) =

s

(

1

)

,s

(

v2

) =

s

(

2

)

,s

(

r

) =

s

(

1

)

,ands

(

r

) =

s

(

2

)

. Supposea1

=

t

+

b

+

a2

+

A

1.Then,thestatusvaluesofr,v2,

1,and

2arealldistinct,acontradiction.

Nowsupposea1

=

t

+

b

+

a2

+

A

1.Ifa2

=

t

+

b

+

3a1

+

A

1,thenthestatusvaluesofv1,

1,

2,andrarealldistinct, acontradiction.Thus,a2

=

t

+

b

+

3a1

+

A

1.Then,thestatusvaluesofv2,

1,

2,andrarealldistinct,acontradiction.

Thus,allnon-leafneighborsofrmusthavethesamenumberofleafneighbors,saya.Supposerhasb

1 leafneighbors, andlet wbealeafneighborofr.Letv beanynon-leafneighborofr,andlet

beanyleafneighborofv.Then,

s

() =

1

+

2a

+

3

(

t

+

b

1

) +

4

(

at

a

) =

3t

+

3b

2

+

4at

2a s

(

w

) =

1

+

2

(

t

+

b

1

) +

3

(

at

) =

2t

+

2b

1

+

3at

s

(

v

) =

1

(

a

+

1

) +

2

(

t

+

b

1

) +

3

(

at

a

) =

2t

+

2b

1

+

3at

2a s

(

r

) =

1

(

t

+

b

) +

2

(

at

) =

t

+

b

+

2at

.

Sincet

2 anda

1,itfollowsthats

() >

s

(

w

) >

s

(

v

) >

s

(

r

)

.Thiscontradictstheassumptionthatk

(

T

) =

3.Ifrhasnoleaf neighbors,thenT

T andtheverticesofT havethreesimilarityclasses:r,theneighborsofr,andtheleavesofT.Itcan beeasilyverifiedthatthestatusvaluesofverticesfromthesethreeclassesaredistinct.Thus,ifk

(

T

) =

3 anddiam

(

T

) =

4, itfollowsthat T

T.Bysimilararguments,itcanbeshownthatifk

(

T

) =

3 anddiam

(

T

) =

5,thenT

T.

4. Statussequenceandgraphpartitions

Inthissectionweexplorehowthewell-known conceptsofequitableandorbitpartitionsrelate tothestatussequence ofagraph.

Références

Documents relatifs

From the left to the right : 400 MeV/U carbon superconducting cyclotron, proton cyclotron, proton gantry, horizontal fixed beam treatment room, two proton / carbon gantries and

To test whether the species richness and diversity of marine communities were similar across localities, habitats and sites, a multifactorial analysis of variance (ANOVA) was

grants to civil society organizations; technical assistance on a variety of aspects of tobacco control including legislation drafting; advice on strategic litigation; participation

The question of analyzing the security of the system for collecting, transmitting and receiving telemetric information on the status of individual elements of

Published in Bulletin CILA (Commission interuniversitaire suisse de linguistique appliquée (« Bulletin VALS-ASLA » since 1994) 44, 7-38, 1986. which should be used for any reference

The commissioning of Virgo started mid 2003 and has been performed in several steps: the alignment and the longitudinal controls of the Fabry-Perot cavities have first been

As it will be explained, Virgo is not a bare Michelson interferometer; several optical components are used in addition to the classical 50% reflecting beam splitter (BS) and

After the installation of a new Power Recycling mirror together with a new suspended Injection Bench, a second commissioning phase started to debug the up-grades acquiring