• Aucun résultat trouvé

LATTICE CORRESPONDANCE AND CRYSTALLOGRAPHY OF MARTENSITES IN TITANIUM ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "LATTICE CORRESPONDANCE AND CRYSTALLOGRAPHY OF MARTENSITES IN TITANIUM ALLOYS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00222155

https://hal.archives-ouvertes.fr/jpa-00222155

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LATTICE CORRESPONDANCE AND

CRYSTALLOGRAPHY OF MARTENSITES IN TITANIUM ALLOYS

K. Mukherjee, M. Kato

To cite this version:

K. Mukherjee, M. Kato. LATTICE CORRESPONDANCE AND CRYSTALLOGRAPHY OF

MARTENSITES IN TITANIUM ALLOYS. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-

297-C4-302. �10.1051/jphyscol:1982441�. �jpa-00222155�

(2)

L A T T I C E CORRESPONDENCE AND CRYSTALLOGRAPHY O F M A R T E N S I T E S I N T I T A N I U M A L L O Y S

K. Mukherjee and M. Kato

Department of Metallurgy, Mechanics and Materials Science, Michigan State University, East Lansing, MI 48824, U.S.A.

(Accepted 9 August 1982)

A b s t r a c t . - L a t t i c e correspondence, c r y s t a l l o g r a p h y and i n t e r n a l s t r u c t u r e of v a r i o u s m a r t e n s i t e s i n t i t a n i u m a l l o y s a r e d i s c u s s e d i n a u n i f i e d manner.

S t r a i n e n e r g y m i n i m i z a t i o n c r i t e r i o n i s a p p l i e d t o d i s c u s s t h e o r i e n t a t i o n of h a b i t p l a n e s and l a t t i c e i n v a r i a n t s t r a i n s . A comparison of t h e p r e s e n t a n a l - y s i s w i t h e x p e r i m e n t a l o b s e r v a t i o n s h a s been c a r r i e d o u t .

I n t r o d u c t i o n . - Quenching from t h e h i g h - t e m p e r a t u r e 6 (b.c.c.) p h a s e of t i t a n i u m a l l o y s r e s u l t s i n t h e f o r m a t i o n of v a r i o u s k i n d s of m a r t e n s i t e s s u c h a s a ' ( h . c . p . ) ,

a" ( o r t h o r h o m b i c ) , f.c.0. ( f a c e - c e n t e r e d orthorhombic) and f . c . c . ( f a c e - c e n t e r e d

c u b i c ) m a r t e n s i t e s . Except f o r t h e f.c.c. m a r t e n s i t e , which i s c o n s i d e r e d t o occur o n l y i n t h i n f i l m s [ I ] , t h e o t h e r t h r e e m a r t e n s i t e s have been found i n b u l k t i t a n i u m a l l o y s . Although t h e r e a r e many s t u d i e s a v a i l a b l e f o r t h e c r y s t a l l o g r a p h y of t h e s e m a r t e n s i t e s , i t seems t h a t no u n i f i e d u n d e r s t a n d i n g o f t h e m a r t e n s i t i c t r a n s f o r m a - t i o n s i n t i t a n i u m a l l o y s h a s been developed.

I n t h i s s t u d y , t h e l a t t i c e c o r r e s p o n d e n c e and t h e c r y s t a l l o g r a p h y o f t h e a ' , a"

and f . c . 0 . m a r t e n s i t e s w i l l be i n v e s t i g a t e d s y s t e m a t i c a l l y by u s i n g e x p e r i m e n t a l o b s e r v a t i o n s a v a i l a b l e i n t h e l i t e r a t u r e . It w i l l a l s o be shown t h a t t h e s t r a i n e n e r g y m i n i m i z a t i o n c r i t e r i o n c a n b e a p p l i e d t o d i s c u s s t h e c r y s t a l l o g r a p h y and i n t e r n a l s t r u c t u r e ( l a t t i c e i n v a r i a n t s h e a r , h a b i t p l a n e , e t c . ) of t h e s e m a r t e n s i t e s . L a t t i c e Correspondence and C r y s t a l S t r u c -

t u r e Change.- F i g u r e 1 shows t h e f o u r

u n i t c e l l s o f t h e b . c . c . 6 - p h a s e a n d i t s X [ I f a c e - c e n t e r e d t e t r a g o n a l e q u i v a l e n t . It h a s b e e n demonstrated [2

-

41 t h a t a l l of t h e m a r t e n s i t e s ( a ' , a" and f.c.0.) c a n b e g e n e r a t e d from t h i s t e t r a g o n a l l a t t i c e . By u s i n g l a t t i c e parameter v a l u e s o f t h e p a r e n t 0-phase and t h e m a r t e n s i t e s , t h e l a t t i c e v a r i a n t s t r a i n (Bain s t r a i n ) c a n b e c a l c u l a t e d . T a b l e 1 shows t h e l a t t i c e p a r a m e t e r s o f t h e p a r e n t and m a r t e n s i t e

p h a s e s [ I , 3 , 41 used i n t h e p r e s e n t

z

COO1J8

s t u d y . From t h e s e v a l u e s , t h e Bain -..---

s t r a i n s based o n t h e x-y'-z' c o o r d i n a t e s y s t e m ( t - s y s t e m ) i n t h e t e t r a g o n a l c e l l i n F i g . 1 c a n b e c a l c u l a t e d and t h e s e a r e a l s o shown i n T a b l e 1. For t h e c a s e of t h e a' m a r t e n s i t e , t h e Bain s t r a i n i s b r o u g h t a b o u t by t h e well-known Burgers

mechanism where t h e o p e r a t i o n of t h e F i g . 1.- L a t t i c e c o r r e s p o n d e n c e of mar- {1121<111>0 s h e a r s y s t e m s followed by a t e n s i t e s showing t h e f o u r u n i t c e l l s of s m a l l volume i n c r e a s e r e s u l t s i n t h e t h e b.c.c. c r y s t a l and i t s f a c e - (OOO1)a' p l a n e from t h e (011)0 p l a n e . I n c e n t e r e d t e t r a g o n a l e q u i v a l e n t . a d d i t i o n t o t h e above Bain s t r a i n , a

a 6 [ 0 1 1 ] 0 / 6 s h u f f l i n g on e v e r y o t h e r ( 0 1 1 ) ~

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982441

(3)

JOURNAL

DE

PHYSIQUE

Table 1.- L a t t i c e param- e t e r s and t h e c a l c u l a t e d Bain s t r a i n s i n t i t a n i u m a l l o y s analyzed i n t h e p r e s e n t study.

l a t t i c e parame e r

/

of b p h a s e

(1) I

3.259

1 1

3 2 6 3

I

m a x t e n s i t e a l l o y

a' Ti-5Mn [I]

l a t t i c e parameter

p l a n e i s n e c e s s a r y to c r e a t e t h e h.c.p. s t r u c t u r e a s shown i n Fig. 2 ( a ) . Bain s t r a i n

The formation of t h e a" m a r t e n s i t e can be explained i n e s s e n t i a l l y t h e same manner. The d i f f e r e n c e l i e s i n t h e f a c t t h a t a f t e r t h e o p e r a t i o n of t h e {1121<111>6 s h e a r s , t h e ( 0 1 1 ) ~ plane does not completely change i n t o t h e hexagonal close-packed p l a n e b u t s t o p s midway between t h e ( 0 1 1 ) ~ and t h e (0001),1 l e a v i n g t h e a n g l e s 81 and 8 2 i n Fig. 2(b) s l i g h t l y d i f f e r e n t from 120 degrees. Thus, t h e a" m a r t e n s i t e can be c o n s i d e r e d a s a " d i s t o r t e d " a ' m a r t e n s i t e . It has been r e p o r t e d [2, 3 , 5 1 t h a t a t r a n s i t i o n from t h e a' t o a" m a r t e n s i t e occurs with an i n c r e a s i n g 8 - s t a b i l i z i n g s o l u t e c o n t e n t . This i s s u e w i l l b e f u r t h e r d i s c u s s e d .

a"

TI-1OV-2Ee-3AI (31

a

-

2.950

c

-

4.685

The f.c.0. m a r t e n s i t e , on t h e o t h e r hand, i s a r a t h e r unique one found only i n a b u l k Ti-12.6% V a l l o y [ 4 ] . I n t h i s c a s e , no s h u f f l i n g i s n e c e s s a r y and t h e l a t t i c e correspondence i s very s i m i l a r t o t h a t i n t h e Au-Cd m a r t e n s i t e [6]. It should be noted, from Table 1, t h a t t h e components of t h e Bain s t r a i n f o r t h e f.c.0.

m a r t e n s i t e have t h e o p p o s i t e s i g n s t o t h o s e f o r t h e a ' and a" m a r t e n s i t e s . Thus, t h e f.c.0. m a r t e n s i t e cannot b e considered t o be a " d i s t o r t e d " a ' m a r t e n s i t e .

f . c . 0 . Ti-12.6V (41

c1

-

-0.0948

c 2

-

0.1086

c 3

-

0.0165

Phenomenological Analysis Based on t h e S t r a i n Energy Minimization C r i t e r i o n . - Mura e t a l . 171 and Kato e t a l . [81 have shown t h a t t h e r e i s a one-to-one correspondence

a

-

3.01

b

-

4.83

c

-

4 . 6 2

- -

- -

between t h e phenomenological c r y s t a l l o g r a p h i c theory of m a r t e n s i t i c t r a n s f o r m a t i o n s [9, 101 and t h e s t r a i n energy minimization approach based on t h e s m a l l deformation t h e o r y [ 7 , 81. According t o t h e i r a n a l y s i s , i f t h e t r a n s f o r m a t i o n s t r a i n

ET

(Bain

s t r a i n p l u s l a t t i c e i n v a r i a n t s t r a i n ) i n a n xl-xp-x3 c a r t e s i a n c o o r d i n a t e syAtem b

-

4.386

c

-

4.467

rl -0.0652

C 2

-

0.0607

C 3

-

0.0145

shufflina

c1

-

0.0913

C 2

-

-0.0495

c 3

-

-0.0320

Fig. 2.- C r y s t a l s t r u c t u r e change from b.c.c. t o

( a ) h.c.p. ( a ' ) and (b) o r thorhombic (a1').

( 0 1 planes

\

o

1st and 3 r d layer atoms 2nd layer atoms

(a) (OOOI)a, planes

(4)

t h e s t r a i n energy becomes minimum ( z e r o ) and t h e c o n d i t i o n i n e q u a t i o n ( I ) , with t h e x3-axis a s an i n v a r i a n t p l a n e ( h a b i t plane) normal, i s e q u i v a l e n t t o t h e i n v a r i a n t p l a n e c o n d i t i o n i n t h e phenomenological theory. The advantage of u s i n g t h e small- deformation theory i s t h a t t h e c a l c u l a t i o n becomes much simpler and even i f t h e t h r e e p r i n c i p a l components of t h e Bain s t r a i n a r e d i f f e r e n t , such a s t h e c a s e i n t h e p r e s e n t m a r t e n s i t e s , t h e f i n a l s o l u t i o n s can be o b t a i n e d i n simple a n a l y t i c a l forms.

Let us now apply t h i s s t r a i n energy minimization c r i t e r i o n t o simultaneously a n a l y z e t h e c r y s t a l l o g r a p h y of t h e a ' , a" and t h e f.c.0. m a r t e n s i t e s . A s shown i n Table 1, t h e Bain s t r a i n i n t h e t-system f o r t h e a l l t h r e e m a r t e n s i t e s can b e w r i t t e n i n a form of

E O O

1

. l = C i j :2

,

t

AS can b e seen i n Table 1, c 1 < 0 ( c o n t r a c t i o n ) and E 2 , E3 > 0 (expansion) f o r t h e a ' and a" m a r t e n s i t e s whereas EI > 0 and E2, € 3 < 0 f o r t h e f.c.0. m a r t e n s i t e . I f e q u a t i o n (2) i s viewed based on t h e x-y-z system i n t h e p a r e n t 8-phase (8-system), we have

It h a s been r e p o r t e d t h a t t h e l a t t i c e i n v a r i a n t s h e a r :or each m a r t e n s i t e occurs dominantly by twinning and t h e twinning p l a n e s a r e { l O 1 l } a ~ [1],{111)(111 [5] and

{ l l f ~ f . c

.,

[4]. I n t e r e s t i n g l y , a l l of t h e s e twinning p l a n e s correspond t o t h e ( l l O ) B of t h e p a r e n t 6-phase i n Fig. 1. Thus, by u s i n g t h e 6-system, t h e twinned v a r i a n t should have t h e Bain s t r a i n of

+

E3)/2 0 (c2

-

C3)/2

o

1 O

] ,

( v a r i a n t 2).

-

s 3 ) / 2 0 (E2 f c 3 ) / 2 '3

From e q u a t i o n s (3) and ( 4 ) , t h e t o t a l t r a n s f o r m a t i o n s t r a i n ,

rij,

can be w r i t t e n a s

where f i s t h e volume f r a c t i o n of t h e v a r i a n t 1 which is t o be determined. The h a b i t p l a n e and f can be o b t a i n e d i n t h e following manner.

L e t t h e u n i t v e c t o r

x,

normal t o t h e h a b i t p l a n e , b e w r i t t e n i n t h e $-system a s

By r o t a t i n g t h e c o o r d i n a t e system, we can f i n d a new XI-x2-x3 system i n which t h e t o t a l t r a n s f o r m a t i o n s t r a i n (5) s a t i s f i e s t h e i n v a r i a n t p l a n e c o n d i t i o n of e q u a t i o n (1). I n t h i s new system, $ becomes p a r a l l e l t o t h e x3-axis. It should be noted t h a t e q u a t i o n (1) a c t u a l l y g i v e s t h r e e simultaneous e q u a t i o n s w i t h f , 6 and 4 a s t h e

(5)

JOURNAL DE PHYSIQUE

t h r e e unknown p a r a m e t e r s . These can b e s o l v e d e a s i l y and t h e r e s u l t s become;

where

2 2 ( 1

-

£)El

+

f ( E 2

+

E3)

t a n

6

=

-

9

2fe1

+

( 1

-

f ) ( E 2

+

E3)

It c a n e a s i l y b e shown t h a t s o l u t i o n s c o r r e s p o n d i n g t o t h e p o s i t i v e and nega- t i v e s i g n s i n e q u a t i o n (9) a r e c r y s t a l l o g r a p h i c a l l y e q u i v a l e n t . Moreover, i t s h o u l d b e n o t e d t h a t t h e r e a r e two i n d e p e n d e n t ( c r y s t a l l o g r a p h i c a l l y d i f f e r e n t ) s o l u t i o n s f o r t h e o r i e n t a t i o n of t h e h a b i t p l a n e , depending on t h e p o s i t i v e and n e g a t i v e v a l u e s of t a n $ i n e q u a t i o n (7).

By u s i n g t h e d a t a f o r t h e Bain s t r a i n i n T a b l e 1, t h e h a b i t p l a n e normal and t h e volume f r a c t i o n of t h e v a r i a n t 1 were c a l c u l a t e d from e q u a t i o n s (7) t h r o u g h ( 9 ) f o r e a c h o f t h e t h r e e m a r t e n s i t e s and t h e r e s u l t s a r e shown i n T a b l e 2. The h a b i t p l a n e n o r m a l s a r e a l s o p l o t t e d i n F i g . 3 where t h e s t e r e o g r a p h i c p r o j e c t i o n i s b a s e d on t h e i n d i c e s of t h e p a r e n t B-phase.

D i s c u s s i o n . - To i n v e s t i g a t e t h e a c c u r a c y of t h e p r e s e n t s m a l l d e f o r m a t i o n a n a l y s i s , t h e r e s u l t s of t h e n u m e r i c a l c a l c u l a t i o n of t h e h a b i t p l a n e normal f o r t h e a ' mar- t e n s i t e i n a Ti-Mn a l l o y by Knowles and Smith I l l ] , based on t h e phenomenological t h e o r y , a r e a l s o shown i n Fig. 3. S i n c e t h e same imput d a t a a r e a d o p t e d i n t h e p r e s e n t a n a l y s i s , i t i s n o t s u r p r i z i n g t o s e e from F i g . 3 t h a t b o t h t h e p r e s e n t a n a l y s i s and t h e phenomenological t h e o r y p r e d i c t e s s e n t i a l l y t h e same o r i e n t a t i o n of t h e h a b i t p l a n e nozmals; one of t h e s o l u t i o n s b e l o n g i n g t o t h e Class A (a- u+) and t h e o t h e r t o t h e C l a s s A (a+ wt.) i n t h e Mackenzie-Bowles n o t a t i o n [ I , 11, 121. From t h i s , we c a n s a y t h a t t h e s m a l l - d e f o r m a t i o n s t r a i n e n e r g y m i n i m i z a t i o n c r i t e r i o n c a n be u s e d i n l i e u o f t h e phenomenological t h e o r y t o d i s c u s s t h e c r y s t a l l o g r a p h y o f t h e t i t a n i u m a l l o y m a r t e n s i t e s . One main a d v a n t a g e i n t h e s m a l l d e f o r m a t i o n t h e o r y i s t h a t no n u m e r i c a l c a l c u l a t i o n i s i n v o l v e d and a s y s t e m a t i c i n v e s t i g a t i o n i s p o s s i b l e t o f i n d t h e change i n s o l u t i o n s due t o t h e change i n imput p a r a m e t e r s .

It h a s been found i n Ti-Mn a l l o y s

11,

111 t h a t t h e r e a r e two d i f f e r e n t t y p e s of a ' m a r t e n s i t e s , o n e w i t h t h e {3341B and t h e o t h e r w i t h t h e {3441B h a b i t p l a n e s . As c a n b e s e e n from F i g . 3 , none of t h e two s o l u t i o n s f o r t h e a' m a r t e n s i t e a c c u r a t e l y e x p l a i n s t h e above h a b i t p l a n e i n d i c e s . Hammond and K e l l y [ I ] were t h u s f o r c e d t o u s e a n a d j u s t a b l e " d i l a t a t i o n " p a r a m e t e r , 6, i n t h e phenomenological t h e o r y t o b r i n g t h e i r r a t i o n a l h a b i t p l a n e normals t o t h e o b s e r v e d i n d i c e s .

Knowles and Smith [ l l ] t o o k a d i f f e r e n t approach. They a n a l y z e d t h e zig-zag T a b l e 2.- C a l c u l a t e d s o l u t i o n s f o r t i t a n i u m a l l o y m a r t e n s i t e s .

martensite volume fraction of variant 1, f

i:

a'' 0.699 a

'

0.703

f . c . 0 . 0.698

(6)

Fig. 3.- Calculated habit plane normals for titanium alloy martensites.

parent-martensite interface in the martensite on the basis of the Burgers vector minimization criterion of the interface dislocations. According to their calculation, the total magnitude of the Burgers vector averaged over the entire interface becomes zero. This physically means that no long-range strain field is created due to the transformation and the invariant plane condition in the macro- scopic habit plane is still satisfied in their model. Thus, the orientation of the calculated habit plane on the average remains the same as that predicted from the phenomenological analysis shown in Fig. 3.

The reason why the calculated orientations of the habit plane in Fig. 3 do not coincide with the observed (334l6 or (344) plane might simply be understood if we make the following analysis. Hammond and telly

[I]

as well as Knowles and Smith

[ll] used the lattice parameter of the 6-phase of the Ti-5% Mn alloy (ag = 3.259

2

as shown in Table 1) measured at room temperature. Since the 6 + U' martensitic transformation takes place at a higher temperature, the lattice parameter should be compensated by taking into account the thermal dilatation. Davis et al. [5], on the other hand, have systematically obtained the lattice parameters of the 6-phase and the a' and a" martensites in Ti-Mo alloys taking into account the thermal dilatation as well as the change in the lattice parameter of the 6-phase due to the change in the molybdenum content. According to their observation, the a' martensite is formed in the alloy with as much as 4% Mo and the a" martensite is observed in Ti-6% Mo and Ti-8% Mo alloys. Similar tendency from h.c.p. to orthorhombic structure change as- sociated with increasing B-stabilizing

elements is also observed in other titanium

alloys

[2,

41. Table 3.- Bain strains

for Ti-Mo martensites 151.

Table 3 shows the systematic change in the Bain strain due to the change in the molybdenum content obtained by Davis et al.

151. By using these data, trial calculation based on the strain energy minimization criterion was made to see the systematic change in the orientation of the habit plane with increasing molybdenum content.

(7)

JOURNAL DE PHYSIQUE

Fig. 4.- Calculated habit plane normals for Ti-Mo alloy martensites.

Figure 4 summarizes the results of the-calculation. As can be seen, the habit plane normals lie close to the [434]@ and [433IB poles. As recently pointed out by several investigators [2, 51, there is a continuous change in crystal structure of martens- ite from a' to a" with increasing 6-stabilizing elements. This fact results in the continuous change in the orientation of the habit plane as shown in Fig. 4.

The f.c.0. martensite, on the other hand, is considered to have a totally dif- ferent crystal structure and the transformation resembles that in a Au-Cd [6] or Cu- A1-Ni 1131 system. It is interesting to know that all

of

these martensites are reported to have (1331 habit planes 14, 6, 131. As shown in Fig. 3, both of the solutions of the habit plane normals for the f.c.0. martensite lie reasonably close to the <133>B-type poles. Thus, further investigation is necessary to know which solution is the better description of this transformation.

Acknowledgement.- This research is partially supported by the U.S. Office of Naval Research under Contract No. NO0014 82-K-0268.

References.

[I] HAMMOND C. and KELLY P. M., Acta metall. 17 (1969) 869.

[2] SASANO H., SUZUKI T., NAKANO

0.

and KIMURA H., "Titanium '80 Science and Tech- nology," The Met. Soc. AIME, New York (1980) p. 717.

[3] DUERIG T. W., MIDDLETON R. M., TERLINDE G. T. and WILLIAMS J. C., ibid, p. 1503 [4]

OKA

M., LEE C. S. and SHIMIZU K., Metall. Trans. 2 (1972) 37.

[5] DAVIS R., FLOWER H. M. and WEST D. R. F., J. Mater. Sci. 16 (1979) 712.

[6] LIEBERMAN D. S., WECHSLER M. S. and READ T. A., J. Appl. Phys. 26 (1955) 473.

[7]

MURA

T., MORI T. and KATO M.,

J.

Mech. Phys. Solids 26 (1976) 305.

[8] KATO M., MIYAZAKI T. and SUNAGA Y., Scripta Met. 2 (1977) 915.

[9] BOWLES J. S. and MACKENZIE J. K., Acta metall. 2 (1954) 129, 138, 224.

[lo] WECHSLER M. S., LIEBERMAN D. S. and READ T. A., Trans. AIME 197 (1953) 1503.

[ll] KNOWLES K. M. and SMITH D. A., Acta metall. 2 (1981) 1445.

[12] MACKENZIE

J.

K. and BOWLES J. S., Acta metall. 5 (1957) 137.

[13] OTSUKA K. and SHIMIZU K., Japanese J.

of

Appl. Phys. 8 (1969) 1196.

Références

Documents relatifs

Tc interaction with crystalline rock from Äspö (Sweden): Effect of in-situ rock redox capacity Florian Mathias Huber, Yury Totskiy, Remi Marsac, Dieter Schild, Ivan Pidchenko,

rates of methanol emissions and stomatal conductance, and rates of methanol production and methanol emissions predicted by the Niinemets-Reichstein model using the default

If the stiffness of the structure is low as compared to that of the ground (figures 10 and 11), the structure is considered to be flexible and the horizontal movement of the ground

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Summarizing our experimental results, we have shown that measurements of the &#34;field gradient-strain&#34; tensor are an important tool in studying the relative significance of

is expected for the precipitation kinetics. However, all diffraction experiments with this alloy.. Variation of tile model parameters with tile aging time of the Cu-1.0 at.9b Ti

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des