• Aucun résultat trouvé

Dose- and time-dependent effects of oral octopamine treatments on the sucrose responsiveness in stingless bees (Melipona scutellaris)

N/A
N/A
Protected

Academic year: 2021

Partager "Dose- and time-dependent effects of oral octopamine treatments on the sucrose responsiveness in stingless bees (Melipona scutellaris)"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-01532444

https://hal.archives-ouvertes.fr/hal-01532444

Submitted on 2 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dose- and time-dependent effects of oral octopamine

treatments on the sucrose responsiveness in stingless

bees (Melipona scutellaris)

Sofía I. Mc Cabe, Marco W. Benetoli Ferro, Walter M. Farina, Michael Hrncir

To cite this version:

(2)

Dose- and time-dependent effects of oral octopamine

treatments on the sucrose responsiveness in stingless bees

(

Melipona scutellaris )

Sofía I. Mc CABE1,Marco W. Benetoli FERRO2,Walter M. FARINA1,Michael HRNCIR2,3

1

Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, IFIBYNE-CONICET. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria,

C1428EHA, Buenos Aires, Argentina

2

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP CEP: 14040-901, Brazil

3

Laboratório de Ecologia Comportamental, Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido, Avenida Francisco Mota, 572, Mossoró, RN CEP: 59625-900, Brazil

Received 23 November 2015– Revised 22 February 2016 – Accepted 10 March 2016

Abstract– Biogenic amines modulate physiological responses and, consequently, the behaviour of animals. Here, we present the first pharmacological approach to evaluate the influence of octopamine (OA) in stingless bees (Apidae, Meliponini), a group of highly eusocial bees distributed in the tropical and southern subtropical areas of the globe. In sucrose response threshold assays, foragers of Melipona scutellaris showed an increased responsiveness to sucrose after oral OA treatments. The effect of OA on the bees’ responsiveness to sucrose was OA dose-dependent and lasted for up to 1 h. Our results indicate that experimental approaches similar to the ones used for honey bees, Apis mellifera , are feasible for stingless bees. This opens opportunities to study the variability of aminergic regulation of collective behaviour in social bees.

Meliponini / biogenic amines / sucrose response threshold / neuropharmacology

1. INTRODUCTION

Biogenic amines play a crucial role in regulat-ing physiological responses and, consequently, the behaviour of animals (Libersat and Pflueger

2004; Farooqui2012). In invertebrates, they may act as neurotransmitters, neuromodulators, or neu-rohormones, and affect several physiological levels, such as the central nervous system, the sensory periphery, the motor neurons, and the muscles (Orchard 1982; Roeder 1999; Libersat and Pflueger 2004; Scheiner et al. 2006; Farooqui2012). Their effect ranges from simple

responses, such as the regulation of an individ-ual’s sensitivity to environmental stimuli or of its motivational state, to more complex ones, such as the modulation of associative learning and mem-ory formation (Erber and Kloppenburg 1995; Hammer and Menzel1998; Bicker1999; Roeder

1999; Bloch et al. 2000; Scheiner et al. 2002,

2006; Burke et al.2012).

A particularly interesting animal group for studying the effects of biogenic amines are the eusocial insects, in which modulations of the in-dividuals’ behaviour may affect the functioning of the entire colony. Here, behavioural differences among workers are causally linked to differences in their octopamine (OA), dopamine (DA), or serotonin (5-HT) levels (Wagner-Hulme et al.

1999; Schulz et al. 2002; Scheiner et al. 2006; Kamhi and Traniello2013). The present study is

Corresponding author: M. Hrncir, michael@ufersa.edu.br

Manuscript editor: Monique Gauthier

(3)

the first pharmacological approach to evaluate the influence of OA in stingless bees (Apidae, Meliponini), a group of highly eusocial bees distributed in the tropical and southern sub-tropical areas of the globe (Michener 1974; Camargo 2013). In contrast to the honey bee, Apis mellifera L. (Apidae, Apini), most meliponine species occur in rather narrow geo-graphic ranges (Camargo2013) and show strong species-specific environmental specialisations concerning the organisation of nest-internal activ-ities (e.g. adjustments of the colony reproductive cycle, regulation of the nest climate) and the co-ordination of nest-external tasks (e.g. defence, food collection) (Michener 1974; Maia-Silva et al.2014,2015).

Virtually nothing is known about the physi-ological underpinning of individual and collec-tive behaviours in stingless bees. In this con-text, studies of the influence of biogenic amines are particularly important due to their impact on both the individual and the colony level. Until now, however, pharmacological approaches have not been used to understand the functional role of biogenic amines in meliponine bees. The scope of the present study was to evaluate whether experimental procedures to investigate the influence of biogenic amines on individuals similar to those established for honey bees are feasible as well for stingless bees. Given the well-studied effect of OA on reward perception in A. mellifera (Scheiner et al. 2002), we in-vestigated whether, to which extent, and for how long experimentally increased levels of OA affect the gustatory responsiveness to su-crose in foragers of the stingless bee Melipona scutellaris Latreille, 1811 (Apidae, Meliponini).

2. MATERIAL AND METHODS

The present study was performed on the campus of the University of São Paulo at Ribeirão Preto-SP, Brazil. For our experiments, we used two queenright colonies of M. scutellaris that had been established at the uni-versity campus 2 years prior to the study. Both colonies contained brood and ample food storage, and were housed in wooden observation nest boxes inside a lab-oratory building of the biology department, connected to the outside environment by means of plastic tubes

trough the laboratory wall that allowed the bees to forage freely. Bees were trained to collect 50 % w /w unscented sucrose solution (sucrose≥ 99.5 %, Sigma-Aldrich ®, Brazil; no scent added to solution) at an artificial food source at a distance of 5 m from the nest entrances. As soon as at least five individuals from each colony foraged regularly at the feeder, we captured the arriving foragers individually in glass vials on landing at the food source. The bees were immobilised by chilling on ice (approximately 3 min) and, subsequently, harnessed in appropriately cut pipette tips that restrained the body movements but allowed free movement of the antennae and mouthparts (Mc Cabe et al.2007).

2.1. Sucrose response threshold (SRT) tests

After 50 min in darkness at room temperature (ap-proximately 28 °C at a relative humidity of approxi-mately 60 %), we performed gustatory response assays following the sucrose response threshold (SRT) proto-col originally established for honey bees (Apis mellifera : Page et al. 1998; Pankiw and Page 2000) and, more recently, successfully adapted for stingless bees (Melipona quadrifasciata and Scaptotrigona aff. depilis : Mc Cabe et al. 2007; Mc Cabe and Farina

2009). The antennae of the harnessed bees were touched with toothpicks imbibed with sucrose solutions of in-creasing sugar concentration (0.1, 0.3, 1, 3, 10, 30, 50 % w /w ). An individual’s response to this sucrose stimulus was considered positive only in case it fully extends the proboscis after touching its antennae with the toothpick. Between sucrose stimulations, the bees were tested for their response to pure water in order to control for the potential effects of repeated sucrose stim-ulations that may lead to either sensitization or habitua-tion, therewith affecting subsequent responses. Individuals that did not respond to any of the sucrose concentrations were excluded from the analysis. To eval-uate a bee’s sucrose responsiveness during a particular SRT test (see below), we calculated its gustatory response score obtained in the test (GRS = the sum of sugar solu-tions to which it showed a positive response: GRS = 7, maximum responsiveness; GRS = 1, minimum respon-siveness; bees with GRS = 0 excluded from analysis).

2.2. Experiment 1—concentration effect

First, we evaluated the effect of different OA con-centrations on the foragers’ sucrose responsiveness. For

(4)

this, the harnessed bees were allocated in four experi-mental groups. On each day of experiment, we assigned approximately equal numbers of foragers to each exper-imental group. After an initial SRT test, the foragers were fed with 5μL of 50 % w /w sucrose solution (sucrose≥ 99.5 %: Sigma-Aldrich ®, Brazil) containing different doses of OA (Sigma-Aldrich ®, Brazil): (i) no OA (control group, CO; n = 37 bees), (ii) 9.5μg OA (0.01 M; n = 37 bees), (iii) 19μg OA (0.02 M; n = 43 bees), (iv) 38μg OA (0.04 M; n = 41 bees). All oral treatments were performed using used calibrated preci-sion syringes (Hamilton ® syringe 75N, volume 5μL: Sigma-Aldrich ®, Brazil). Thirty minutes after feeding, the foragers’ responsiveness to sucrose was tested again. Thus, for each individual, we obtained two GRS, one before and one after the oral OA treatment.

2.3. Experiment 2—time effect

In a second assay, we investigated temporal changes concerning the effect of oral OA treatments on the for-agers’sucrose responsiveness. After an initial SRT test, we fed 5μL of 50 % w /w sucrose solution (sucrose ≥ 99.5 %, Sigma-Aldrich ®, Brazil) to the harnessed bees. The su-crose solution was either pure (control group, CO; n = 34 bees) or contained 9.5μg OA (experimental group, OA; n = 37 bees). This OA dose was chosen owing to its significant effect on the SRT of M. scutellaris foragers (experiment 1) and based on a similar experimental series in honey bees, in which the same OA concentration (0.01 M) had been applied (Pankiw and Page2003). The response of both groups was tested repeatedly 30, 45, 60, and 75 min after the oral treatments.

2.4. Statistical analysis

In order to assess the effect of different OA concen-trations on the sucrose responsiveness of M. scutellaris (experiment 1), each experimental group (CO, 9.5μg, 19μg, 38 μg OA) was evaluated concerning potential changes in the individuals’ GRS using Wilcoxon signed-rank tests (pairwise comparison: GRS before vs. after oral treatment). Changes in sucrose responsiveness (GRS) over time after oral OA treatments (experiment 2) were analysed using two-way repeated measures ANOVA (Tukey’s test for post hoc pairwise compari-son), with treatment (CO vs. OA) and time of the SRT test (0–75 min) as predictors for the observed variation in gustatory responsiveness to sucrose. In both experiments,

we excluded bees that did not respond to any of the sucrose concentrations from the analysis. Statistical tests (Wilcoxon Signed Rank Test, Two Way Repeated Measures ANOVA) were performed using the analysis software SigmaPlot 12.5 (Systat Software Inc., USA). Theα-level of statistical significance was P ≤ 0.05.

3. RESULTS

3.1. Dose-dependent effect of OA on sucrose responsiveness ofM. scutellaris

Octopamine had a dose-dependent effect on sucrose responsiveness. The foragers’ gustatory responsiveness to sucrose increased significantly after the ingestion of OA (Figure1a). In contrast to bees from the control group (CO), OA-treated foragers showed higher gustatory response scores (GRS) after receiving the biogenic amine than before the respective oral treatment. This effect was significant for the experimental groups that had been fed with 9.5 and 19μg OA. However, at the highest OA dose (38 μg), the observed in-crease in the bees’ GRS was not statistically sig-nificant (Wilcoxon signed-rank test; CO: W = 68, n = 37 bees, P = 0.455; OA 9.5 μg: W = 166, n = 37 bees, P = 0.043; OA 19 μg: W = 311, n = 43 bees, P = 0.001; OA 38 μg: W = 141, n = 41 bees, P = 0.070).

3.2. Time-dependent effect of OA on sucrose responsiveness ofM. scutellaris

(5)

4. DISCUSSION

The present study is the first pharmacological approach evaluating the effect of biogenic amines on the behaviour of stingless bees (Apidae, Meliponini), demonstrating significant behaviour-al changes in foragers of M. scutellaris after the ingestion of octopamine (OA). Moreover, it indi-cates that these bees can be successfully used in neuropharmacological assays that involve com-plex and temporally extensive behavioural proce-dures in the laboratory. Stingless bees are a group of highly eusocial bees comprising more than 500 mainly tropical species (Camargo 2013). Neotropical species, in particular, show a remark-able diversity concerning life style and ecology (Michener1974; Barth et al.2008; Hrncir2009; Jarau 2009; Hrncir and Maia-Silva 2013). Thus, they offer an excellent opportunity to investigate the relationship between ecologi-cal constraints and the evolution of behav-ioural adaptations on both the individual and colony level as well as of the underlying physiological mechanisms.

Neurophysiologically, the behavioural organi-sation and coordination of social insect colonies is

based on modulations of the individuals’ re-sponsiveness to task-specific stimuli through biogenic amines like OA, dopamine (DA), or serotonin (5-HT) (Schulz et al. 2002; Scheiner et al. 2006; Kamhi and Traniello

2013). In honey bees, A. mellifera , the mod-ulating effect of these neurochemicals has frequently been assessed through feeding biogenic amines dissolved in sucrose solu-tion (e.g.,: Schulz and Robinson 2001; Scheiner et al 2002; Barron et al. 2002,

2007; Pankiw and Page 2003). This simple and non-invasive method has been shown to result in a dose-dependent increase of the concentration of the respective neurochemi-cal in the bees’ brain (Schulz and Robinson

2001) and, therefore, provides a powerful tool to investigate the functional role of biogenic amines.

The results of our study demonstrate that a single oral treatment with OA was sufficient to increase the responsiveness of M. scutellaris to sucrose stimuli. In line with similar findings for A. mellifera (Scheiner et al. 2002; Pankiw and Page2003), the observed increase in sucrose re-sponsiveness was OA dose-dependent and

0 1 2 3 4 5 S R G 0 9.5 19 38 ** * ns ns

a

Dose of octopamine (µg/bee)

0 1 2 3 4 5 S R G

b

OT a a 30

Time after OT (min)

a b 45 a b 60 a 75 a a c

Figure 1. Effect of oral OA treatment on sucrose responsiveness in Melipona scutellaris . Given are mean values ± SE of gustatory response scores (GRS). a GRS of foragers before (left aligned bars ) and after (right aligned bars ) feeding 5μL of sucrose solution containing different doses of OA 0 μg (pure sucrose solution; n = 37 bees), 9.5 μg (0.01 M; n = 37 bees), 19μg (0.02 M; n = 43 bees), 38 μg (0.04 M; n = 41 bees). Asterisks indicate significant differences between GRS test phases (Wilcoxon signed-rank test: ns , P > 0.05; *P < 0.05, **P < 0.005). b GRS of foragers before as well as 30, 45, 60, and 75 min after oral treatment (OT, dashed line ) with 5μL of pure sucrose solution (white bars , n = 34 bees) or 5μl of sucrose solution containing 9.5 μg OA (grey bars , n = 37 bees). Different superscript letters indicate significant differences between groups (two-way repeated measures ANOVA, Tukey’s test: P < 0.05).

(6)

measurable for up to 60 min. In honey bees, OA doses of 1.9 and 19μg were found to significantly enhance the bees’ responsiveness to sucrose (Scheiner et al.2002; Pankiw and Page2003). In line with these findings, the ingestion of 9.5 and 19 μg OA resulted in a significant increase in gustatory responsiveness of M. scutellaris . This enhancing effect, however, declined at the highest OA dose of 38μg. Several factors might be re-sponsible for this decrease in effect at the highest concentration. Studies on honey bees point to complex dose-response relationships for biogenic amines (Scheiner et al. 2002). Here, U shaped dose-response functions, similar to that found in the present study, may be due to the fact that an excess of OA antagonises its effect under physio-logical concentrations (Scheiner et al. 2006). Alternatively, the differential effect of low versus high OA doses may be explained through the participation of different intracellular signal-ling pathways depending on OA concentration (Papaefthimiou and Theophilidis 2011; Huang et al. 2012).

Although it is not clear yet, how fed bio-genic amines reach the respective brain areas in which they induce modulatory effects (Scheiner et al. 2006), oral OA treatments have been shown to increase the OA brain levels in honey bees (Schulz and Robinson

2001). These increasing endogenous OA levels and correlated increasing gustatory re-sponsiveness (Pankiw and Page 2003) are associated with the workers’ transition from hive-internal tasks to foraging (Schulz and Robinson 1999, 2001; Wagner-Hulme et al.

1999; Barron et al. 2002; Schulz et al. 2002; Barron and Robinson 2005). However, the aminergic modulation of temporal polyethism in social insects is not restricted to a single biogenic amine. In A. mellifera , in addition to OA, 5-HT and DA vary with development and differ among workers executing different tasks, suggesting the involvement of these neuromodulators in the bees’ temporal polyethism (Harris and Woodring1992; Taylor et al. 1992; Bozic and Woodring1998; Schulz and Robinson

1999).

Given the similarities of the effect of OA on the sucrose responsiveness in A. mellifera

and M. scutellaris , this biogenic amine could be as well a key molecule for modulating the division of labour in stingless bee colonies. This assumption, however, implies a natural variation in OA brain titres between bees performing different tasks. An important next step, therefore, will be the quantification of the endogenous biogenic amine levels in M. scutellaris and other meliponine species, in order to investigate whether OA has a common functional role among highly euso-cial bees. In any case, our study shows that similar experimental approaches as the ones used for A. mellifera are feasible for sting-less bees. This, on the one hand, opens op-portunities to study the variability and, even-tually, the evolution of aminergic regulation of collective behaviour in social bees. On the other hand, the possibility to use similar ex-perimental approaches facilitates comparative studies among eusocial bees concerning the effect of environmental stressors on physio-logical responses of individuals, frequently involving stress-induced changes in biogenic amine titres (Davenport and Evans 1984; Harris and Woodring1992; Even et al.2012; Farooqui

2012). Here, the impact of pesticides, particularly of neonicotinoids and formamidines, on bee behaviour has become a hot topic in recent years owing to the suspected contribution of these neurotoxins to the worldwide loss of pollinators (Farooqui 2013; van der Sluijs et al.

(7)

ACKNOWLEDGMENTS

We thank Ronaldo Zucchi for providing the neces-sary laboratory facilities and two anonymous reviewers for valuable comments and suggestions. This work was supported by grants of the Argentinian Science Foundations CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) under grant PIP11220110100472, and ANPCYT (Agencia Nacional de Promoción Científica y Tecnológica) under grant PICT-2013-1060, and the University of Buenos Aires under grant UBACYT20020130100185BA to Walter M. Farina, and by the Brazilian Science Foundations FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) under grant 2006/50809-7, and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) under grants 304722/2010-3, and 309914/2013-2 to Michael Hrncir.

Effets temporels et dépendant de la dose de l’ octopamine administrée oralement chez les abeilles sans aiguillon (Melipona scutellaris )

Meliponini / amines biogènes / seuil de réponse au sucrose / neuropharmacologie

Dosis -und zeitabhängige Effekte einer oralen Octopamin -Applikation auf die Ansprechempfindlichkeit gegenüber Saccharose bei stachellosen Bienen (Melipona scutellaris )

Meliponinen / biogene Amine / Saccharose -Reaktionsschwellenwert / Neuropharmakologie

REFERENCES

Barron, A.B., Robinson, G.E. (2005) Selective modulation of task performance by octopamine in honey bee (Apis mellifera ) division of labour. J. Comp. Physiol. A. 191 , 659–668

Barron, A.B., Schulz, D.J., Robinson, G.E. (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera ). J. Comp. Physiol. A. 188 , 603–610

Barron, A.B., Maleszka, R., Vander Meer, R.K., Robinson, G.E. (2007) Octopamine modulates honey bee dance behavior. Proc. Natl. Acad. Sci. U. S. A. 104 , 1703–1707 Barth, F.G., Hrncir, M., Jarau, S. (2008) Signals and cues in the r ecruitment behavior of stingless bees (Meliponini). J. Comp. Phsyiol. A 194 , 313–327 Bicker, G. (1999) Biogenic amines in the brain of the

honeybee: cellular distribution, development, and be-havioral functions. Microsc. Res. Tech. 44 , 166–178

Bloch, G., Simon, T., Robinson, G.E., Hefez, A. (2000) Brain biogenic amines and reproductive dominance in bumble bees (Bombus terrestris ). J. Comp. Physiol. A. 186 , 261–268

Bozic, J., Woodring, J. (1998) Variations of brain biogenic amines in mature honeybees and induction of recruitment behavior. Comp. Biochem. Physiol. A 120 , 737–744 Burke, C.J., Huetteroth, W., Owald, D., Perisse, E.,

Krashes, M.J., Das, G., Gohl, D., Silies, M., Certel, S., Waddell, S. (2012) Layered reward signalling through octopamine and dopamine in Drosophila . Nature 492 , 433–437

Camargo, J.M.F. (2013) Historical biogeography of the Meliponini (Hymenoptera, Apidae, Apinae) of the neo-tropical region. In: Vit, P., Pedro, S.R.M., Roubik, D.W. (eds.) Pot-honey: a legacy of stingless bees, pp. 19–34. Springer Science and Business Media, New York Davenport, A.P., Evans, P.D. (1984) Stress-induced

chang-es in the octopamine levels of insect haemolymph. Insect Biochem. 14 , 135–143

Erber, J., Kloppenburg, P. (1995) The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L.): I. Behavioral analysis of the motion-sensitive antennal reflex. J. Comp. Physiol. A. 176 , 111–118

Evans, P.D., Gee, J.D. (1980) Action of formamidine pes-ticides on octopamine receptors. Nature 287 , 60–62 Even, N., Devaud, J.M., Barron, A.B. (2012) General stress

responses in the honey bee. Insects 3 , 1271–1298 Farooqui, T. (2012) Review of octopamine in insect

ner-vous systems. Open Access Insect Physiol. 4 , 1–17 Farooqui, T. (2013) A potential link among biogenic

amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem. Int. 62 , 122–136

Hammer, M., Menzel, R. (1998) Multiple sites of associa-tive odor learning as revealed by local brain microin-jections of octopamine in honeybees. Learn. Mem. 5 , 146–156

Harris, J.W., Woodring, J. (1992) Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera ) brain. J. Insect Physiol. 38 , 29–35 Hrncir, M. (2009) Mobilizing the foraging force– mechanical

signals in stingless bee recruitment. In: Jarau, S., Hrncir, M. (eds.) Food exploitation by social insects– ecologi-cal, behavioral, and theoretical approaches, pp. 199–221. CRC Press Taylor & Francis Group, Boca Raton Hrncir, M., Maia-Silva, C. (2013) On the diversity of

foraging-related traits in stingless bees. In: Vit, P., Pedro, S.R.M., Roubik, D.W. (eds.) Pot-honey– a legacy of stingless bees, pp. 201–215. Springer Science and Business Media, New York

Huang, J., Wu, S.F., Li, X.H., Adamo, S.A., Ye, G.Y. (2012) The characterization of a concentration-sensitiveα-adrenergic-like octopamine receptor found on insect immune cells and its possible role in mediat-ing stress hormone effects on immune function. Brain Behav. Immun. 26 , 942–950

(8)

Jarau, S. (2009) Chemical communication during food exploitation in stingless bees. In: Jarau, S., Hrncir, M. (eds.) Food exploitation by social insects– ecological, behavioral, and theoretical approaches, pp. 223–249. CRC Press Taylor & Francis Group, Boca Raton Kamhi, J.F., Traniello, J.F.A. (2013) Biogenic amines and

collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav. Evol. 82 , 220–236

Libersat, F., Pflueger, H.J. (2004) Monoamines and the orchestration of behavior. Bioscience 54 , 17–25 Maia-Silva, C., Imperatriz-Fonseca, V.L., Silva, C.I.,

Hrncir, M. (2014) Environmental windows for forag-ing activity in stforag-ingless bees, Melipona subnitida Ducke and Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Sociobiology 61 , 378–385

Maia-Silva, C., Hrncir, M., Silva, C.I., Imperatriz-Fonseca, V.L. (2015) Survival strategies of stingless bees (Melipona subnitida ) in an unpredictable environ-ment, the Brazilian tropical dry forest. Apidologie 46 , 631–643

Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B. (2001) Neonicotinoids: in-secticides acting on insect nicotinic acetylcholine re-ceptors. Trends Pharmacol. Sci. 22 , 573–580 Mc Cabe, S.I., Farina, W.M. (2009) Odor information

transfer in the stingless bee Melipona quadrifasciata : effect of in-hive experiences on classical conditioning of proboscis extension. J. Comp. Physiol. A. 195 , 113–122

Mc Cabe, S.I., Hartfelder, K.H., Santana, W.C., Farina, W.M. (2007) Odor discrimination in classical condi-tioning of proboscis extension in two stingless bee species in comparison to Africanized honeybees. J. Comp. Physiol. A. 193 , 1089–1099

Mengoni Goñalons, C.M., Farina, W.M. (2015) Effects of sublethal doses of imidacloprid on young adult honey-bee behaviour. PLoS One 10 , e0140814

Michener, C.D. (1974) The social behavior of the bees– a comparative study. The Belknap Press of Harvard University Press, Cambridge-MA

Orchard, I. (1982) Octopamine in insects: neurotransmitter, neurohormone, and neuromodulator. Can. J. Zool. 60 , 659–669

Page, R.E., Erber, J., Fondrk, M.K. (1998) The effect of genotype on response thresholds to sucrose and forag-ing behavior of honey bees (Apis mellifera L.). J. Comp. Physiol. A. 182 , 489–500

Pankiw, T., Page, R.E. (2000) Response threshold to su-crose predict foraging division of labor in honeybees. Behav. Ecol. Sociobiol. 47 , 265–26

Pankiw, T., Page, R.E. (2003) Effect of pheromones, hor-mones, and handling on sucrose response thresholds of honey bees (Apis mellifera L.). J. Comp. Physiol. A. 189 , 675–684

Papaefthimiou, C., Theophilidis, G. (2011) Octopamine—a single modulator with double action on the heart of two insect species (Apis mellifera macedonica and Bactrocera oleae ): acceleration vs. inhibition. J. Insect Physiol. 57 , 316–325

Roeder, T. (1999) Octopamine in invertebrates. Prog. Neurobiol. 59 , 533–561

Scheiner, R., Plückhahn, S., Öney, B., Blenau, W., Erber, J. (2002) Behavioural pharmacology of octopamine, ty-ramine and dopamine in honey bees. Behav. Brain Res. 136 , 545–553

Scheiner, R., Baumann, A., Blenau, W. (2006) Aminergic control and modulation of honeybee behaviour. Curr. Neuropharmacol. 4 , 259–276

Schulz, D., Robinson, G.E. (1999) Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. J. Comp. Physiol. A. 184 , 481–488

Schulz, D., Robinson, G.E. (2001) Octopamine influences the division of labor in honey bee colonies. J. Comp. Physiol. A. 187 , 53–61

Schulz, D.J., Barron, A.B., Robinson, G.E. (2002) A role for octopamine in honey bee division of labor. Brain Behav. Evol. 60 , 350–359

Taylor, D.J., Robinson, G.E., Logan, B.J., Laverty, R., Mercer, A.R. (1992) Changes in brain amine levels associated with the morphological and behavioral development of the worker honeybee. J. Comp. Physiol. A. 170 , 715–721 Tomé, H.V.V., Barbosa, W.F., Martins, G.F., Guedes, R.N.C. (2015) Spinosad in the native stingless bee Melipona quadrifasciata : Regrettable non-target tox-icity of a bioinsecticide. Chemosphere 124 , 103–109 van der Sluijs, J.P., Simon-Delso, N., Goulson, D., Maxim, L.,

Bonmatin, J.M., Belzunces, L.P. (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr. Opin. Environ. Sustain. 5 , 293–305

Références

Documents relatifs

Considering the lack of knowledge on the distri- bution and ecology of Melipona species in CAM, and aiming to provide data to develop further stud- ies concerning

Ultraspiracle of the stingless bees Melipona scutellaris and Scaptotrigona depilis: cDNA sequence and expression profiles during pupal development... Apidologie 38 (2007)

In the 2DE maps, the spot distribution of the head and thorax salivary glands showed different protein expression patterns, evidencing a lower number of soluble proteins in the

2007 ; Scheiner and Amdam, 2009 ), we only tested bees with equal sucrose responsiveness for their performance in olfactory acquisition, memory and

subnitida is able to maintain perennial colonies despite the environmental unpredictability of the Brazilian tropical dry forest: Colonies minimise any unnec- essary costs related

Observations on gynes and drones around nuptial flights in the stingless bees Tetragonisca angustula and Melipona beecheii (Hymenoptera, Apidae, Meliponinae)... 3 and 8 days old

scutellaris communicated direction (up to 140 m) more accurately than distance (up to 30 m) whereas those of M. quadrifasciata communicated direction only up to 30 m and distance up

Sucrose responsiveness of newly emerged bees correlates with their for- aging behavior that is initiated 2–3 weeks later (Pankiw and Page, 2000; Pankiw, 2003) Water foragers are