• Aucun résultat trouvé

Influence of a passive layer on the kinetics of nitric acid reduction

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of a passive layer on the kinetics of nitric acid reduction"

Copied!
56
0
0

Texte intégral

(1)

HAL Id: cea-02442336

https://hal-cea.archives-ouvertes.fr/cea-02442336

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are

pub-L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non,

Tribollet, V. Vivier

To cite this version:

M. Benoit, C. Bataillon, B. Gwinner, F. Miserque, C. Sanchez-Sanchez, et al.. Influence of a passive layer on the kinetics of nitric acid reduction. EIS 2016 - 10th International Symposium on Electro-chemical Impedance Spectroscopy, Jun 2016, A Toxa, Spain. �cea-02442336�

(2)

Marie Benoit1*, Christian Bataillon2, Benoît Gwinner1 ; Frédéric

Miserque2, Carlos M. Sanchez-Sanchez3, Bernard Tribollet3, Vincent

Vivier3**

1CEA, DEN, DANS, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191

Gif-sur-Yvette, France. *marie.benoit@cea.fr

2CEA, DEN, DANS, DPC, SCCME, Laboratoire d’Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette,

France.

3Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire Interfaces et Systèmes

Electrochimiques, 4 place Jussieu, F-75005, France. **vincent.vivier@upmc.fr

(3)

Concentrated nitric acid environment

Use of stainless steel as materials for containing concentrated nitric acid (passive materials with good corrosion/dissolution resistance in oxidizing media)

Nitric acid

Stainless Steel 304L

Spent nuclear fuel

(4)

Concentrated nitric acid environment

Use of stainless steel as materials for containing concentrated nitric acid (passive materials with good corrosion/dissolution resistance in oxidizing media)

Nitric acid

Stainless Steel 304L

Spent nuclear fuel

Areva La Hague PUREX process

However, for the prediction of

the lifetime of the equipment,

it is essential to know the

corrosion mechanisms and

(5)

e- Fe Cr Ni Nip+ Crm+ Fen+ HNO2 HNO3 Stainless Steel medium Anodic process: oxidation of material Cathodic process: medium reduction

(6)

e- Fe Cr Ni Nip+ Crm+ Fen+ HNO2 HNO3 medium Anodic process: oxidation of material Cathodic process: medium reduction

4 to 8 M HNO3  highly concentrated acidic solution

The kinetics of these two processes can be characterized by their current density

Stainless Steel

(7)

Anodic process: oxidation of material Cathodic process: medium reduction j E

Active domain Passive domain Transpassive domain Nanometric passive layer acier FeIII CrIII e- Fe Cr Ni Nip+ Crm+ Fen+ HNO2 HNO3 Stainless Steel medium

(8)

Anodic process: oxidation of material Cathodic process: medium reduction j E

Active domain Passive domain Transpassive domain

Nanometric passive layer

acier

FeIII CrIII

4 to 8 M HNO3  highly concentrated

e- Fe Cr Ni Nip+ Crm+ Fen+ HNO2 HNO3 Stainless Steel medium

(9)

Anodic process: oxidation of material Cathodic process: medium reduction j E

Active domain Passive domain Transpassive domain Nanometric passive layer acier FeIII CrIII e- Fe Cr Ni Nip+ Crm+ Fen+ HNO2 HNO3 Stainless Steel medium

(10)

Anodic process: oxidation of material Cathodic process: medium reduction j E

Active domain Passive domain Transpassive domain

Ecorr

4 to 8 M HNO3  highly concentrated acidic solution e- Fe Cr Ni Nip+ Crm+ Fen+ HNO2 HNO3 Stainless Steel medium

(11)

Anodic process: oxidation of material Cathodic process: medium reduction j E

Active domain Passive domain Transpassive domain

Ecorr

corrosion products increase reaction rate

e- Fe Cr Ni Nip+ Crm+ Fen+ HNO2 HNO3 Stainless Steel medium

(12)

Mechanisms of nitric reduction:

Kinetics of nitric reduction:

gold stainless steel

[D. Sicsic et al., Eur. J. Inorg. Chem., 2014]

[R. Lange et al., Electrochem. Com. 2013] [F. Balbaud et al., Eur. J. Inorg. Chem.,2000]

(13)
(14)

e

-HNO2 HNO3

Gold

(15)

e

-HNO2 HNO3

Gold

medium

(16)

e

-HNO2 HNO3

Gold

medium

4 to 8 M HNO3  highly concentrated acidic solution

(17)

e

-HNO2 HNO3

Gold

medium

4 to 8 M HNO3  highly concentrated acidic solution

 oxidizing media

j

E

Active domain Passive domain Transpassive domain

[Thèse E. Tcharkhtchi, 2014]

Nanometric passive layer

The study of the medium reduction was done on inert material EV/ENH 1,15 0,90 0,60 0,20 Vetter Schmid

(18)

e

-HNO2 HNO3

Gold

medium

4 to 8 M HNO3  highly concentrated acidic solution

 oxidizing media

j

E

Active domain Passive domain Transpassive domain

[Thèse E. Tcharkhtchi, 2014]

Nanometric passive layer

The study of the medium reduction was done on inert material EV/ENH 1,15 0,90 0,60 0,20 0,05 Vetter Schmid

4 to 8 M HNO3  highly concentrated acidic solution

(19)

e

-HNO2 HNO3

Gold

medium

4 to 8 M HNO3  highly concentrated acidic solution

 oxidizing media

j

E

Active domain Passive domain Transpassive domain

[Thèse E. Tcharkhtchi, 2014]

Nanometric passive layer

The study of the medium reduction was done on inert material EV/ENH 1,15 0,90 0,60 0,20 Vetter Schmid

4 to 8 M HNO3  highly concentrated

(20)

e- Fe Cr Ni Nip+ Crm+ Fen+ HNO2 HNO3 Stainless Steel medium V. Razygraev [1] + F. Balbaud [2]:

Mechanisms in competition on stainless steel R. Lange [3]: Schmid dominates on stainless steel

HNO2,sol → HNO2,ads

HNO2,ads + e- + H+ → NO

ads + H2O

NOads +12H+ + 12NO3− + 12H2O → 32HNO2,𝑠𝑠𝑠𝑠𝑠𝑠 Schmid’s mechanisms:

(21)
(22)

RDE results

EIS results

-0,5 -0,4 -0,3 -0,2 -0,1 0,0 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 J( mA /c m² ) E-E° (V) ω = 30 rpm - exp ω = 50 rpm - exp ω = 70 rpm - exp ω = 100 rpm - exp ω = 150 rpm - exp 0 5 10 15 20 25 30 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 - I m (Z ) (o h m ) Re(Z) (ohm) exp f = 50 kHz f = 100 Hz f = 1 Hz f = 10 mHz 50 rpm Autocatalytic processes Charge transfer Diffusion process Adsorption

HNO2,sol → HNO2,ads

HNO2,ads+ e-+ H+ → NO

(23)

-0,5 -0,4 -0,3 -0,2 -0,1 0,0 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 J( mA /c m² ) E-E° (V) ω = 30 rpm - fit ω = 50 rpm - fit ω = 70 rpm - fit ω = 100 rpm - fit ω = 150 rpm - fit ω = 30 rpm - exp ω = 50 rpm - exp ω = 70 rpm - exp ω = 100 rpm - exp ω = 150 rpm - exp

Modelling of current and EIS

0 5 10 15 20 25 30 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 - I m (Z ) (o h m ) Re(Z) (ohm) exp f = 50 kHz f = 100 Hz f = 1 Hz f = 10 mHz 50 rpm Charge transfer Diffusion process Adsorption

HNO2,sol → HNO2,ads

𝑖𝑖𝑆𝑆=2𝑘𝑘𝑘1

2𝛿𝛿 𝐹𝐹𝐹𝐹 2𝐶𝐶 ∗𝐷𝐷𝑘𝑘𝑘

(24)

-0,5 -0,4 -0,3 -0,2 -0,1 0,0 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 J( mA /c m² ) E-E° (V) ω = 30 rpm - fit ω = 50 rpm - fit ω = 70 rpm - fit ω = 100 rpm - fit ω = 150 rpm - fit ω = 30 rpm - exp ω = 50 rpm - exp ω = 70 rpm - exp ω = 100 rpm - exp ω = 150 rpm - exp

Modelling of current and EIS

0 5 10 15 20 25 30 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 - I m (Z ) (o h m ) Re(Z) (ohm) exp f = 50 kHz f = 100 Hz f = 1 Hz f = 10 mHz 50 rpm Charge transfer Diffusion process Adsorption 0 5 10 15 20 25 30 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 - I m (Z ) (o h m ) Re(Z) (ohm) fit exp f = 50 kHz f = 100 Hz f = 1 Hz f = 10 mHz

Good fit for low speed HNO2,sol → HNO2,ads

HNO2,ads+ e-+ H+ → NO ads+ H2O 1 𝑍𝑍𝑓𝑓 = −𝐹𝐹𝐹𝐹 𝑘𝑘2 ′. 𝐶𝐶 𝑆𝑆0. 𝑏𝑏2(1 − 𝜃𝜃𝑆𝑆) − 𝑘𝑘2′. 𝐶𝐶𝑆𝑆0.∆𝐸𝐸 + 𝑘𝑘𝑘∆𝜃𝜃 2(1 − 𝜃𝜃𝑆𝑆)∆𝐶𝐶 0 ∆𝐸𝐸 𝑖𝑖𝑆𝑆=2𝑘𝑘𝑘1 2𝛿𝛿 𝐹𝐹𝐹𝐹 2𝐶𝐶 ∗𝐷𝐷𝑘𝑘𝑘 2+ 2𝛽𝛽𝐷𝐷𝑘𝑘𝑘3− 𝛽𝛽𝑘𝑘′2𝑘𝑘3′ − 8𝐹𝐹2𝐹𝐹2𝛽𝛽𝐶𝐶∗𝐷𝐷𝑘𝑘𝑘22𝑘𝑘𝑘3𝛿𝛿 + 𝐹𝐹𝐹𝐹 𝛽𝛽𝑘𝑘𝑘2𝑘𝑘𝑘3𝛿𝛿 − 2𝐶𝐶∗𝐷𝐷𝑘𝑘′3− 2𝛽𝛽𝐷𝐷𝑘𝑘𝑘2 ²

(25)
(26)

Which is the limiting step on stainless steel?

0 2 4 6 8 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 700rpm 500rpm 200rpm 0rpm j (µ A /c m ²) time (min) 0,95 V/ENH 0,85 V/ENH 0,65 V/ENH 0,55 V/ENH 0,50 V/ENH 0,45 V/ENH 0,40 V/ENH 1000rpm

(27)

Which is the limiting step on stainless steel?

0 2 4 6 8 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 700rpm 500rpm 200rpm 0rpm j (µ A /c m ²) time (min) 0,95 V/ENH 0,85 V/ENH 0,65 V/ENH 0,55 V/ENH 0,50 V/ENH 0,45 V/ENH 0,40 V/ENH 1000rpm

No influence of rotation speed on stainless steel (from 4M 40°C – to 8M

(28)

Which is the limiting step on stainless steel?

0 2 4 6 8 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 700rpm 500rpm 200rpm 0rpm j (µ A /c m ²) time (min) 0,95 V/ENH 0,85 V/ENH 0,65 V/ENH 0,55 V/ENH 0,50 V/ENH 0,45 V/ENH 0,40 V/ENH 1000rpm

No influence of rotation speed on stainless steel (from 4M 40°C – to 8M

(29)

Which is the limiting step on stainless steel?

0 2 4 6 8 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 700rpm 500rpm 200rpm 0rpm j (µ A /c m ²) time (min) 0,95 V/ENH 0,85 V/ENH 0,65 V/ENH 0,55 V/ENH 0,50 V/ENH 0,45 V/ENH 0,40 V/ENH 1000rpm

No influence of rotation speed on stainless steel (from 4M 40°C – to 8M

(30)

Which is the limiting step on stainless steel?

0 2 4 6 8 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 700rpm 500rpm 200rpm 0rpm j (µ A /c m ²) time (min) 0,95 V/ENH 0,85 V/ENH 0,65 V/ENH 0,55 V/ENH 0,50 V/ENH 0,45 V/ENH 0,40 V/ENH 1000rpm

No influence of rotation speed on stainless steel (from 4M 40°C – to 8M

(31)

Which is the limiting step on stainless steel?

0 2 4 6 8 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 700rpm 500rpm 200rpm 0rpm j (µ A /c m ²) time (min) 0,95 V/ENH 0,85 V/ENH 0,65 V/ENH 0,55 V/ENH 0,50 V/ENH 0,45 V/ENH 0,40 V/ENH 1000rpm

No influence of rotation speed on stainless steel (from 4M 40°C – to 8M

(32)

Which is the limiting step on stainless steel?

No diffusion limitation

Charge transfer and adsorption are limited steps on stainless steel

No influence of rotation speed on stainless steel (from 4M 40°C – to 8M

100°C) 0 2 4 6 8 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 700rpm 500rpm 200rpm 0rpm j (µ A /c m ²) time (min) 0,95 V/ENH 0,85 V/ENH 0,65 V/ENH 0,55 V/ENH 0,50 V/ENH 0,45 V/ENH 0,40 V/ENH 1000rpm

(33)

Which is the limiting step on stainless steel?

No diffusion limitation

No influence of rotation speed on stainless steel (from 4M 40°C – to 8M

100°C) 0 2 4 6 8 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 700rpm 500rpm 200rpm 0rpm j (µ A /c m ²) time (min) 0,95 V/ENH 0,85 V/ENH 0,65 V/ENH 0,55 V/ENH 0,50 V/ENH 0,45 V/ENH 0,40 V/ENH 1000rpm

(34)

0 1x104 2x104 3x104 4x104 5x104 6x104 7x104 8x104 9x104 0,0 5,0x103 1,0x104 1,5x104 2,0x104 2,5x104 3,0x104 3,5x104 4,0x104 20 mHz 260mHz 260mHz -I m(Z )/ O h m Re(Z)/ Ohm 0,40 V/ENH 0,45 V/ENH 0,50 V/ENH 0,55 V/ENH 0,60 V/ENH 0,65 V/ENH 0,70 V/ENH 0,75 V/ENH 0,80 V/ENH 0,85 V/ENH 163mHz

Experimental results at 4M 40°C on passivated stainless steel 0.5 cm²

20 30 40 50 60 70 80 90 101 102 103 104 105 0,85V/ENH 0,80V/ENH 0,75V/ENH 0,70V/ENH 0,65V/ENH 0,60V/ENH 0,55V/ENH 0,50V/ENH 0,45V/ENH 0,40V/ENH IZ I ( O h m ) P has e ( °)

(35)

-0 1x104 2x104 3x104 4x104 5x104 6x104 7x104 8x104 9x104 0,0 5,0x103 1,0x104 1,5x104 2,0x104 2,5x104 3,0x104 3,5x104 4,0x104 20 mHz 260mHz 260mHz -I m(Z )/ O h m Re(Z)/ Ohm 0,40 V/ENH 0,45 V/ENH 0,50 V/ENH 0,55 V/ENH 0,60 V/ENH 0,65 V/ENH 0,70 V/ENH 0,75 V/ENH 0,80 V/ENH 0,85 V/ENH 163mHz 50 60 70 80 90 103 104 105 0,85V/ENH 0,80V/ENH 0,75V/ENH 0,70V/ENH 0,65V/ENH 0,60V/ENH 0,55V/ENH 0,50V/ENH 0,45V/ENH I ( O h m ) e ( °) HF domain:

Oxide layer thickness

(36)

20 30 40 50 60 70 80 90 101 102 103 104 105 0,85V/ENH 0,80V/ENH 0,75V/ENH 0,70V/ENH 0,65V/ENH 0,60V/ENH 0,55V/ENH 0,50V/ENH 0,45V/ENH 0,40V/ENH IZ I ( O h m ) P has e ( °)

Constant Phase Element: Dielectric properties of the oxide layer

HF domain:

Oxide layer thickness

0 1x104 2x104 3x104 4x104 5x104 6x104 7x104 8x104 9x104 0,0 5,0x103 1,0x104 1,5x104 2,0x104 2,5x104 3,0x104 3,5x104 4,0x104 20 mHz 260mHz 260mHz -I m(Z )/ O h m Re(Z)/ Ohm 0,40 V/ENH 0,45 V/ENH 0,50 V/ENH 0,55 V/ENH 0,60 V/ENH 0,65 V/ENH 0,70 V/ENH 0,75 V/ENH 0,80 V/ENH 0,85 V/ENH 163mHz

Experimental results at 4M 40°C on passivated stainless steel 0.5 cm²

(37)

-50 60 70 80 90 103 104 105 0,85V/ENH 0,80V/ENH 0,75V/ENH 0,70V/ENH 0,65V/ENH 0,60V/ENH 0,55V/ENH 0,50V/ENH 0,45V/ENH I ( O h m ) e ( °)

Constant Phase Element: Dielectric properties of the oxide layer

Faradaic processes HF domain:

Oxide layer thickness

0 1x104 2x104 3x104 4x104 5x104 6x104 7x104 8x104 9x104 0,0 5,0x103 1,0x104 1,5x104 2,0x104 2,5x104 3,0x104 3,5x104 4,0x104 20 mHz 260mHz 260mHz -I m(Z )/ O h m Re(Z)/ Ohm 0,40 V/ENH 0,45 V/ENH 0,50 V/ENH 0,55 V/ENH 0,60 V/ENH 0,65 V/ENH 0,70 V/ENH 0,75 V/ENH 0,80 V/ENH 0,85 V/ENH 163mHz

(38)

20 30 40 50 60 70 80 90 101 102 103 104 105 0,85V/ENH 0,80V/ENH 0,75V/ENH 0,70V/ENH 0,65V/ENH 0,60V/ENH 0,55V/ENH 0,50V/ENH 0,45V/ENH 0,40V/ENH IZ I ( O h m ) P has e ( °)

Constant Phase Element: Dielectric properties of the oxide layer

Faradaic processes

CPE

Z

Re

metal oxide medium

Equivalent circuit used: HF domain:

Oxide layer thickness

0 1x104 2x104 3x104 4x104 5x104 6x104 7x104 8x104 9x104 0,0 5,0x103 1,0x104 1,5x104 2,0x104 2,5x104 3,0x104 3,5x104 4,0x104 20 mHz 260mHz 260mHz -I m(Z )/ O h m Re(Z)/ Ohm 0,40 V/ENH 0,45 V/ENH 0,50 V/ENH 0,55 V/ENH 0,60 V/ENH 0,65 V/ENH 0,70 V/ENH 0,75 V/ENH 0,80 V/ENH 0,85 V/ENH 163mHz

Experimental results at 4M 40°C on passivated stainless steel 0.5 cm²

(39)

-10-2 10-1 100 101 102 103 104 0 10 20 30 40 50 60 70 80 90 100 101 102 103 104 105 0,85V/ENH 0,80V/ENH 0,75V/ENH 0,70V/ENH 0,65V/ENH 0,60V/ENH 0,55V/ENH 0,50V/ENH 0,45V/ENH 0,40V/ENH IZ I ( O h m ) P has e ( °) f (Hz) Bode representation: Cdl Cox At infinite frequencies:

(40)

-Cole & -Cole representation: 4M 40°C 0.85 V/ENH 10-2 10-1 100 101 102 103 104 0 10 20 30 40 50 60 70 80 90 100 101 102 103 104 105 0,85V/ENH 0,80V/ENH 0,75V/ENH 0,70V/ENH 0,65V/ENH 0,60V/ENH 0,55V/ENH 0,50V/ENH 0,45V/ENH 0,40V/ENH IZ I ( O h m ) P has e ( °) f (Hz) Bode representation: 0,0 5,0x10-5 1,0x10-4 1,5x10-4 2,0x10-4 0,0 5,0x10-5 1,0x10-4 1,5x10-4 2,0x10-4 C i m a g ( F /c m ²) C real (F/cm²) 0 1x10-5 2x10-5 0,0 5,0x10-6 1,0x10-5 1,5x10-5 2,0x10-5 Cdl Cox At infinite frequencies:

(41)

-By extrapolation: C= 4.1 10-6 F.cm-2

If we consider this value as the capacitance of Cole & Cole representation:

4M 40°C 0.85 V/ENH 10-2 10-1 100 101 102 103 104 0 10 20 30 40 50 60 70 80 90 100 101 102 103 104 105 0,85V/ENH 0,80V/ENH 0,75V/ENH 0,70V/ENH 0,65V/ENH 0,60V/ENH 0,55V/ENH 0,50V/ENH 0,45V/ENH 0,40V/ENH IZ I ( O h m ) P has e ( °) f (Hz) Bode representation: 0,0 5,0x10-5 1,0x10-4 1,5x10-4 2,0x10-4 0,0 5,0x10-5 1,0x10-4 1,5x10-4 2,0x10-4 C i m a g ( F /c m ²) C real (F/cm²) 0 1x10-5 2x10-5 0,0 5,0x10-6 1,0x10-5 1,5x10-5 2,0x10-5 Cdl Cox At infinite frequencies:

(42)

-10-2 10-1 100 101 102 103 104 0 10 20 30 40 50 60 70 80 90 10-3 10-2 10-1 100 101 102 103 104 105 106 0,85V/ENH 0,40V/ENH fit fit IZ I ( O h m ) P has e ( °) f (Hz) 0 1x104 2x104 3x104 4x104 5x104 6x104 7x104 8x104 9x104 0,0 5,0x103 1,0x104 1,5x104 2,0x104 2,5x104 3,0x104 3,5x104 4,0x104 20 mHz 260mHz 260mHz -I m(Z )/ O h m Re(Z)/ Ohm 0,40 V/ENH 0,45 V/ENH 0,50 V/ENH 0,55 V/ENH 0,60 V/ENH 0,65 V/ENH 0,70 V/ENH 0,75 V/ENH 0,80 V/ENH 0,85 V/ENH 163mHz CPE Zf Re

metal oxide medium

(43)

-20 30 40 50 60 70 80 90 10-1 100 101 102 103 104 105 106 0,85V/ENH IZ I ( O h m ) P has e ( °) 5,0x103 1,0x104 1,5x104 2,0x104 2,5x104 3,0x104 3,5x104 4,0x104 20 mHz 260mHz 260mHz -I m(Z )/ O h m 0,40 V/ENH 0,45 V/ENH 0,50 V/ENH 0,55 V/ENH 0,60 V/ENH 0,65 V/ENH 0,70 V/ENH 0,75 V/ENH 0,80 V/ENH 0,85 V/ENH 163mHz CPE Zf Re

metal oxide medium

(44)

-For CPE parameters we used Brugg’s formula to obtain capacitance

(45)

For CPE parameters we used Brugg’s formula to obtain capacitance

values:

(46)

HNO2,sol → HNO2,ads HNO2,ads+ e-+ H+ → NO ads+ H2O NOads+12H++12NO3− +12H2O → 32HNO2 CPE Zf Re 𝜃𝜃1𝑆𝑆 = 𝑘𝑘1′ 𝑘𝑘1′ + 𝑘𝑘2′𝑘𝑘. 𝑘𝑘1′ 3′ + 𝑘𝑘2 ′. 𝛽𝛽 𝜃𝜃2𝑆𝑆 = 𝑘𝑘2′ 𝑘𝑘3′ 𝜃𝜃1𝑆𝑆 ∆𝜃𝜃2 ∆𝐸𝐸 = 𝑘𝑘2′. 𝑏𝑏2. 𝜃𝜃1𝑆𝑆 + 𝑘𝑘2′. ∆𝜃𝜃∆𝐸𝐸1 𝑗𝑗𝜔𝜔 + 𝑘𝑘3′ ∆𝜃𝜃1 ∆𝐸𝐸 = −𝑘𝑘2′. 𝑏𝑏2. 𝛽𝛽. 𝜃𝜃1𝑆𝑆 − 𝑘𝑘1′𝑗𝑗𝜔𝜔 + 𝑘𝑘. 𝑘𝑘2′. 𝑏𝑏2. 𝜃𝜃1𝑆𝑆 3′ 𝑗𝑗𝜔𝜔𝛽𝛽 + 𝑘𝑘1′ + 𝑘𝑘2′. 𝛽𝛽 + 𝑘𝑘𝑗𝑗𝜔𝜔 + 𝑘𝑘2′. 𝑘𝑘1′ 3′ 1 = −𝐹𝐹𝐹𝐹 𝑘𝑘′. 𝛽𝛽.∆𝜃𝜃1 ′. 𝑏𝑏 . 𝛽𝛽. 𝜃𝜃 k1 k°2 k3 Stationary solutions:

Non stationary solutions:

Impedance:

𝑘𝑘𝑘1= 𝑘𝑘1[𝐻𝐻𝐻𝐻𝐻𝐻2]

𝑘𝑘𝑘2 = 𝑘𝑘2°𝑎𝑎𝐻𝐻𝑒𝑒(𝑏𝑏2 𝐸𝐸−𝐸𝐸𝐸 )

(47)

10-2 10-1 100 101 102 103 104 0 10 20 30 40 50 60 70 80 90 10-3 10-2 10-1 100 101 102 103 104 105 106 0,85V/ENH 0,40V/ENH fit fit IZ I ( O h m ) P has e ( °) f (Hz)

Fitted kinetic constants: k1 = 0.03 ± 0.02 cm.s-1 k°2= 6.10-4 ± 2 10-4 s-1 [k3= 2 107 s-1] On Gold [3] : k 1= 1.103cm.s-1 k°2= 1.105s-1 k3= 1.107s-1 1,5x104 2,0x104 2,5x104 3,0x104 3,5x104 4,0x104 260mHz -I m(Z )/ O h m 0,40 V/ENH 0,45 V/ENH 0,50 V/ENH 0,55 V/ENH 0,60 V/ENH 0,65 V/ENH 163mHz

(48)

-Kinetic constants validated by stationary current (4M 40°C): Constants used: k1= 0,03 cm.s-1 k°2= 6.10-4 s-1 k3= 2.106 s-1 fit exp 𝑖𝑖𝑆𝑆 = −FS𝑘𝑘𝑘2𝜃𝜃1𝑆𝑆 𝛽𝛽 𝜃𝜃1𝑆𝑆 = 𝑘𝑘1′ 𝑘𝑘1′ + 𝑘𝑘2′𝑘𝑘. 𝑘𝑘1′ 3′ + 𝑘𝑘2 ′. 𝛽𝛽

(49)

On stainless steel:

Same mechanism as on gold

Conversely to gold electrode, the autocatalytic processes play

a minor role

Oxide layer slows down kinetics reduction

Oxide layer properties can be obtained by EIS (thickness &

dielectrics properties)

Kinetic constants have been determined and verified by

modelling of stationary current

(50)

DEN

Commissariat à l’énergie atomique et aux énergies alternatives | PAGE 49

J. Agullo, C. Bataillon, M. Bigot, N. Brijou-Mokrani, N. Cavaliere, C-A, Deblonde, P. Fauvet, O. Geneve, N. Gruet, S. Heurtault, P. Laghoutaris, B. Laurent, F. Miserque, B. Puga Nieto, M. Rivollier, R. Robin, C.M.

Sanchez-Sanchez, P. Suegama, B. Tribollet.

for your

attention

(51)

HNO2,sol → HNO2,ads

HNO2,sol+ e-+ H+ → NOads+ H2O

NOads+12H++1 2NO3−+ 1 2H2O → 3 2HNO2 NOads+ e-→ NO -sol 1 k°2 k°4 k3

(52)
(53)
(54)

Successive mechanisms (Vetter and Schmid) on gold Mechanisms in competition on stainless steel

R. Lange [3]: Schmid dominates on stainless steel

HNO NO NO+ NO

2

Chronoamperometry µ-electrode Pt (∅ 25 µm) Istatafter 400 s ;

dS-S= 2 µm, HNO38 mol/L à Tamb.

(55)

HNO2,sol → HNO2,ads

HNO2,sol+ e-+ H+ → NOads+ H2O

NOads+12H++1 2NO3−+ 1 2H2O → 3 2HNO2 NOads+ e-→ NO -sol CPE Zf Re powerlaw 1 k°2 k°4 k3

(56)

Influence de la géométrie

Diffusion 1D

2D – 3D

Références

Documents relatifs

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

SHD 1M1316 Mémoire sur la reconnaissance de la côte d’Oran par Tatareau capitaine SHD 1M1316 Mémoire sur la reconnaissance de la côte d’Oran par Tatareau capitaine au

Evolution of the Toxoglossa Venom Apparatus as Inferred by Molecular Phylogeny of the Terebridae Mandë Holford, Nicolas Puillandre, Yves Terryn, Corinne Cruaud, Baldomero2.

After more than 30 years of operations, it is nevertheless significant that the two oldest gated communities for the upper-middle class (Canyon Lake) and the middle-class of

Comme dans le cas précédent, la répartition des valeurs chimiques (de phosphates, de carbonates, de pH, d'albumine, d'acides gras) et les variations de couleur ont été mises

-9 ـِؾإج مآه ثامىلٗم ةعاضلا ةصىجلا تلماكلا : ضبلا ًم ءاكوب مآه ثامىلٗم لزاص تؿؾاالإا ذمؿٌ تب٢اغمب ثاُلمٗلا ةعىهب ةغمخؿم غٞىٍو تمىلٗالإا يف