• Aucun résultat trouvé

nonlinear Serre equations Conservative discontinuous Galerkin methods for the Journal of Computational Physics

N/A
N/A
Protected

Academic year: 2022

Partager "nonlinear Serre equations Conservative discontinuous Galerkin methods for the Journal of Computational Physics"

Copied!
21
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Conservative discontinuous Galerkin methods for the nonlinear Serre equations

Jianli Zhao

a

, Qian Zhang

a,1,2

, Yang Yang

b,3

, Yinhua Xia

a,∗,4

aSchoolofMathematicalSciences,UniversityofScienceandTechnologyofChina,Hefei,Anhui230026,PRChina bDepartmentofMathematicalSciences,MichiganTechnologicalUniversity,Houghton,MI49931,USA

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received10January2020

Receivedinrevisedform17July2020 Accepted19July2020

Availableonline24July2020

Keywords:

Serreequations

DiscontinuousGalerkinmethods Conservativeschemes Well-balancedschemes

Inthispaper,wedevelopthreeconservativediscontinuousGalerkin(DG)schemesforthe one-dimensional nonlineardispersiveSerre equations,includingtwo conserved schemes for the equations in conservative form and a Hamiltonian conserved scheme for the equationsinnon-conservativeform.Oneoftheschemesownsthewell-balancedproperty viaconstructing ahighorderapproximation tothe source termforthe Serreequations with anon-flatbottom topography.By virtueofthe Hamiltonianstructure ofthe Serre equations,weintroduceanHamiltonianinvariantandthendevelopaDGschemewhich canpreservethediscreteversionofsuchaninvariant.Numericalexperimentsindifferent casesareperformedtoverifytheaccuracyandcapabilityoftheseDGschemesforsolving theSerreequations.

©2020ElsevierInc.Allrightsreserved.

1. Introduction

WeintroduceandstudythediscontinuousGalerkin(DG) methodsfortheSerreequations

⎧ ⎪

⎪ ⎩

ht

+ (

hu

)

x

=

0

,

ut

+

uux

+

ghx

+ β

h1

(

h2

γ )

x

=

0

, γ =

h

(

ux2

uxt

uuxx

),

(1.1)

whereh(x,t)representsthetotalwaterdepth,u(x,t)istheaveragedvelocityofthefluid, gisthegravitationalconstant,β isaparameterand

γ

isthefluidverticalaccelerationonthefreesurface.

TheSerreequations(1.1) can beused todescribethe shallowwaterwithlarge amplitudeonthefree surface. In[40], weknowthatEulerequationsoftheincompressiblefluidflowdescribethepropagationofthefullwaterwavesonthefree surface. Sincethe difficulty insolving thisproblemis mainlycaused bythe freesurface, various approximatemodelsfor thiscasearepresented,andthecorresponding analyticaltheoriesandnumericalsimulations arealsodeveloped.Inthese

*

Correspondingauthor.

E-mailaddresses:zjl88914@mail.ustc.edu.cn(J. Zhao),gelee@mail.ustc.edu.cn,qian77.zhang@polyu.edu.hk(Q. Zhang),yyang7@mtu.edu(Y. Yang), yhxia@ustc.edu.cn(Y. Xia).

1 Currentaddress:DepartmentofAppliedMathematics,TheHongKongPolytechnicUniversity,HongKong.

2 Researchsupportedbythe2019HongKongScholarProgram.

3 ResearchsupportedbyNSFgrantDMS-1818467.

4 ResearchsupportedbyNationalNumericalWindtunnelgrantNNW2019ZT4-B08andNSFCgrantNo.11871449.

https://doi.org/10.1016/j.jcp.2020.109729

0021-9991/©2020ElsevierInc.Allrightsreserved.

(2)

models,thepropagationofthewavesundertheassumptionofshallowwaterwithlargeamplitudeisgovernedby theSerre equations,whileforsmallamplitudeorweaklynonlinearshallowwaterwavesthemodelreducestotheclassicalBoussinesq system[40].TheSerreequationscanberegardedasanasymptoticapproximationofthetwo-dimensionalEulerequations.

Itisafullynonlineardispersivesystemthatmodelstwo-waypropagationoflongwavesonthesurfaceofanidealfluidina channel.Andifweignoreallthedispersiveterms,itwillbecomeahyperbolicsystemofshallowwaterwave.Thedispersive termscombinedbythetemporalandspatialderivativesarethemajordifficultyinsolvingtheSerreequations[16].

TheSerreequationswere firstderivedbyFrancoisSerre[36] in1953andthenrestudiedbySuandGardner[39],Green [22],Seabra-Santosetal.[35],GreenandNaghdiin[23] derivedthesystemwithtwospatialdimensionsforgeneraluneven bottomsin1976.LannesandBonnetonin[24] providedtheformalderivationoftheequations fromEulerequationsandthe justificationforseveralapproximativewaterwavemodelsofEulerequations.Furtherstudiescanbegotfromsomerecent literaturesbyBarthélemy[3],DiasandMilewski[16],CarterandCienfuegos[9],andthereferencestherein.

TherearevariousnumericalmethodsdealingwiththenonlinearSerreequationsincludinghigherorderdispersiveterms.

In [26], a pseudo-spectral methodwas proposed andused to solvethe one-dimensional Serreequations forfree surface waves in a homogeneous layer of an ideal fluid. In [29,7,8,2,18], finite difference and finite volume methods were also applied in simulating all the processes of wave transformation with nonlinear dispersive effect. For the equations with non-flat bottoms (Green-Naghdiequations),the well-balancedcentralDG method was proposed in[25],inwhich theel- liptic partwas solved by the continuous finiteelement method.A localDG (LDG)scheme was presentedin[31] for the one-dimensional Green-Naghdiequationsbasedonrotationalcharacteristicsinthevelocity field.Forthetwo-dimensional problem,DuranandMarchedevelopedaLDG methodbyrewritingtheequationsasahyperbolic-ellipticsystemin[17],and ahybridizedDGmethodwasintroducedin[34] forthesplittingsystem(thehyperbolicpartanddispersivepart).Asforthe shallowwaterequationsandotherhyperbolic conservationlaws,theconservative schemeisdemanded whenthesolution isnotsmoothenough.Inthispaper,wewilldeveloptheLDG methodsfortheSerreequationsbasedontheirconservation lawsandalsowell-balancedpropertyasintheshallowwaterequations.

TheDG methodwhichisaclassoffiniteelementmethodswasfirstintroducedbyReedandHill[33] forsolvingtheneu- trontransportlinearequationin1973.Completelydiscontinuouspiecewisepolynomialspaceisusedforthetestfunctions andthenumericalsolutionsinthismethod.Later,CockburnandShuhavemadeagreatcontributionindevelopingtheDG methodinaseriesofpapers[11,13–15].TheyusedthestablehighorderRunge-Kuttamethodsfortemporaldiscretization and theexact or approximateRiemann solvers asthe interface fluxesin spatial discretization.In addition, they alsode- signedtheLDGmethodforsolvingconvection-diffusionproblemscontainingsecondderivativeterms,whichwasmotivated by BassiandRebay[4] insolving thecompressibleNavier-Stokesequations.Atpresent, theDGmethodiswidely usedin many areas,such as gasdynamics,electromagnetism, magnetohydrodynamics, modeling ofshallow water,etc. Moreover, theDGmethodenjoysmanyattractiveproperties.Firstwecangethighorderaccuracyforthenumericalsolutionbyusing element-based test functions. Second theDG methodcan be appliedon arbitraryunstructuredmesheswiththe suitable choices ofthe interelement boundary fluxes. Finally,parallel computing caneasily be applieddue to localdata commu- nications. In addition to the advantages given above, the LDG method contains auxiliary variables that approximate the gradientsoftheprimarysolutionstotheexpectedorderofaccuracy.Thentheauxiliaryvariablescanbelocallyeliminated.

TheLDGmethodshavebeengeneralizedtononlinearwaveequationsin[49,50,43–47,51],suchasKdVequation,Camassa- Holm equationandnonlinearSchrödinger equation,etc.Werefertothereviewpaper[48] ofLDGmethodsforhigh-order time-dependentpartialdifferentialequationsandthereferencestherein.

Mostrecently, aseriesof schemesso calledstructure-preservingschemesfornonlinear waveequations havebeenat- tracted considerable attention. For some integrableequations, such as KdVtype equations[6,27,52,53], Zakharovsystem [42], Schrödinger-KdV system [41], etc., the authors proposed various conservative numerical schemes to “preserve the structures”. Forthe Serreequations,thealiasing orspurious dissipativeeffects willresultinsignificant errors forsolving large amplitudeor rapidly oscillating waves, such as the dispersive shockwaves. Therefore, Mitsotakis andDutykh [30]

constructedanon-dissipativefiniteelementmethodtoapproximatetherapidlyoscillatingwavesaccurately.Afundamental propertyoftheSerreequationsisitsHamiltonianstructure.Fromthefollowingconservationlawsderivedbytheequations (1.1),

(

hu

)

t

+ (

hu2

+

1

2gh2

+ β

h2

γ )

x

=

0

,

(1.2)

(

hu

β(

h3ux

)

x

)

t

+ (

hu2

+

1

2gh2

2

β

h3u2x

β

h3uuxx

3

β

h2hxuux

)

x

=

0

,

(1.3)

(

u

β

h1

(

h3ux

)

x

)

t

+ (

1

2u2

+

gh

1

2h2u2x

β

uh1

(

h3ux

)

x

)

x

=

0

,

(1.4)

(

1

2hu2

+

1

2

β

h3u2x

+

1

2gh2

)

t

+ ((

1 2u2

+

1

2

β

h2u2x

+

gh

+ β

h

γ )

hu

)

x

=

0

,

(1.5) wehavethecorrespondingconservativequantities E0, E1,E2andHamiltonianHintherelevantdomain I,

E0

=

I

hudx

,

(3)

E1

=

I

(

hu

β(

h3ux

)

x

)

dx

,

E2

=

I

(

u

β

h1

(

h3ux

)

x

)

dx

,

H

=

I

1

2

(

hu2

+ β

h3u2x

+

gh2

)

dx

.

Thenumericalschemescanbeestablishedbasedontheaboveconservedquantities.Fortheform(1.2),themaindifficulty indesigning E0 conservednumericalschemeliesinthemixedspatial andtemporalderivativesin

γ

.Therefore,wedesign andimplementthreekinds ofnumericalschemeswhich areall basedon theDGmethods for theone-dimensional Serre equations.ThefirsttwoareconstructedforE1andE2 intheconservativeform,andthelastonepreservestheHamiltonian invariantHinanon-conservativeform.TheE1conservedschemecanmaintainthestill-waterstationaryforthewaterwave equationsovernon-flatbottomtopography,socalledwell-balancedscheme.FortheHamiltonian(H)conservedDGscheme, we takeadvantage oftheDGmethodforHamilton-Jacobi equations[10] todeal withthe nonlinearterms.Moreover,the stabilityoftheHamiltonianfortheSerreequationswouldbeprovedtheoretically.

Thepresentpaperisorganizedasfollows.InSection2,theE1andE2conservedDGschemesaredesignedindetail.For the E1 conservedscheme,we alsodiscussandproveits well-balancedpropertywhenthe bottomisnotflat.Section 3is devotedtoelaborate theHamiltonian(H) conservedDGscheme.Moreover, thestabilitybasedon theHamiltonianisalso giveninthispart.InSection4,numericalexperimentsindifferentcircumstancesareprovidedtoillustratetheaccuracyand capabilityoftheseschemes.ConcludingremarksaregiveninSection5.

2. TheLDGdiscretizationinconservativeform

Inthissection,wedevotetodesignLDGschemesfortheSerreequationsby adoptingtheconservationlaws E1 andE2 in(1.3) and(1.4) respectively,andthengivethecorrespondingalgorithmflowcharts.

Todiscretizethespatial derivatives,we proceedasfollows.Foreach partitionoftheinterval I= [a,b],wesetthecells and cell centers as Ij= [xj1

2,xj+1

2], xj=12(xj1 2 +xj+1

2) for j=1,· · ·,N, and denote the mesh size x= max

1jNxj withxj=xj+12xj12. The meshis assumedto be quasi-uniform, namelythere existsa positive constant c such that xc min

1jNxj.

Weseekthenumericalapproximationsbelongingtothefiniteelementspace Vh

= {

v

(

x

) :

v

(

x

)

Pk

(

Ij

)

forx

Ij

,

j

=

1

,· · · ,

N

},

where Pk(Ij) denotespolynomialsin Ij ofdegree upto k. Ittranspiresthat the functionsbelonging to Vh could bedis- continuousacross thecell interfaces.ForvVh,thevaluesofv atxj+1

2,fromtheleftandrightcells Ij andIj+1,canbe regardedas v

j+12

and v+ j+12

,respectively.The notations[[v]]=v+v and{{v}}= 12(v++v)areusedto representthe jumpandthemeanofthefunctionatthecellinterfaces.

2.1. E1conservedDGscheme

Inordertotreatthemixedspatialandtemporalderivativesin(1.1),weadopttheconservationlaw(1.3) anddevelopthe E1 conservedDGschemeforthefollowingsystem

ht

+ (

hu

)

x

=

0

,

(2.1a)

zt

+ (

uz

+

1

2gh2

2

β

h3q2

)

x

=

0

,

(2.1b)

hu

β(

h3q

)

x

=

z

,

(2.1c)

q

ux

=

0

,

(2.1d)

with periodic boundary conditions.To design the LDG method,we accomplish thecomplete schemes for the system as follows.Forsimplicity,westilluseh,u,zandqtodenotethenumericalsolutions.

Forthetime-dependentequations(2.1a) and(2.1b),assumethat uandq areknownandhandz aretobesolved,then wecanformulatetheDGmethodasfollows:Findh,zVh suchthat,foralltestfunctionsθ,

ϕ

Vh,

Ij

ht

θ

dx

Ij

(

hu

xdx

+ (

f1

θ

)

j+1

2

(

f1

θ

+

)

j1

2

=

0

,

(2.2)

(4)

Ij

zt

ϕ

dx

Ij

(

uz

+

1

2gh2

2

β

h3q2

) ϕ

xdx

+ (

f2

ϕ

)

j+1

2

(

f2

ϕ

+

)

j1

2

=

0

,

(2.3)

j=1,· · ·,N. The “hat” terms f1 and f2 appear on the cell boundaryterms are the so-called numericalfluxes, which are single valuedfunctionsfrom integrationby partsandshould be designedto ensurethe stability ofthe schemes.For conservationlaws,thenumericalfluxesareusuallyLipschitzcontinuousfunctionsandpreservethemonotonepropertyand consistentproperty,namedthemonotonefluxes[12].Here,wecanchoosethefollowingdissipativenumericalflux

f1

= {{

hu

}} − α

2

[[

h

]],

(2.4)

f2

= {{

uz

+

1

2gh2

2

β

h3q2

}} − α

2

[[

z

]] ,

(2.5)

where

α

=max(|u| +

gh)isthemaximumtakenintherelevantinterval.Wehaveomittedthehalf-integerindices j+12 asallquantitiesin(2.4) arecomputedatthesamecellinterfaces.

Forthetime-independentequations(2.1c) and(2.1d),assumethathandz areknownandu andqaretobesolved,the LDGschemecanbeformulatedasfollows:Findu,qVh suchthat,foralltestfunctions

ρ

,φVh,

Ij

hu

ρ

dx

+

Ij

β

h3q

ρ

xdx

(

h3q

ρ

)

j+1

2

+ (

h3q

ρ

+

)

j1

2

=

Ij

z

ρ

dx

,

(2.6a)

Ij

q

φ

dx

+

Ij

u

φ

xdx

(

u

φ

)

j+1

2

+ (

u

φ

+

)

j1

2

=

0

.

(2.6b)

Herewetakethealternatingfluxes[48] suchas

h3q

= (

h3q

)

,

u

=

u+

.

(2.7)

2.1.1. Algorithmflowchart(I)

Thispartshowstheimplementationaboutthefully-discrete E1 conservedscheme.Forsimplicity,we choosetheEuler forwardmethodto illustratethenumericalevolutionfromtimeleveltn totime leveltn+1.Innumericalexperiments,the explicitSSP/TVDRunge-Kuttamethods[37,38] areadopted,whichcanbeviewedastheconvexcombinationsoftheEuler forwardmethod.

Leth,u,zandqdenotethevectorscontainingthedegreesoffreedomforthenumericalsolutionsh,u,zandq,respec- tively.Giventhesolutionhn,un,znandqnatthetimeleveltn,thealgorithmcanbedividedinto twosteps.

StepI:Fromtheequations(2.2) and(2.3) equippedwiththecorrespondingnumericalfluxes(2.4) and(2.5),wehavethe fullydiscreteschemeinthematrixform:

hn+1

hn

tn

=

res1

(

hn

,

un

),

(2.8)

zn+1

zn

tn

=

res2

(

hn

,

un

,

zn

,

qn

),

(2.9)

bytheEulerforwardmethodwiththetimesteptn=tn+1tn.

StepII:After weget hn+1 andzn+1 fromthe above,basedontheschemes (2.6a) and (2.6b) withthefluxes(2.7),we cansolveun+1,qn+1inthefollowingmatrixform

A

(

hn+1

)

un+1

+

B

(

hn+1

)

qn+1

=

zn+1

,

(2.10)

qn+1

+

Cun+1

=

0

,

(2.11)

where the matrices A, B and C are the corresponding discrete operators in the scheme. Then we get all the numerical solutionsattimeleveltn+1.

2.1.2. Thewell-balancedscheme

In thissubsection,weturnto presentthe well-balancedpropertyof E1 conserved DGschemefortheSerreequations withanon-flatbottom,alsoknownasGreenandNaghdiequationsin[23].Thereinto,hcanberepresentedasthesumofd and

η

,whereddenotesthebottomtopographyand

η

isthefreesurfaceelevation.Inconsiderationoftheone-dimensional shallowwaterflowswithnon-flatbottomtopography,themodelcanbeformulatedasfollows:

(5)

ht

+ (

hu

)

x

=

0

,

(2.12a)

(

hu

)

t

+ (

hu2

+

1

2gh2

+ β

h2

γ +

1

2h2

)

x

= (

gh

+

1

2h

γ +

h

)

dx

,

(2.12b)

with

= −

dxut

dxuux

dxxu2

.

(2.13)

Itcanbeseenthatfortheflatbottom,meaningd(x)isaconstant,theequation(2.12b) isequivalenttotheequation(1.2).

Thewell-balancedmethods[5] areintroducedtoexactlypreserve thestill-waterstationarysolutionatadiscrete level.

FortheSerreequations,thestill-waterstationarywavesolutioncanberepresentedasfollows,

u

=

0 and

η =

h

d

=

constant

.

(2.14)

Inordertodealwiththemixedspatialandtemporalderivativesin(2.12b),weintroduceanewunknownvariable

ω = −β(

h3ux

)

x

+

h

(

1

hxdx

1

2hdxx

+

d2x

)

u

.

(2.15)

Noticethat

ω

=zwiththeflatbottom.Theequation(2.15) canbediscretizedsimilarlyastheLDGscheme(2.6a) and(2.6b) forz.Thusweomitthedetailshere.

Asin[25],werewritethetime-dependentpartofthesystem(2.12a)–(2.12b) intoabalancelaw

η

t

+ (

hu

)

x

=

0

,

(2.16)

ω

t

+ ( ω

u

+

1

2gh2

2

β

h3u2x

h2uuxdx

)

x

=

ghdx

+

1

2h2uuxdxx

+

hu2dxdxx

.

(2.17) Denoting U=(

η

,

ω

)T astheunknowns,weformulatethe E1 conservedschemeforthebalanceequationsasfollows:Find

η

,

ω

Vh suchthat,foralltestfunctionsθ12Vh,

Ij

Ut

·

dx

Ij

F

·

xdx

+ (

F

·

)

j+1

2

(

F

·

+

)

j1

2

=

Ij

S

·

dx

,

j

=

1

, · · · ,

N

,

(2.18)

whereequals12)T,thefluxistakenas F

(

U

) = (

hu

, ω

u

+

1

2gh2

2

β

h3u2x

h2uuxdx

)

T

,

andthesourcetermisgivenby S

= (

0

,

ghdx

+

1

2h2uuxdxx

+

hu2dxdxx

)

T

.

Ingeneral, the numericalscheme(2.18) does not havethewell-balanced property.Based onthe ideain [32], wedis- cretizethesourcetermasfollows:

Ij

Ut

·

dx

Ij

F

·

xdx

+ (

F

·

)

j+1

2

(

F

·

+

)

j1

2

=

Ij

S1

·

dx

+

Sj

,

(2.19)

with

S1

= (

0

,

1

2h2uuxdxx

+

hu2dxdxx

)

T

,

and

Sj

= (

0

, ˜

sj

)

T

,

˜

sj

=

1

2g

(

Ij

d2

2

)

xdx

+ {{

d2j+1 2

}}

2

)

j+12

− {{

d2j1 2

}}

2

)

+

j12

)

+

g

η ¯

j

(−

Ij

d

2

)

xdx

+ {{

dj+1 2

}}(θ

2

)

j+12

− {{

dj1 2

}}(θ

2

)

+

j12

)

+

Ij

g

( η − ¯ η

j

)

dx

θ

2dx

,

(2.20)

(6)

wheres˜j isthehighorderapproximationofthesourceterm

Ijghdxθ2dxand

η

¯j=I1j

Ij

η

dxdenotesthemeanof

η

over Ij.F isamonotoneflux,e.g.theLax-Friedrichsflux.

In ordertoensuretheunique solvabilityoftheequation (2.15) in thestill-waterstationary,thefollowingassumptions areneeded[25]:

(A1) Thewaterheighthinthestill-waterstationarysolutionconsideredherehasastrictlypositivelowerbound.

(A2) 1−12hdxx>0.

Nowweturntoprovethewell-balancedpropertyofthemodifiedscheme(2.19).

Proposition2.1.(Well-balancedproperty)Undertheassumptions(A1)and(A2),themodifiedE1conservedDGschemedescribedby (2.19) fortheSerreequationswithnon-flatbottomhasthewell-balancedproperty.

Proof. Let Un (n∈N) be the numericalsolution of (2.19) at time level tn.For brevity, herewe consider Eulerforward time discretization,whichcanbeeasilygeneralizedtotheSSP/TVDRunge-Kuttamethods.Thenweapplytheminto(2.19), leadingto

Ij

Un+1

·

dx

=

Ij

Un

·

dx

+

tn

(

Ij

Fn

·

xdx

(

Fn

·

)

j+1 2

+(

Fn

·

+

)

j1

2

+

Ij

Sn1

·

dx

+ (

S

n

)

j

).

(2.21)

Byinduction,firstweassume

Un

= (

C0

,

0

)

T and un

=

0

,

(2.22)

whereC0 isaconstant.Fromthisassumptionwewanttodeducethatthenumericalsolutioncomputedfrom(2.21) satisfies

Un+1

= (

C0

,

0

)

T and un+1

=

0

.

(2.23)

Byvirtueoftheassumptions(2.22),theequation(2.21) becomes

η

n+1

= η

n

=

C0

,

(2.24)

Ij

ω

n+1

θ

2dx

=

tn

Ij

1

2g

(

hn

)

2

2

)

xdx

(

1

2g

{{(

hn

)

2

}}(θ

2

)

)

j+1 2

+ (

1

2g

{{ (

hn

)

2

}}

2

)

+

)

j1 2

+ (

sn

)

j

.

(2.25)

Denotingthesumoftheright-handsideofequation((2.25))by Rj,wecanget Rj

=

tn

Ij

1

2g

(

hn

)

2

2

)

xdx

(

1

2g

{{ (

hn

)

2

}}

2

)

)

j+1 2

+ (

1

2g

{{ (

hn

)

2

}}

2

)

+

)

j1 2

+ (

sn

)

j

=

tn

Ij

1

2g

((

hn

)

2

(

dn

)

2

2

η ¯

njdn

)(θ

2

)

xdx

1

2g

({{(

hn

)

2

j+12

}} − {{(

dn

)

2

j+12

}} −

2

η ¯

nj

{{

dn

j+12

}})(θ

2

)

j+12

+

1

2g

( {{ (

hn

)

2

j12

}} − {{ (

dn

)

2

j12

}} −

2

η ¯

nj

{{

dn

j12

}} )(θ

2

)

+

j12

+

Ij

g

( η

n

− ¯ η

nj

)

dnx

θ

2dx

=

tn

Ij

1

2g

( η

n

)

2

2

)

xdx

1 2g

{{( η

n

)

2

j+12

}}(θ

2

)

j+12

+

1 2g

{{( η

n

)

2

j12

}}(θ

2

)

+

j12

=

0

,

(2.26)

wherewetakeuseoftherelationshiph=d+

η

andthefact

η

n= ¯

η

nj=C0 by(2.22).Thentheequations(2.24)–(2.25) lead to Un+1=(C0,0)T.Astheassumptions (A1)and(A2)ensure theuniquesolvabilityofthefiniteelementdiscretization,it impliesun+1=0.Thiscompletesourproof.

(7)

2.2. E2conservedDGscheme

SimilartothedevelopmentoftheE1 conservedscheme,weadopt(1.1) and(1.4) toconstructtheE2conservedscheme.

TheSerreequationsarerewritten asfollows:

ht

+ (

hu

)

x

=

0

,

(2.27a)

zt

+ (

u

z

1

2u2

+

gh

1

2h2q2

)

x

=

0

,

(2.27b)

u

h1p

=

z

,

(2.27c)

p

β(

h3q

)

x

=

0

,

(2.27d)

q

ux

=

0

.

(2.27e)

Without ambiguity, we still use h,z,u,p,q to denote the numerical approximations. The E2 conserved DG scheme for (2.27a)-(2.27e) canbeformulatedasfollows:Findh,u,q,z,pVh,suchthat,foralltestfunctionsθ,

ϕ

,

ρ

,ψ andφVh,

Ij

ht

θ

dx

Ij

(

hu

xdx

+ (

f1

θ

)

j+1

2

(

f1

θ

+

)

j1

2

=

0

,

(2.28)

Ij

zt

ϕ

dx

Ij

(

u

z

1

2u2

+

gh

1

2h2q2

) ϕ

xdx

+ (

f4

ϕ

)

j+1

2

(

f4

ϕ

+

)

j1

2

=

0

,

(2.29)

Ij

p

ρ

dx

+

Ij

β

h3q

ρ

xdx

(

h3q

ρ

)

j+1

2

+ (

h3q

ρ

+

)

j1

2

=

0

,

(2.30)

Ij

u

ψ

dx

Ij

h1p

ψ

dx

=

Ij

z

ψ

dx

,

(2.31)

Ij

q

φ

dx

+

Ij

u

φ

xdx

(

u

φ

)

j+1

2

+ (

u

φ

+

)

j1

2

=

0

,

(2.32)

wherethenumericalfluxes arechosenas

f1

= {{

hu

}} − α

2

[[

h

]] ,

(2.33)

f4

= {{

u

z

1

2u2

+

gh

1

2h2q2

}} − α

2

[[

z

]],

(2.34)

h2q

= (

h3q

)

,

u

=

u+

,

(2.35)

where

α

=max(|u| +

gh)isthemaximumtakenintherelevantinterval.

2.2.1. Algorithmflowchart(II)

Similarto thefullydiscrete E1 conservedscheme,the E2 conservedschemecoupledwiththeEulerforwardtimedis- cretizationcanbedividedintwosteps.Giventhesolutionhn,un,z˜n,pn andqn atthetimeleveltn,thealgorithmcanbe dividedinto twosteps.

StepI:Fromthetimedependentequations(2.28) and(2.29) withthefluxes(2.33) and(2.34) wehavethefullydiscrete schemeinthematrixform:

hn+1

hn

tn

=

res1

(

hn

,

un

),

(2.36)

˜

zn+1

− ˜

zn

tn

=

res4

(

hn

,

un

,

z

˜

n

,

qn

),

(2.37)

bytheEulerforwardmethodwiththetimesteptn=tn+1tn.

StepII:Afterwegethn+1 andz˜n+1fromthelaststep,basedonthetimeindependentschemes(2.30),(2.31) and(2.32) withthenumericalfluxes(2.35),wecansolvethecorrespondinglinearsystemtogetun+1,pn+1,qn+1.

Thusweobtainallthenumericalsolutionsatthenexttimesteptn+1.

(8)

3. TheDGdiscretizationinnon-conservativeform

Inthissection,wedesignandproveaHamiltonian(H)conservedDGschemeandgiveitsalgorithmflowchart.

Combining (1.1) and (1.3) and after some manipulation, we can obtain the Serre equations in the following non- conservativeform:

ht

+ (

hu

)

x

=

0

,

(3.1)

hut

β(

h3ux

)

xt

+

huux

β(

u

(

h3ux

)

x

)

x

+

1

2g

(

h2

)

x

2

β(

h3u2x

)

x

=

0

.

(3.2) Introducingsomeauxiliaryvariablesm,p,q,s,w,k,v,r,

m

hu

=

0

,

p

1

2u2

=

0

,

s

h3q

=

0

,

q

ux

=

0

,

w

sx

=

0

,

k

(

hu

)

x

=

0

,

v

3

2h2qk

=

0

,

r

1

2h2qmx

h2mqx

hqmhx

=

0

,

(3.3)

theSerreequationscanbewrittenasfollows:

ht

+ (

hu

)

x

=

0

,

(3.4)

hut

β

wt

+

hpx

+

1

2g

(

h2

)

x

β(

v

+

r

)

x

=

0

.

(3.5)

We willintroduce thestandard L2 projection operatorP ofafunction

ω

intothe finiteelementspace Vh,i.e., forall vPk(Ij),

Ij

(P ( ω )ω )

vdx

=

0

,

j

=

1

,· · · ,

N

,

(3.6)

anddefinethediscretederivativeoperator Dj

( ω ; ρ ) =

Ij

ωρ

xdx

( ωρ

)

j+1

2

+ ( ωρ

+

)

j1 2

,

where the numerical flux

ω

ˆ is to be determined. Then for the equations (3.4), (3.5) and the auxiliary equations (3.3), the H conserved DG scheme can be constructed as follows: Find h,u,w,q,k,rVh such that, for all test functions θ,φ,ζ,

τ

,

γ

,

μ

Vh,

Ij

ht

θ

dx

Dj

(

hu

; θ ) =

0

,

(3.7)

Ij

hut

φ

dx

β

Ij

wt

φ

dx

+

Dj

(

h

φ ;

p

)

1

2g Dj

(

h2

; φ) + β

Dj

(

v

+

r

; φ) =

0

,

(3.8)

Ij

q

τ

dx

+

Dj

(

u

; τ ) =

0

,

(3.9)

Ij

k

γ

dx

+

Dj

(

hu

; γ ) =

0

,

(3.10)

(9)

Ij

w

ζ

dx

+

Dj

(

s

; ζ ) =

0

,

(3.11)

Ij

r

μ

dx

1

2Dj

(

h2q

μ ;

m

)

Dj

(

h2m

μ ;

q

)

Dj

(

hmq

μ ;

h

) =

0

,

(3.12)

withm=P(hu),p=P(12u2),s=P(h3q)andv=P(32h2qk)andthenumericalfluxes

hu

= {{

hu

}} ,

h

φ = {{

h

φ }} ,

h

2

=

h+h

,

(3.13)

v

+

r

=

v+

+

r+

,

s

=

s+

,

u

=

u

,

(3.14)

h

2q

μ = {{

h2q

μ }},

h

2m

μ = {{

h

}}{{

h

μ }}{{

m

}},

hmq

μ = {{

h

μ }}{{

m

}}{{

q

}}.

(3.15)

Herethechoicesofthenumericalfluxesintheschemearenotunique,whichcanbeseenfromtheproofofitsconservation ofHamiltonian.

3.1. H-stability

Inthispart,weprovetheHamiltonianconservationoftheabovescheme.Forbrevity,wedefine

(

v

,

w

) :=

N j=1

Ij

v wdx

,

D

(

v

;

w

) :=

N j=1

Dj

(

v

;

w

).

(3.16)

Proposition3.1.(H-stability)Thesolutiontothescheme(3.7)–(3.12) withthenumericalfluxes(3.13)–(3.15) satisfiesthefollowing H-stability:

d dt

I

1

2

(

hu2

+

gh2

+ β

h3q2

)

dx

=

0

.

(3.17)

Proof. SumminguptheDGschemes(3.7)–(3.12) over jfrom1 toN,wehave

(

ht

, θ )

D

(

hu

; θ ) =

0

,

(3.18)

(

hut

, φ)β(

wt

, φ) +

D

(

h

φ;

p

)

1

2g D

(

h2

; φ) + β

D

(

v

+

r

; φ) =

0

,

(3.19)

(

w

, ζ ) +

D

(

s

; ζ ) =

0

,

(3.20)

(

q

, τ ) +

D

(

u

; τ ) =

0

,

(3.21)

(

k

, γ ) +

D

(

hu

; γ ) =

0

,

(3.22)

(

r

, μ )

D

(

1

2h2q

μ ;

m

)

D

(

h2m

μ ;

q

)

D

(

hmq

μ ;

h

) =

0

.

(3.23) Byintroducinganewauxiliaryvariable

ν

=P(32h2q2)andtakingthetestfunctionsθ=p+ghβ

ν

in(3.18) andφ=u in (3.19),itfollowsthat

(

ht

,

p

+

gh

β ν )

D

(

hu

;

p

+

gh

β ν ) =

0

, (

hut

,

u

)β(

wt

,

u

) +

D

(

hu

;

p

)

1

2g D

(

h2

;

u

) + β

D

(

v

+

r

;

u

) =

0

.

Ifthefollowingidentitieshold D

(

hu

;

gh

) +

1

2g D

(

h2

;

u

) =

0

,

(3.24)

D

(

hu

; ν ) +

D

(

v

;

u

) =

0

,

(3.25)

D

(

r

;

u

) =

0

,

(3.26)

thenwehave

(

ht

,

p

+

gh

β ν ) + (

hut

,

u

)β(

wt

,

u

) =

0

.

(3.27)

Références

Documents relatifs

Dans le contexte géographique si particulier de l’insularité, les transports jouent, en effet, un rôle fondamental ; ils participent aux dynamiques d’ouverture et

However, the model cannot mirror the different pressure effects on the 3D dendritic macromolecules with variable (with dis- tance from the core) segmental density, thus the

Accurate concentrations in these enriched spikes were determined by reverse isotope dilution using natural abundance Ni, Cd, and Pb standards with liquid introduction ICPMS

Abstract The aim of this work is the extraction of tannic acid (TA) with two commercial nonionic surfactants, sep- arately: Lutensol ON 30 and Triton X-114 (TX-114).The

In addition, solitary, cnoidal, and dispersive shock waves are studied in detail using this numerical scheme for the Serre system and compared with the ‘classical’ Boussinesq system

Along with a non-compliance between the code and its specification (due to an error in at least one of them), possible reasons of a proof failure include a missing or too

Unité de recherche INRIA Rocquencourt Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex France Unité de recherche INRIA Lorraine : LORIA, Technopôle de

Using the exact solitary wave solution (2.20) we can assess the accuracy of the Serre equations (with β = 1 3 ) by making comparisons with corresponding solutions to the original