• Aucun résultat trouvé

Wind loads on buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Wind loads on buildings"

Copied!
30
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1954

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331415

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Wind loads on buildings

Schoemaker, R. L. A.; Wouters, I.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=e06f3411-af48-4a61-a3e1-94d4a63fdcc1 https://publications-cnrc.canada.ca/fra/voir/objet/?id=e06f3411-af48-4a61-a3e1-94d4a63fdcc1

(2)

T i t l e :

Authors:

Reference:

Translator:

NATIONAL RESE-ARCH COUNCIL OF CANADA

Technical T r a n s l a t i o n TT-488

Wind Loads on Buildings

.

(Windbelasting op ~ouwerken)

.

R. L. A. Schoemaker and I. Wouters.

Het Bouwbedri j f ,

9

(22) : 275-283, 1932.

(3)

PREFACE

I n t h e course of t h e work of t h e Building Design S e c t i o n of t h i s Division, a s well a s work undertaken i n t h e r e v i s i o n of t h e National Build- i n g Code of Canada, i n f o r m a t i o n on wind l o a d s on b u i l d i n g s i s v e r y important. A s such l i t e r a t u r e i s r e l a t i v e l y s c a r c e , t h e Division welcomes t h e t r a n s l a t i o n of t h i s e x p l a n a t i o n of t h e t e n t a t i v e s t a n d a r d s h e e t

V789 i s s u e d by t h e Main O f f i c e of

t h e Dutch Standards Association.

The Division of Building Research wishes t o thank M r . H. A. G. Nathan of t h e National Research Council L i b r a r y S t a f f f o r t r a n s l a t i n g t h i s a r t i c l e .

Ottawa, J u l y , 1954

Robert F. Legget, Director.

(4)

WIND LOADS ON BUILDINGS

E x p l a n a t i o n of t h e t e n t a t i v e s t a n d a r d s h e e t V 785% i s s u e d by t h e Raain O f f i c e of t h e Dutch S t a n d a r d s Association.

( c f . Het Bouwbedrijf, no, 1 8 , p. 230 ( 2 6 t h Aug- u s t 1932) and Bouwk, Weekblad k c h i t e c t u r a , no,

39,

p, 350, 2 4 t h September, 1932). I n t r o d u c t i o n

-

One of t h e t a s k s of Commission F ( f o r t h e S t a n d a r d i z a t i o n of T e c h n i c a l D a t a f o r B u i l d i n g ~ e g u l a t f o n s ) was t o d r a f t a new s t a n d a r d s h e e t w i t h r e g u l a t i o n s r e g a r d i n g t h e e f f e c t o f wind on b u i l d i n g s , S i n c e i n t h i s d r a f t (V 789) t h e m a t t e r i s t r e a t e d i n a manner which d i f f e r s from p r e v i o u s p r a c t i c e

it

seems d e s i r a b l e t o throw some l i g h t on t h e u n d e r l y i n g p r i n c i p l e s o f t h e new r e g u l a t f o n s .

The c a l c u l a t i o n of t h e f o r c e s and p r e s s u r e s ( f o r c e s p e r u n i t of a r e a ) e x e r t e d by moving a i r on s t a t i o n a r y o b j e c t s , f e e . , t h e f o r c e s and p r e s s u r e s r e l a t e d t o t h e c o n d i t i o n s o f flow a b o u t t h e o b j e c t , p r e s e n t s g r e a t d i f f i c u l t i e s , Even t h e l o a d c o n d i t i o n s f o r t h e s i m p l e c a s e , where a f l a t , c i r c u l a r p l a t e i s exposed normal t o t h e d i r e c t i o n o f a n a i r flow of c o n s t a n t v e l o c i t y , can only be determined experiment all^,

*

P o s s i b l e o b s e r v a t i o n s r e g a r d i n g t h i s e x p l a n a t i o n o f t h e t e n t a t i v e s t a n d a r d s h e e t a r e i n v i t e d by t h e C e n t r a l Normalisatie Bureau, Koningskade 23, f s - Gravenhage o r t h e S e c r e t a r i a a t van den Normal- i s a t i eraad, Bragaweg

38,

Bandoen No 0. I.

53 Fnclc'

+x The r e l a t i o n ; f o r c e

=

&

x d e n s i t y

x

( v e l o c i t y ) ' i s a b s o l u t e l y c o r r e c t as i s known from t h e b a s i c p r i n c i p l e s o f dynamics, i f by s u r - f a c e i s meant t h e p r o f i l e of a f l u i d o r gas stream o f f i n i t e width which a t c o n s t a n t v e l o c i t y i s normal t o t h e d i r e c t i o n o f a s t a t i o n a r y , f l a t p l a t e , The s u r f a c e of t h e p l a t e i s much g r e a t e r t h a n t h e p r o f i l e of t h e stream s o t h a t t h e v e l o c i t y i n t h e i n i t i a l d i r e c t i o n vanishes. The c a s e o f a p l a t e i n a n a i r stream o f i n f i n i t e width

i s

e n t i r e l y d i f f e r e n t ,

(5)

It i s evident from Fig, 1 t h a t with r e s p e c t t o t h e s t , i t i c

pressur* p o s i t i v e p e s u r e s form i n f r o n t of t h e p l a t e and negative p r e s s - u r e s form behind

it,

b

7

Of t h e s e p o s i t i v e and negative pressures only one p o s i t i v e pressure, i.e., t h a t a t t h e c e n t r e of t h e p l a t e , where t h e v e l o c i t y of t h e a i r becomes zero, can be determined without having t o r e s o r t t o experiments,

A s i s known from physics,* t h i s p o s i t i v e p r e s s u r e ( a l s o c a l l e d v e l o c i t y pressure) i s

fr

x d e n s i t y x (velocity)2.

Since t h e weight of 1 cu,m,

(1

e u , f t , ) of a i r a t a temperature of 150C. ( 5 9 0 ~ ~ ) and an atmospheric pressure of 760

mm.

(29.9") Hg i s 1,23

kgm.

(. 07651 l b . )

-

a value which i n Holland may always be maintained with some approximation

-

t h e d e n s i t y i s

?eight i n km. of 1 cu.m, of a i r ( l b e / l

)

a c c e l e r a t i o n due t o g r a v i t y i n

m,

per s e c O d 32.2 f t , sec,2

=

LZ!

o r approximately

1 kgmo sece2/n.4

9a

8 1

8

K 3 z O 2 ) 1b. x sec.2/ft0i]

*

By s t a t i c pressure i s meant t h e p r e s s u r e which t h e a i r should have e x e r t e d on a p l a t e ( t h e p r e s s u r e s a t t h e f r o n t and a t t h e back of t h e p l a t e a r e i d e n t i c a l ) when t h e p l a t e moved a t t h e same v e l o c i t y a s t h e surrounding a i r and thus was a t r e s t ( s t a t i c ) with r e s p e c t t o t h e a i r ,

This atmospheric pressure i s i n d i c a t e d by a barometer, which likewise changes p o s i t f o n a t t h e same v e l o c i t y a s the a i r , Suppose t h i s barometer i n d i c a t e s 760

mm,

(29.9") Hg then t h e s t a t i c pressure i s 0,76 x

13-6

x 103

=

10336 kgm, per sq,mo

(U,7 l b , per sq. i n ,

). This s t a t i c p r e s s u r e i s a l s o present a t t h e point of t h e so-called t t s t a t f c w opening of a

s t s t i o n a r y P i t o t tube ( c f , Fig, 6 ) .

*

This v e l o c i t y p r s s s u r e i s derived from B e r n o u l l i g s theorem, which s t a t e s t h a t a t steady flow:

pressure -k

4

x d e n s i t y

x

( v e l o c i t y ) 2 = constant. I n aerodynamic l i t e r a t u r e t h e following d e f i n i t i o n i s given: "The press- u r e head i s t h e p o t e n t f a r energy of motion of t h e u n i t ~ o l u m e . ' ~ Since t h e mass of t h e u n i t volume

is

t h e density, t h e values f n t h e t e x t a r e obtained d i r e c t l y , The point where t h e v e l o c i t y becomes zero and where t h e p o s i t i v e p r e s s u r e becomes equal t o t h e pressure head f s c a l l e d n s t a g n a t i o n p o i n t w ,

(6)

I f t h e v e l o c i t y f s v i n m. per sec., (miles per hr. ) then t h e v e l o c i t y pressure i s

Next, t h e f o r c e exerted by t h e a i r stream on t h e c i r c u l a r p l a t e , shown i n Fig. 1, must be found as t h e r e s u l t a n t of t h e p o s i t i v e and nega- t i v e pressures, It i s simpler, of course, t o determine t h i s f o r c e

K

d i r e c t l y by measurement,

I f t h e value of t h i s force i s divided by t h e s u r f a c e of t h e p l a t e , then t h e q u a n t i t y which i s dencted i n t h e present r e g u l a t i o n s a s "wind p r e s s u r e H i s obtained*,

Moreover, experiments have shown t h a t f o r a square p l a t e t h e wind p r e s s u r e i s the same a s f o r a c i r c u l a r one, But f o r r e c t a n g u l a r p l a t e s t h e wind pressure i n c r e a s e s a s t h e s e p l a t e s becone more oblong, Further- more s i n c e "wind p r e s s u r e N must always be i n t e r p r e t e d a s t h e r e s u l t a n t of ~ o s i t i v e and negative pressures, t h e Dutch Standards Association

-

i n order t o prevent confusion

-

p r e f e r s " v e l o c i t y pressure1' a s a u n i t , This i s a well-defined term and i s always used a s such i n t h e r e l e v a n t l i t e r a t u r e .

I f , a s mentioned above, t h e v e l o c i t y pressure i s denoted by q i n kgm. per sq,m,, ( l b , per s q , f t . ) then t h e force K i n

kgm,

( l b , ) ex- e r t e d on a p l a t e having t h e s u r f a c e

f

i n sq,m. ( s q o f t , ) i s

where c i s a c o e f f i c i e n t which depends on the shape of t h e p l a t e and which must be determined experimentally,

I n r e c e n t experiments with c i r c u l a r and square p l a t e s ( 2 )

it

was found t h a t c

=1,16,

This shows t h a t t h e f r e q u e n t l y used value c

=

1 0 2

i s

a very good approximation and t h a t t h a l u e obtained by E i f f e l , L e o ,

?3J

c

=

1,28,

i s

t h e r e f o r e s l i g h t l y t o o high

*

The municipal b u i l d i n g r e g u l a t i o n s of t h e City of Amsterdam provide f o r a wind pressure of 100 t o 200 kgm, p e r sq,m.

,

(20.5 t o

41,O

l b , per

s q . f t , ) dependfng on t h e more o r l e s s exposed p o s i t i o n of t h e building. The Prussian r u l e s of 24th December,

1919,

s p e c i f y a wind pressure of

75

t o 225 kgm, per sq.

rn.

(15,4 t o 46.1 l b o per s q o f t o ) depending on shielding, geographical p o s i t i o n and height above t h e ground.

(7)

For a r e c t a n g l e whose l e n g t h t o breadth r a t i o i s 581 t h e value f o r

c

obtained i n t h e above experiments was 1.20, FOP i n f i n i t e l y long r e c t - a n g l e s t h i s value becomes 1.96.

I f a p l a t e i s exposed t o t h e a i r stream not a t a r i g h t angle (900) but a t an a n g l e o ( t h e n , t h e f r i c t i o n a l o n g t h e p l a t e , a s experiments have shown, may be neglected s o t h a t i n t h i s case a f o r c e Kq a c t i n g a t r i g h t a n g l e on t h e p l a t e may be used i n c a l c u l a t i o n s ,

The r e l a t i o n between t h i s f o r c e Kt,and t h e f o r c e

Kg0

e x e r t e d on t h e same p l a t e normal t o t h e d i r e c t i o n of t h e wind, L e o ,

does not seem t o a g r e e w i t h a c t u a l c o n d i t i o n s a t a l l ,

h his

formula i s f r e q u e n t l y used and has even been included i n t h e P r u s s i a n r e g u l a t i o n s . ) For a square p l a t e and

6 =

350 K35 i s appreciably g r e a t e r t h a n $0.

I f t h e p l a t e P (Fig. 2b) i s n o t f r e e l y exposed t o t h e wind but i s p a r t of a system of planes (Figs, 2b, c, d, e, e t c , ) , t h e c o n d i t i o n s of flow a r e e n t i r e l y d i f f e r e n t , Therefore, t h e f o r c e and t h e pressure d i s - t r i b u t i o n on t h e p l a t e a l s o change and t h e use of one s i n g l e formula would t h u s give i n c o r r e c t r e s u l t s .

If t h e p l a t e i s replaced by a s o l i d , e,g, a cube standing on t h e ground, then a t t h e d i r e c t i o n of t h e wind a s shown i n Fig.

3

p o s i t i v e p r e s s u r e i s only e x e r t e d on t h e f a c e 1, 2,

3,

4

and negative pressure on t h e back, s u r f a c e and s i d e s ,

The occurrence of negative ppessure ( s u c t i o n ) i n b u i l d i n g s

i s

s u f f i c i e n t l y known from p r a c t i c e (roof covering being r a i s e d , wall covering forced outward). Although t h i s phenomenon

i s

f r e q u e n t l y d i s - cussed i n t h e l i t e r a t u r e ,

it

has not y e t been taken i n t o account i n e x i s t i n g r e g u l a t i o n s , However, t h e Dutch Standards Association i s going t o t a k e t h i s problem i n t o account.

2, Model T e s t s i n mind Tunnels

Of t h e o l d e r t e s t s with models of b u i l d i n g s E i f f e l f s t e s t s ( j ) should be e s p e c i a l l y mentione FOP o r e pecent model t e s t s t h e reader

i s

r e f e r r e d t o t h e l i t e r a t u r e t i ,

4-117.

Naturally t h e r e s u l t s obtained from t h e s e t e s t s proved t o be val- uable m a t e r i a l , b u t a t t h e same time

it

was found necessary t o make a number of supplementary experiments, F a c i l i t i e s were extended through t h e c o u r t e s y of t h e Aerodynamics Laboratory, Delft, and, among o t h e r t h i n g s , t e s t s were conducted on t y p e s of r o o f s which had not been i n - v e s t i g a t e d previously. The e f f e c t of wind on groups of b u i l d i n g s was i n v e s t i g a t e d and t h e e f f e c t of s h i e l d i n g was a l s o s t u d i e d , These t e s t s , a s well a s t h e i n v e s t i g a t i o n s i n Amsterdam mentioned below, were per-

(8)

F i g .

4

shows t h e shape o f t h e s e models, which were made of t h i n s h e e t i r o n , I n o r d e r t o conform w i t h t h e s e t - u p i n t h e wind t u n n e l t h e lower walls were n o t p u t up, Small h o l e s wepe c u t i n t h e f r o n t and back walls as w e l l as t h e r o o f s u r f a c e p fa F i g o

5 )

c o r r e s p o n d i n g w i t h t u b e s

s o l d e r e d t o t h e i n s i d e , Rubber h o s e s connected t o manometers were a t t a c h e d t o t h e t u b e s , as can be s e e n from F i g ,

6,

The p r e s s u r e d i f f e r e n c e , f e e , , t h e d i f f e r e n c e between t h e p r e s s u r e a t t h e c e n t r e of t h e c f r c u l a r o u t e r end of t h e P i t - o t t u b e (where t h e v e l - o c i t y becomes z e r o ) and t h e s t a t i c p r e s s u r e a t t h e It s t a t i c n opening a

(whose e x a c t p o s i t f on i s determined e m p i r i c a l l y ) i s measured by manometer

q.

T h i s p r e s s u r e d i f f e r e n c e i s t h e v e l o c i t y p r e s s u r e , T h e r e f o r e , t h e v e l o c i t y

i s

o b t a i n e d from t h i s measured d i f f e r e n t i a l p r e s s u r e , The

d i f f e r e n c e between t h e p r e s s u r e i n one of t h e h o l e s b and t h e s t a t i c p r e s s u r e i s measured by manometep

M2,

i n d i c a t i n g whether t h e p r e s s u r e a t t h e o u t e r w a l l of t h e model i s p o s i t i v e o r n e g a t i v e ,

I n t h e t e s t s t h e wind v e l o c i t y was s e t a t 12m,per s e c , (27 m i l e s / h o u r ) a f t e r

it

had become a p n a r e n t t h a t t h e p r s s s u r e d i s t r i b u t i o n

i s

n o t a p p r e c i - a b l y a f f e c t e d by t h e wind v e l o c i t y , The modeis were always mounted i n such a way t h a t t h e f a c e was exposed nom,al t o t h e wind,

The p e s u l t s o f t h e model tests i n t h e D e l f t wind tunnel* a r e shown i n Figs. 7 t o 21, The numerals on t h e p r e s s u r e - d i s t r i b u t i o n c u r v e s r e - p r e s e n t t h e rounded-off c o e f f i c i e n t s by which t h e v e l o c i t y p r e s s u r e head must be m u l t i p l i e d i n o r d e r t o o b t a i n t h e p o s i t i v e p r e s s u r e (+) o r n e g a t i v e p r e s s u r e (-) a t t h e o u t e ~ w a l l o f t h e model,

I n c a s e s where t h e d i f f e r e n c e between t h e c o e f f i c i e n t s a t t h e p e r i - phery o f t h e model and t h o s e a t t h e c e n t r e was a p p r e c i a b l e , t h i s has been i n d i c a t e d i n t h e f i g u r e s by broken dash l i n e s a t t h e edge o f t h e p r e s s u r e - d i s t r i b u t i o n curve, Furthermore, t h e c o e f f i c i e n t s a r e mean v a l u e s ,

The g e n e r a l t r e n d o f t h e p o s i t i v e and n e g a t i v e D r e s s u r e s o b t a i n e d from t h e s e t e s t s a g r e e s wfth t h a t o f t h e r e s u l t s o b t a i n e d from o t h e r i n - v e s t i g a t i o n s . The n e g a t i v e p r e s s u r e s were marked i n t h e D e l f t model t e s t s as w e l l , The f a c t t h a t t h e y were h i g h e ~ t h a r ~ t h o s e found elsewhere must

small dimensions

sf

t h e wind t u n n e l , i , e o ,

*

Measurements were a l s o c a r r i e d o u t a t t h e Power s u r f a c e o f t h e eaves o f t h e models B and

D

and

i t

was found t h a t t h e p o s i t i v e and n e g a t i v e p r e s s - u r e s a t t h e e a v e s and a t t h e a d j a c e n t v e r t i c a l walls were i d e n t i c a l , I n a d d i t i o n , a n i n v e s t i g a t i o n was made t o determine whether

it

would make a d i f f e r e n c e i f i n s t e a d o f smooth s h e e t i r o n a r o o f i n g m a t e r i a l w i t h a r o u g h e r s u r f a c e ( w a f f l e aluminium) was used, The r e s u l t wa.s n e g a t i v e .

(9)

T e s t s were a l s o c a r r i e d o u t i n t h e Amsterdam wind t u n n e l t h ~ o u g h t h e c o u r t e s y of t h e R f j k s s t u d i e d i e n s t voor de l u c h t v a a r t , AmsterdaM, T h i s wind t u n n e l i s much l a r g e r t h a n that i n D e l f t , It i s c i r c u l a r and had a diameter of 1 6 0 em, The n e g a t i v e p r e s s u r e s were much lower h e r e as can be seen from F i g s , 22 t o 26,

A s mentioned above t h e t e s t s i n D e l f t and Amsterdam were i n t e n d e d t o supplement t h e d a t a o b t a i n e d from experimental work elsewhere, p r i n c i p - a l l y t o determine t h e e f f e c t of t y p e s of r o o f s which had n o t been previous- l y i n v e s t i g a t e d , Groups of r o o f s were a l s o i n v e s t i g a t e d i n o r d e r t o s t u d y

t h e s h i e l d i n g e f f e c t , It was c o n s i d e r e d s u f f i c i e n t t o mount t h e model o n l y i n such a way that t h e f a c e was always exposed normal t o t h e d i r e c t i o n of t h e windmc. T e s t s w i t h wind a t i n c l i n e d i n c i d e n c e were c a r r i e d o u t elsewhere on a l a r g e scale(2g11)e A d e s c r i p t i o n of t h e s e t e s t s has been o m i t t e d here, Fig, 27 c l e a r l y shows t h a t t h e p r e s s u r e d i s t r i b u t i o n v a r i e s

g r e a t l y i n t h i s case. T h i s f i g u r e was t a k e n from a paper by

Dr,

~ l a c h s b a r t ( l 2 ) ~ The a n g l e of i n c i d e n c e i n Fig, 27 i s 90, 45, and 0 degrees, r e s p e c t i v e l y .

The d i s t r i b u t i o n of t h e p o s i t i v e and n e g a t i v e p r e s s u r e s i s g i v e n f o r s e c t i o n s I, I1 and 111. The high v a l u e f o r t h e n e g a t i v e c o e f f i c i e n t i s d i s c u s s e d i n S e c t i o n 9,

3,

Models and Actual Conditions

From t e s t s w i t h models of i d e n t i c a l shape b u t of d ' f f e r e n t s i z e

3

i iff el

mentions, among o t h e r s , a l i n e a r r a t i o 1 : 5 0 ) ( ~ ~ , 3

i t

i s e v i d e n t t h a t t h e p r e s s u r e d i s t r i b u t i o n remains unchanged as l o n g a s t h e s u r f a c e s o f w a l l s and r o o f do n o t j o i n smoothly b u t do i n t e r s e c t sharpl-,

I n v e s t i g a t i o n s by ~ m i t h ( l 3 ) w i t h l a r g e models ( 6 f e e t i n width) exposed t o n a t u r a l wind showed s i m f l a p r e s u l t s and t h e r e i s no i n d i c a t i o n t h a t t h i s i s d i f f e r e n t from a c t u a l b u i l d i n g s ,

S i n c e t h e same c o n s t a n t v e l o c i t y i s produced throughout t h e e n t f p e wind t u n n e l , t h e q u e s t i o n a r i s e s whether a r e d u c t i o n s h o u l d n o t be made

f o r l a r g e s u r f a c e s of w a l l s and r o o f s , F o r ,

i t

seems unreasonable t o assume simultaneously t h e same maximum v e l o c i t y throughout a l a r g e volume

of a i r o

*

I n t h i s wind t u n n e l t h e model was mounted on a s u p p o ~ t ,

*

Therefore, no measurements were made w i t h r e s p e c t t o t h e d e c r e a s e i n wind v e l o c i t y r i g h t above t h e p l a t e on which t h e model was mounted

( c f . Fig. 6 ) -

-)HHC F o r round o b j e c t s , such a s w i r e s , p o l e s , chimneys and gas t a n k s , t h e

flow, and t h u s t h e p r e s s u r e d i s t r i b u t i o n , change w i t h t h e diameter. T h i s i s d e s c r i b e d i n d e t a i l i n S e c t i o n 12.

(10)

T e s t s c a r r i e d o u t wh n t h e F o r t h Bridge was under c o n s t r u c t i o n p o i n t i n t h e same d i r e c t i o n f l 4 , l 5 ) . During a p e r i o d of

s i x

y e a r s

it

became e v i d e n t h e r e t h a t t h e maximum wind p r e s s u r e on a n a r e a o f 0,14 sq,m. ( 1 , 5 s q , f t , ) was 200 kgm, p e r aq,m, (41 l b , p e r sq, f t , ) and on a n a d j a c e n t a r e a of 28 sq.m. (300 s q , f t . ) t h e maximum wind p r e s s u r e was 132 kgm, p e r

sq,m. (27 l b . p e r s q . f t , ) , I n g e n e r a l , t h e wind p r e s s u r e on a l a r g e a r e a was from 50 t o 70% ( i n a s f 1 c a s e 80%) o f t h a t on a n a r e a 200 times a s small. However, S t a n t o n

4f63

a d v i s e s a g a i n s t t h e a p p l i c a t i o n of a r e d u c t i o n ,

However, a r e d u c t i o n has been allowed f o r i n S t a n d a r d Sheet V

789,

F o r , as a r u l e , i n l a r g e a r e a s o n l y one of t h e dimensions i s p a r t i c u l a r l y l a r g e ( l o n g w a l l s and r o o f s u r f a c e s , h i g h chimneys) s o t h a t f o r such

oblong s u r f a c e s t h e c o e f f i c i e n t c i n c r e a s e s ( c f . S e c t i o n I ) , T h i s i n c r e a s e was d i s r e g a r d e d i n t h e t e n t a t i v e s t a n d a r d s h e e t , compensating f o r t h e

above r e d u c t i o n ,

4.

V e l o c i t y P r e s s u r e s

The d a t a on maximum wind v e l o c i t i e s , from which t h e v e l o c i t y p r e s s -

&

(,00256 v2) were d e r i v e d , had been o b t a i n e d from t h e Kon. Ned.

.Z~:J?

l o g i s c h I n s t i t u u t ( ~ o y a l Dutch Meteorological ~ n s t i t u t e ) , De B i l t ZCf0177~ Of course, t h e s e v a l u e s v a r y w i t h t h e geographical p o s i t i o n ( d i s t a n c e from t h e c o a s t ) and w i t h t h e h e i g h t above t h e g ~ o u n d . The small map i n V 789 was prepared from t h e s e d a t a , FOP s i m p l i c i t y t h e c o u n t r y i s d i v i d e d i n t o t h r e e r e g i o n s , i n which t h e maximum v e l o c i t y p r e s s u r e s a r e s p e c i f i e d as 120 (24,6), PO0 (20,5), and 80 kgm. p e r sq,m,

(16.4 l b , p e r s q , f t ,

)?

I n t h i s manner a h i g h e r value, f . e., 60 kgm. p e r sq,m, (12,3 l b , p e r s q . f t , ) t h a n would have been expected from t h e De B i l t d a t a i s recommended f o r t h e i n t e r i o r of t h e country, T h i s w i l l improve t h e s a f e t y , These v a l u e s c a n be maintained f o r a i r stratas near t h e ground, f o e , , up t o and i n c l u d i n g 1 5 m, (49 f t , ) above t h e ground, whereas, a c c o r d i n g t o t h e De B f l t d a t a , between 1 5 (49) and 35

m,

(115 f t , ) above t h e ground a n i n c r e a s e i n v e l o c i t y p r e s s u r e must be expected a t t h e r a t e of 2

kgm,

p e r sq.m. p e r metre of h e i g h t (.125 l b , p e r s q , f t . p e r f o o t of h e i g h t ) , Hence a t a h e i g h t o f 35

m,

(I15 f t , ) t h i s i n c r e a s e i s 4 0 kgm. p e r sq,m,

(8,2 l b , p e r sq, f t , ), But above 35

m,

(115 f t o ) up t o 50 m o (164 f t o ) no f u r t h e r i n c p e a s e i s r e q u i r e d .

*

The i n c r e a s e s i n t h e minimum v a l u e of 80 kgm, p e r sq,m. by 25 and 50 p e r c e n t a g r e e w i t h t h e r e s p e c t i v e pepcentages i n t h e P r u s s i a n r u l e s mentioned above,

(11)

Since it i s s c a r c e l y r e q u i r e d t o know t h e v a l u e s f o r t h e v e l o c i t y p r e s s u r e a t h e i g h t s exceeding 50

m.

(164 f t , ) r e s p e c t i v e d a t a have been omitted i n t h e t e n t a t i v e s t a n d a r d s h e e t , I n such a c a s e f u r t h e r informa- t i o n should be r e q u e s t e d from t h e l d e t e o r o l o g i c a ~ In s t i t u t e , De B i l t ,

F o r an Amsterdam c o n s t r u c t i o n of 50

rn,

(164 f t . ) h e i g h t (e,g. t h e chimney shown i n F i g , 28a) t h e v a l u e s f o r t h e v e l o c i t y p r e s s u r e i n Fig. 28b should apply, For s i m p l i c i t y t h e t e n t a t i v e s t a n d a r d s h e e t spec- i f i e s t h a t i n t h i s c a s e a mean v a l u e f o r t h e v e l o c i t y p r e s s u r e may be maintained from t h e bottom upward merely by i n c r e a s i n g t h e b a s i c v a l u e f o r t h e v e l o c i t y p r e s s w e by 1

kgm.

p e r sq,m, f o r each metre by which t h e c o n s t r u c t i o n i s h l g b e r t h a n 1 5 a, The v e l o c i t y p r e s s u r e v a l u e s shown i n Fig. 28e were o b t a i n e d i n t h i s manner,

Whenever a comparative c a l c u l a t i o n i s made f o r d i f f e r e n t h e i g h t s and S e c t i o n s I I B and I I C of t h e t e n t a t i v e s t a n d a r d s h e e t ape s p u l i e d , i d - e n t i c a l r e s u l t s a r e n o t obtained, of course, but t h e r e s u l t s show s a t i s - f a c t o r y agreement, However, t h e d i f f e r e n c e s a r e c o n s i d e r a b l e f o r v e r y g r e a t h e f g h t s , F o r example, S e c t i o n I I B s p e c i f i e s a v e l o c i t y p r e s s u r e of

l 4 O kgm.

p e r sq,m, (28,7 l b . p e r sq, f t , ) f o r a constructl.on i n Amsterdam, whereas S e c t i o n I I C a p p l i e d t o a chimney of PO0

me

(328 f t , ) h e i g h t i n

t h e same c i t y would g i v e

185

kgm, per sq,rn. (38 l b , per sq, f t , )

But, a s was shown above, a t h e i g h t s exceeding 50 m. a f u r t h e r i n c r e a s e i n t h e l o c a l v e l o c i t y p r e s s u r e must be expected, Moreover, i n t h e c a s e under consSderation t h e high v a l u e of 185 kgm, p e r sq.m, (38 l b . p e r s q . f t , ) i n c l u d e s a s a f e t y f a c t o r as w e l l , High, s l e n d e r c o n s t r u c t i o n s , such a s chimneys, have c o n s i d e r a b l e n a t u r a l p e r i o d s of o s c i l l a t i o n . There- f o r e , t h e fntroduc%forn of a n impact f a c t o ~ should be considered, ( c f , f o l l - owing s e c t i o n ) .

5.

Gusts

The q u e s t i o n whether o r not. t h e e f f e c t of g u s t s i s s m a l l e r t h a n tkst of a c o n s t a n t wind which h a s t h e same v e l o c i t y a s a g u s t on a t t a i n i n g i t s

m a x i m u m

f o r c e i s d e a l t w i t h below.

A s i s known from t h e law of e l a s t i c i t y , t h e time d u r i n g which t h e f o r c e a c t s must be s h o r t and must spproxfmaLely correspond t o one-third of t h e b u i l d i n g v s n a t . w a l p e r i o d of o s c i l l a t i o n , *

*

The l o n g e s t p e r i o d of o s c i l l a t i o n recorded i n t h e l i t e r a t u r e i s 7.2 sec. f o r a sky serape^

(E,

Ne

Record 1 9 February, 1931). FOP a chimney 70

m.

(12)

According t o t h e De B i l t data

it

d e f i n i t e l y t a k e s a g u s t of wind two seconds t o a t t a i n i t s maximum v e l o c i t y , which

it

maintains f o r f i v e seconds, Then

it

decreases again i n t h e same manner, No reduction can be made f o r t h e f o r c e of t h e g u s t s because of t h e i r s h o r t duration, But,

a s

suggested i n t h e previous section, t h e use of an impact f a c t o r seeins t o be more reasonable, p a r t i c u l a r l y i n view of t h i s r a p i d i n c r e a s e i n v e l o c i t y ,

Fortunately, t h e r e has never been any evidence of successive g u s t s c o i n c i d i n g with t h e n a t u r a l period of o s c i l l a t i o n of buildings, This would be c r i t i c a l indeed,

S t i l l another c o n d i t i o n which l e a d s t o t h e increase i n f o r c e dur- i n g t h e a c c e l e r a t i o n of t h e wind should be noted, According t o t h e t h e o r y t h e e f f e c t of a c c e l e r a t i o n i s proportional t o t h e volume of t h e body

s t r u c k , whereas according t o t h e p r e s e n t authors the e f f e c t of v e l o c i t y i s wroportional t o t h e surface exposed t o t h e wind, However, f o r a mean value of t h e v e l o c i t y t h e a c c e l e r a t i o n i s a t i t s maximum; when t h e velo- c i t y a t t a i n s i t s maximum, t h e a c c e l e r a t i o n becomes zero.

Only f o r very l a r g e bodies do c o n d i t i o n s become more unfavourable a t mean v e l o c i t y than a t mximum v e l o c i t y ,

6.

Cyclones

The values f o r t h e v e l o c i t y p r e s s u r e s l i s t e d i n V

789

t a k e t h e s t r o n g e s t g a l e s i n t o aeeount*.

The values obtained f o r cyclones may e a s i l y be considerabl higher and a v e l o c i t y pressure of 600 kgm. per sq.a. (123 i b . per sq.ft.S i s by no means a n exaggerated f i g u r e ,

1% i s economfeally unreasonable t o take such high values i n t o account since i n t h e Netherlands cyclones s c a r c e l y ever occur over a l i m i t e d area. The f a c t t h a t i n 1925 ( ~ o r c u l o ) and 1927 cyclones d i d occur i n two adjacent places must be considered a coincidence.

7.

I n c l i n a t i o n of Wind t o t h e Horizontal

The present Dutch r u l e s (e.ge t h e Amsterdam r u l e s ) s p e c i f y t h e i n c l i n a t i o n of t h e wind from 1 0 degrees above t o 1 0 degrees below h o r i - z o n t a l , However, t h e Prussfan r u l e s assume h o r i z o n t a l wind,

*

A v e l o c i t y of 29

m,

per sec, ( f e e , , no 1 2 of t h e Beaufort s c a l e ) r e s u l t s i n a v e l o c i t y pressure of only

&=

53 kgm, per sqemo

(13)

The model t e s t s i n t h e wind t u n n e l were conducted w i t h h o r i z o n t a l wind, but i n Amsterdam a t e s t was conducted with t h e wind i n c l i n e d above t h e h o r i z o n t a l ( c f . Fig.

26).

There i s very l i t t l e d i f f e r e n c e between Fig.

26

and Fig. 25 (horf z o n t a l wind),

Recently t h e r e g u l a t i o n s were amended s p e c i f y i n g t h a t t h e wind may d e v i a t e from t h e h o r i z o n t a l d i r e c t i o n . F o r g a f r e e h o r i z o n t a l roof should only be a f f e c t e d by t h e f r i c t i o n and t h e f o r c e on t h e small v e r t i c a l pro- j e c t i o n , both of which a r e n e g l i g i b l e ,

It i s evident from t e s t s t h a t when t h e a i r flow i s not e x a c t l y p a r a l l e l with a p l a t e b u t only d e v i a t e s a few degrees from t h i s d i r e c t i o n , t h e p l a t e i s subjected t o a considerable f o r c e , Since t h e wind can d e v i a t e above and below t h e h o r i z n t a l t h e new Dutch r e g u l a t i o n s

(VC

of V 789) s p e c i f y a c o e f f i c i e n t of 0,6 f o r f r e e h o r i z o n t a l roofs, With r e s p e c t t o a i r flows i n c l i n e d v e r t i c a l l y downwards ( s q u a l l s )

-

no matter how

unpleasant t h e y nay be when t h e y come i n c o n t a c t with t h e smoke i n chimneys, o r f o r a i r c r a f t

-

t h e r e i s no need f o r a n x i e t y because t h e v e l o c i t y i s t o o low t o have any e f f e c t on buildings,

8, Wind with Respect t o t h e Comuass Bearinq

Although no d a t a regarding t h e c a r d i n a l p o i n t of t h e wind a r e given i n V 789

it

may be u s e f u l t o know i n s p e c i a l c a s e s (e,g, with a view t o f i x i n g t h e ~ o s i t i o n of a grandstand open a% one s i d e ) t h a t t h e v e l o c i t y p r e s s u r e s quoted by t h e M e t e o ~ o l o g i c a l I n s t i t u t e De B i l t apply t o winds from t h e following d i r e c t i o n s : South, South J e s t , Xes-c and North Vest. For winds from North o r South ?Gist 90% of t h e values f o r t h e v e l o c i t y p r e s s u r e w i l l s u f f i c e , and f o r winds from North East OP E a s t 70%,

9 0

C o e f f i c i e n t s

The p o s i t i v e and negative p r e s s u r e s e x e r t e d on t h e s u r f a c e s of a b u i l d i n g a r e derived from t h e v e l o c i t y p r e s s u r e by multiplying t h e l a t t e r by t h e c o e f f i c i e n t s obtained experimentally, From t h i s

it

i s evident t h a t t h e s e c o e f f i c i e n t s vary a t d i f f e r e n t p o i n t s of t h e same s u r f a c e (roof o r wall). Moreover, t h e y depend on t h e angle a t whish t h e wind s t r i k e s t h e surface. I n p r a c t i c e

it

i s d i f f i c u l t t o t a k e t h e s e d i f f e r e n t c o e f f i c i e n t s i n t o account and t h e r e f o r e a mean value must be used,

The c o e f f i c i e n t s l f s t e d i n V 789 were determined a me n values from

7 9 7

a v a i l a b l e data, c h i e f l y obtained from t h e Gbttingen t e s t s

4

5

A s explained below, these c o e f f i c i e n t s d i f f e r from t h o s e obtained experimentally.

(14)

( i ) The c o e f f i c i e n t r e t a i n e d f o ~ t h e maximum p o s i t i v e pressure i s 0.8 times t h e v e l o c i t y prassure; a c t u a l l y t h e p o s i t i v e pressure i s equsl t o t h e v e l o c i t y pressure, However,

it

occurs only f o c a l l y , e.g, on wind- ows. These a r e capable

af

r e s i s t i n g pressure, of course,

( i i ) The c o e f f i c i e n t f o r t h e maximum s u c t i o n i s 0,6 times t h e v e l - o c i t y pressure, Actually much g r e a t e r s u c t i o n s o c c w l o c a l l y , p a r t i c u l a r - l y a t t h e i n t e r s e c t i o n s of s u r f a c e s , a s

i s

evident from Fig, 27. However,

t h e s e high l o c a l s u c t i o n s cannot be used a s a b a s i s fop c a l c u l a t i o n ; they may serve a s a guide f o r properly securing t h e roofing m a t e r i a l and wall covering a t t h e p o i n t s i n question, For

a

t y p i c a l xa p l e of t h e e f f e c t

'il8T of s u c t i o n the r e a d e r i s r e f e r r e d t o t h e l i t e r a t u r e

( i i i ) Regarding r o o f s

it

i s a well-known f a c t t h a t p o s i t i v e pressure i s e x e r t e d on t h e lower s i d e of a roof and negative pressure on t h e upper part. However, t h e height of t h e roof from t h e ground a l s o has some e f f - e c t ( c f . Fig, 299, The p o s i t i v e pressure

i s

shown i n Fig, 29a and t h e negative i n 29b, This

i s

a l s o evident from t h e curved shape of t h e flow l i n e s , Owing t o t h e c e n t r i p e t a l f o r c e t h e pressure i s g r e a t e s t a t t h e convex side.

It had f i r s t been intended t o i n c l u d e t h e s e d i f f e r e n c e s i n t h e t e n t a t i v e standard s h e e t , b u t t h i s would have made t h e standard sheet t o o complex and t o o d i f f i c u l t t o handle, Therefore, only mean rough values have been f i s t e d ,

PO, L n t e r i o r Pressure

in

Bufldinag

The d i f f e r e n c e between t h e p r e s s u r e a t one point of t h e e x t e r n a l wall of t h e model and t h e s t a t i c p r e s s u r e i n t h e tunnel was obtained a s t h e r e s u l t of t h e model t e s t s (Fig, 6). This d i f f e r e n c e i s expressed by t h e v e l o c i t y pressure, m u l t i p l i e d by a c o e f f i c i e n t , with the s i g n

+

f o r p o s i t i v e pressure and

-

f o r negative pressure, A s s t a t e d i n

Section

3 ,

t h e same c o e f f i c i e n t s apply f o r a buildfng having a form s i m i l a r t o t h e model, However, it i s not t h e d i f f e r e n c e between t h e e x t e r n a l pressure and t h e s t a t i c pressure which must be known f o r prac- t i c a l purposes, but r a t h e r t h e d i f f e r e n c e between the e x t e r n a l and i n t e r - n a l pressures i n a building. I f t h i s i n t e r n a l pressure

i s

lower than t h e s t a t i c pressure, o r i n o t h e r fiords, i f " t h e r e i s negative p r e s s u r e i n a building, then t h i s i s i n agreement with t h e assumption t h a t although t h e r e i s s t a t i c ppessure i n t h e b u i l d i n g t h e p o s i t i v e p r e s s u r e s a t t h e o u t s i d e a r e nevertheless g ~ e a t e r by a s much a s t h e pressure i n t h e

b u i l d i n g i s lower than t h e s t a t i c p r e s s u r e , while t h e negative pressures a t t h e o u t s i d e a r e lower by a s much a s t h e pressure d i f f e r e n c e nentioned.

(15)

If t h e i n t e r i o r p r e s s u r e i n t h e b u i l d i n g should be g r e a t e r t h a n t h e s t a t i c p r e s s u r e , f o e . , g r e a t e r t h a n t h e p o s i t i v e p r e s s u r e i n t h e b u i l d - i n g , t h e same reasoning a p p l i e s .

However, t h e i n t e r n a l p r e s s u r e i s g e n e r a l l y n o t e q u a l t o t h e s t a t i c p r e s s u r e . Irming r and PBkkentved s t u d i e d t h i s problem and published a n i n t e r e s t i n g papery6)o They assume t h a t a b u i l d i n g always has some gaps even though windows and doors may be c l o s e d ; t h e j o i n t s a r e n o t t i g h t and t h e r o o f i s seldom completely t i g h t e i t h e r , Through t h e s e gaps a i r flows inwards and outwards, depending on whether t h e p r e s s u r e a t t h e o u t s i d e i s h i g h e r o r lower t h a n a t t h e i n s i d e . S i n c e under s t e a d y - s t s t e c o n d i t i o n s a s much a i r must flow inwards a s outwards and s i n c e t h e amount of a i r flow- i n g through a gap i s p r o p o r t i o n a l t o t h e s i z e of t h e gap and t h e r o o t of t h e p r e s s u r e d i f f e r e n c e , t h e i n t e r n a l p r e s s u r e may be o b t a i n e d by c a l c u l a - t i o n , i f t h e gaps a r e known.

I n t h e Danish t e s t s such c a l c u l a t i o n s were made f o r models i n which t h e gaps were uniformly d i s t r i b u t e d over a l l t h e a d j o i n i n g s u r f a c e s . The i n t e r n a l p r e s s u r e t h y s o b t a i n e d was cheeked by measurelnents and u s e f u l d a t a were obtained. I m i n g e r and mkkentved t h u s found t h a t t h e r e was n e g a t i v e p r e s s u r e i n a detached model i n which t h e gaps ( s m a l l h o l e s ) had been uniformly d i s t r i b u t e d over a l l t h e a d j o i n i n g s u r f a c e s , T h i s i s a l s o t h e c a s e i n a s i m i l a r b u i l d i n g under i d e n t i c a l c o n d i t i o n s .

If t h e gaps a r e n o t uniformly d i s t r i b u t e d , and i f , f o r example, a window o r door i s open, o r blown open, t h a t i s t o s a y , t h e r e a r e openings f o r v e n t i l a t i o n , c o n d i t i o n s change.

F o r t h e c o e f f i c i e n t s i n Subsection I11 of V 789 s t a t i c p r e s s u r e i n t h e b u i l d f n g has been assumed, T h i s i s considered a good approximation.

However, i f a gap becomes s o l a r g e t h a t

it

a f f e c t s t h e i n t e r i o r p r e s s u r e a s

it

does i n p a r t i a l l y open sheds,

it

i s a d v i s a b l e t o take t h e v a r i a t i o n from t h e i n t e r i o r and s t a t i c p r e s s u r e s i n t o account (cf.

S e c t i o n

N

of

V

789).

11. S h i e l d i n g

The c o e f f i c i e n t s a p p l y t o i s o l a t e d buildings. The s h i e l d i n g e f f e c t was i n v e s t i g a t e d a t D e l f t . A t e s t was made on a model e p l a c e d a t v a r i o u s d i s t a n c e s from a model g ( ~ i g . 30). I n Fig, 3 1 t h e r e s u l t s obtained a t t h e c e n t r e of t h e model have been p l o t t e d f o r d i s t a n c e s of 20, 40 and 8 0 cm. and f o r i n f i n i t e d i s t a n c e (no s h i e l d i n g ) a s well. I n o r d e r t o a v o i d crowding t h e diagram o n l y t h e c o e f f i c i e n t s f o r m h a v e been e n t e r e d ,

(16)

It should be pointed o u t t h a t a t a d i s t a n c e of 20 em. negative

p r e s s u r e i s exerted on t h e face. got u n t i l t h e d i s t a n c e i s 40 cm, i s posi- t i v e p r e s s u r e exepted, A t t h e l e e s i d e d i s t a n c e does not a p p r e c i a b l y a f f e c t t h e negative p r e s s u r e ,

I f t h e roof i s s l a n t i n g a t t h e l e e s i d e , then a l l t h e p r e s s u r e curves coincide, while a t t h e back w a l l t h e p r e s s u r e curves f o r 20, 40 and 80 cm, coincide,

From Figs, 1 5 up t o and i n c l u d i n g 21, 25 and 26 t h e e f f e c t of s h i e l d i n g on t h e roof a l s o i s evident,

A l l t h e s e t e s t s were made with t h e wind normal t o t h e f a c e i n t h e d i r e c t i o n ,

we

If t h e d i re c t i o n of t h e wind i s w l , t h e n s e c t i o n a ( ~ i g , 30) can no longer be considered shielded, of course, No d e f i n i t i o n of s h i e l d - i n g could be given i n t h e r e g u l a t i o n s , However, t h i s f a c t o r should not be d i s r e g a r d e d a l t o g e t h e r and each c a s e must be l e f t t o t h e d i s c r e t i o n of t h e a u t h o r i t i e s concerned.

12, C y l i n d r i c a l S t r u c t u r e s

A s mentioned above, f o r angular o b j e c t s of v a r i o u s s i z e s t h e co- e f f i c i e n t c remains unchanged, provided t h e s e o b j e c t s have t h e same shape, even i f t h e wind v e l o c i t y changes,

Conditions a r e d i f f e r e n t f o r round o b j e c t s whose diameter may d i f f e r g r e a t l y and whose f o r n v a r i e s from wires a m i l l i m e t r e s i n diameter t o gas t a n k s s e v e r a l t e n s of metres i n diameter,

The general t r e r d of t h e p o s i t i v e and negative p r e s s u r e s i s always a s shown i n Fig, 32 (vihere a p o s i t i v e p r e s s u r e

=

v e l o c i t y p r e s s u r e a t t h e c e n t r e of t h e viindlvard s i d e ] , However, t h e values of t h e p o s i t i v e and n e g a t i v e p r e s s u r e s and t h e p o s i t i o n of t h e p o i n t 0 v a r y g r e a t l y and t h u s t h e r e s u l t a n t f o r c e e x e r t e d on t h e c y l i n d e r v a r i e s a l s o ,

T h i s f o r c e

may

a g a i n be denoted a s c,

q,

f , , where f i s assumed t o be t h e plane of t h e p r o j e c t i o n , t h u s diameter x length.

A paper t i t l e d IVinddruk op c y l i n d e r s N (Wind p r e s s u r e on c y l i n d e r s ) by Engineer Professor

DP,

F, KO

The van I t e r s o H c o n t a i n s a diagram

( ~ i g ,

3 )

i n which, on

t

e sis of t e s t s conducted i n GBttingen with

i n -

f i n i t e l y long c y l i n d e r s f 1 9 r t h e value f o r e has been p l o t t e d a s a f u n c t i o n

of t h e ReynoldsB number,

The

l a t t e r means v e l o c i t y x diameter

,

kinematic v i s c o s i t y

o r f o r a i r , approximately 7 x v e l o c i t y

x

diameter,

if

t h e v e l o c i t y i s

ex-

pressed i n cm, per second and t h e diameter En em,

(17)

A t a v e l o c i t y of 40

m.,

o r 4,000 em,, pep second ( v e l o c i t y p r e s s u r e 100 kg-. p e r sq,m, ) t h e Reynolds number t h u s

i s

28,000

x

diameter ( e x p r e s s e d i n crn. ).

A t t h i s wind v e l o c f t y a Reynolds number of 105 corresponds t o a diameter of 100,000 =

3,6

cm. and f o r t h i s a c o e f f i c i e n t e o f 1.2 a p p l i e s .

28,000

I n t h e d i a g ~ a r n r e f e r r e d t o t h i s c o e f f i c i e n t c

=

1 , 2 f i r s t remains unchanged a s t h e d i a m e t e r i n c r e a . s e s and drops r a p i d l y t o 0,3 when t h e d i a - meter i s 18 em, But t h e c o e f f i c i e n t s l i g h t l y i n c r e a s e s a g a i n a s t h e d i a - meter i n c r e a s e s up t o

36

cm. The Gbttingen t e s t s d i d n o t go beyond t h i s .

I n

o t h e r t e s t s t h e maximum v a l u e obtained f o r c a l s o was 1.2*,

T h e r e f o r e , this v a l u e should be r e t a i n e d f o r wire, F o r c y E i d r i c a l o b j e c t s w i t h s t i l l l a r g e r d i a m e t e r s t h e c o e f f i c i e n t s sometimes d i f f e r completely

(lower o r h i g h e r ) from t h o s e based on t h e GBttingen t e s t s , and t h e c o n d i t i o n o f t h e flow (more OP l e s s uniform) and t h e degree of roughness of t h e

sur-

f a c e seems t o have a m e a t e f f e c t .

F o r a n o r d i n a r chimney exposed t o n a t u r a l wind t h e v a l u e f o r

a

c

ob- t a i n e d i n washington( 0 ) was 0.67. The f a c t t h a t up t o t h e second decimal t h i s f i g u r e a g r e e s w i t h a f i g u r e from t h e s i n e squared r u l e must be c o n s i d e r - ed p u r e l y i n c i d e n t a l . T h i s f i g u r e (rounded o f f t o 0,7) h a s s i n c e proved i t s u s e f u l n e s s i n p r a c t i c e and has t h e r e f o r e been r e t a i n e d ,

F o r s t i l l highep s t r u c t u r e s o f c i r c u l a r p r o f i l e , e,g. gas t a n k s , t h e e x i s t i n g p r a c t i c e may be followed, i f d a t a a r e n o t a v a i l a b l e .

F o r curved r o o f s t h e coefficients of V

789

may be r e t a i n e d ,

13,

P o i n t by P o i n t E x p l a n a t i o n of V

782

Although on t h e whole r e f e r e n c e can be made t o t h e preceding pages a nunber of d e t a i l s a r e e x p l a i n e d below,

I. The word " s i m u l t a n e o u s l y ~ has been i n s e r t e d i n t h e t e x t i n o r d e r t o p r e v e n t m i s i n t e p p r e t a t i o n , f e e . , t h a t p o s i t i v e p r e s s u r e i s e x e r t e d when t h e wind comes from one d i p e c t i o n and n e g a t i v e p r e s s u r e when it comes from another.

11, See S e c t i o n

4.

*

For s t i l l s m a l l e ~ d i a m e t e r s t h e c o e f f i c i e n t i n c r e a s e s a p p r e c i a b l y a f t e r dropping f o p a s h o r t time, However, t h e s e small diameters a r e unimportant f o r t h e p r e s e n t purpose,

(18)

111.

A.

B. C, A s s t a t e d above, t h i s i s a case of nean values here. Hence

it

i s not claimed t h a t t h e y a r e a b s o l u t e l y c o r r e c t . Nor i s t h i s required, p a r t i c u l a r l y i n view of t h e wind l o a d under considera- t i o n which cannot be a c c u r a t e l y defined l i k e o t h e r loads,

I n order t o o b t a i n in. a given c a s e t h e exact p r e s s u r e d i s t r i b u t i o n f o r various d i r e c t i o n s of t h e wind, t h e r e l e v a n t l i t e ~ a t u r e should be con- s u l t e d f o r cases which agree s a t i s f a c t o r i l y with the case i n question. Wind tunnel t e s t s should then s e t t l e t h e questicn. However, t h i s means t h a t i n most c a s e s t h e c o e f f i c i e n t s ~ r o v i d e a s a t i s f a c t o r y b a s i s f o r c a l - c u l a t i o n . The i n c l u s i o n of negative c o e f f i c i e n t s ( s u c t i o n ) i n t h e t e n t a - t i v e standard s h e e t i s nrob:ibly t h e most r a d i c a l improvement with r e s p e c t t o e x i s t i n g r e g u l a t i o n s .

The f a c t t h a t highep p o s i t i v e pressures ( c o e f f i c i e n t up t o 1.0) and much higher negative pressures nay occur l o c a l l y has been s t a t e d above.

111.

D,

The c o e f f i c i e n t s r e f e r r e d t o i n 12, B and C a r e intended f o r s p e c i a l j o i s t s . For wind bracfngs and anchorages of end gables a

lower mean value w i l l s u f f i c e , Therefore, a reduction of 10% i s admiss- i b l e . This i s

a n

approximate value obtained from a v a i l a b l e data.

Observation 1 (belonging t o 111): This observation, a s well a s observations

3,

4,

5,

6 and

7,

i s merely intended as a n i l l u s t r a t i o n .

Observation 2 (belongi ng t o 111) ; This note was necessary be-

cause i n case of l i t e r a l a p p l i c a t i o n of t h e r u l e e i t h e r t o o low a nega- t i v e pressure ao111.d be a p p l i e d t o a low roof o r none a t a l l . In Fig, 33 t h e flow curve i n d i c a t e s t h a t f n the hatched region t h e p o s i t i v e press- ure exerted on t h e roof i s equal t o t h a t on t h e high viall.

TV. See S e c t i ~ n 10: S t r i c t l y speaking, f o r sheds (e.g. hangars) a p o s i t i v e pressure of +O,8 and a negative pressure of -0.6 should have been a s s m e d . However, +0,6 and -0.4, respec

t i

vely, have been r e t a i n e d because t h e s i d e s whfch a r e not open a r e p r a c t i c a l l y never q u i t e t i g h t .

V. The c a s e of overhanging r o o f s (double c a n t i l e v e r construc- t i o n ) i s somewhat s i m i l a r t o tha.t of a e r o f o i l s a s long a s t h e p i t c h i s low. I n case a of Fig.

34

an upward f o r c e ( l i f t f o r a i r c r a f t ) i s e x e r t e d which i n case b becomes a downward f o r c e , of course.

I n case c ( c f . Section 7 ) , i f t h e wind i s h o r i z o n t a l and i f t h e f r i c t i o n and t h e Force on t h e small v e ~ . t l c a l p r o j e c t i o n a r e neglected, no f o r c e a t a l l should be exerted but a f o r c e w i l l be exerted i f t h e i n - c l i n a t i o n of t h e nind changes s l i g h t l y (e.g.

5

degrees). Cases a and b a r e s e n s i t i v e t o such changes i n t h e i n c l i n a t i o n of t h e wind and s i n c e t h e s e changes occur a t t h e s i d e of t h e h o ~ i z o n t a l exposed t o t h e wind

i t

i s s p e c i f i e d t h a t t h e c a l c u l a t i o n be c a r r i e d out i n two d i f f e r e n t

(19)

A s t o t h e q u e s t i o n w h e t b r t h e method of e a l e u l a t i o n i n V. A , l e , i s redundant, it should be p o i n t e d o u t t h a t where t h e l o a d has been reacved from t h e p o s t this method nay be r e q u i r e d i n order t o t a k e i n t o account a n upward f o r c e a t t h e anchorage of t h e p o s t . Furthermore, t h i s method i s a l s o

d e s i r a b l e s i n c e S t i s e s s e n t i a l t o a t t a ~ h t h e r o o f i n g m a t e r i s l p r o p e r l y , p a r t i c u l a r l y i n view of t h e c o n s f d e ~ a b l y h i g h e r s u c t i o n s which may occur l o c a l l y .

It i s p o i n t e d o u t that t h e l i m i t i n g c a s e of V, A, B and C, i . e . , a h o r i z o n t a l overhanging r o o f , r e q u i r e s i d e n t i c a l p o s i t i v e and n e g a t i v e p r e s s u r e s ( 0 , 6 ) a t t h e upper s i d e , I n t h i s e a s e no h o r i z o n t a l f o r c e has been s t i p u l a t e d , Sueh a f o ~ e e may a c t u a l l y OCCLW, of c o u r s e , b u t

it

w i l l

be small. I n g e n e r a l , a b u i l d i n g s h o u l d be capable of w i t h s t a n d i n g t h i s f o r c e and

it

need n o t be t a k e n i n t o account,

V I , For detached w a l l s o r s u r f a c e s ( e , g o b i l l b o a r d s ) a v a l u e of

1.4

f o r t h e c o e f f i c i e n t i s c o n s i d e r e d s a t i s f a c t o r y , FOP a square board normal t o t h e viind a a o e f f i e i e n t of 1.,6 should s u f f i c e , u n l e s s t h e co- e f f i c i e n t i s i n c r e a s e d f o r wind a t o b l i q u e i n c i d e n c e ( e f . S e c t i o n I),

V I I . The r e g u l a t i o n f o r framework f e b s e d on data i n t h e l i t e r a - t u r e (21,22)o S t r i c t l y speaking, t h e c o e f f i c i e n t f o r g i r d e r s a t t h e wind- ward s i d e should be g r e a t e r t h a n t h a t f o r g i r d e r s a t t h e Tee s i d e , b u t f o r

s i m p l i c i t y o n l y one mean coeffic.Sent has been r e t a i n e d ,

V I I I , (See S e c t i o n 1 2 ) : No c o e f f i c i e n t has been l i s t e d f o r r e c t - a n g u l a r chimneys, which a r e r a r e anywa.yo The c o e f f i c i e n t should be

I.&*.

I X . The reduction p e r m i t t e d f o r s h i e l d e d p o s i t i o n s h a s been e s t i m a t e d . S i n c e t h e c o e f f i c i e n t s

under B

a r e reduced t h i s r e d u c t i o n a l s o i s a p p l i c a b l e t o a l l t h e c o e f f i c i e n t s of s u b s e c t i o n I11 which a r e a p p l i e d i n s u b s e e t i o n s I V and

V,

X,

Observation l. It h a s been e s t a b l i s h e d by t h e Meteorological I n s t i t u t e , De B i l t , t h a t wind l o a d s and snow l o a d s need n o t be t a k e n i n t o a c c o u n t simultaneously, It i s thought t h a t a t t e m p e r a t u r e s a t which

it

snows and a t which i c e i s l i k e l y t o form t h e r e a r e no s e v e r e storms,

X.

Observation 2, T h i s c l a u s e has been adopted from t h e pre- l i m i n a r y r u l e s of t h e t e n t a t i v e s t a n d a r d s h e e t f o r s t e e l b r i d g e s (VOSB 1932 o f t h e committee ~ 1 s t ) ~ The elatrse i s Intended t o t a k e i n t o a c c o u n t t h e f a c t t h a t t h e a c t u a l dead weight of a b r l d g e may d i f f e r from t h a t assumed i n t h e c a Z c u l a t i o n , Then t h e u n p l e a s a n t s i t u a t i o n may a r i s e t h a t p r e s s u r e forms i n t h e g i r d e r s of t h e franeviork which had been cal- c u l a t e d f o r t e n s f on,

*

For t h e c a l c u l a t i o n of chimneys t h e r e a d e r i s r e f e r r e d t o D I N S h e e t 1056 and t o t h e paper by

W,

van Teylingen i n de Ingenfeur, no, 21, 1927.

(20)

14.

Notes

F i n a l l y t h e r e a d e r ' s a t t e n t i o n i s drawn t o t h e f o l l o w i n g n o t e s : (1) The P r u s s i a n r e g u l a t i o n s c o n t a i n t h e f o l l o w i n g passage: "Buildings which a r e s u f f i c i e n t l y s t i f f e n e d by walls and c e i l i n g s need n o t be examined f o r wind p r e s s u r e a s a r u l e , l t

No such c l a u s e was i n c l u d e d i n V

789

because t h i s s t a n d a r d s h e e t

i s

i n t e n d e d merely t o g i v e d a t a f o r t h e magnitude of t h e f o r c e s o c c u r r i n g and when t h e s e d a t a a r e a p n l i e d

i t

becomes immediately c l e a r whether OP

n o t a case r e q u i r e s calcul_ation.

The q u e s t i o n a s t o what e x t e n t t h e dependence of t h e wind on t h e dead weight o f t h e m a t e r i a l (e. g. c o n c r e t e o r s t e e l ) s h o u l d be con- s i d e r e d has been d i s r e g a r d e d s i n c e

i t

i s always d e s i r a b l e t o t a k e t h e e f f e c t of wind i n t o account.

( 2 ) I n t h e c a s e of n e g a t i v e p r e s s u r e ( o r s u c t i o n ) on r o o f s i n - v o l v i n g upward f o r c e s , t h e s e may exceed t h e dead weight and a l o a d i s t h u s a p p l i e d on a main g i r d e r i n t h e manner shown i n F i g ,

35.

T h i s i s d i s t i n c t from t h e u s u a l assumution o f continuous downward f o r c e s ,

While in t h e l a t t e r assumption t h e r e i s e x c l u s i v e l y t e n s i o n i n t h e bottom boom member o f t h e main g i r d e r , t h e upward f o r c e s may b r i n g a b o u t p r e s s u r e i n t h e members.

If t h e members have n o t been c a l c u l a t e d f o r p r e s s u r e , t h e compressive f o r c e must be taken i n t o a c c o u n t i n some o t h e r way, e.g. by v e r t i c a l r o d s which r e s i s t bending. However, t h i s i s r e q u i r e d i n p r i n c i p l e i n o r d e r t o t a k e i n t o account t h e compressive f o r c e s p r e s e n t i n t h e bottom bocm members ( a s w e l l as i n t h e d i a g o n a l and v e r t i c a l r o d s , which me s u c h i n t h e same p o s i t i o n i n t h i s c a s e ) .

Since V

789

i s confined t o d a t a on t h e magnitude of t h e f o r c e s t h e r e i s no need t o pay a t t e n t i o n t o cornpressive f o r c e s p o s s i b l y occur- r i n g i n t h e lower boom members, e t c ,

( 3 )

For a e o e f f i c i e n t of

0.6

uniformly a p p l y i n g t o t h e e n t i r e roof t h e f o r c e s a t t h e c e n t r e d i a g o n a l ( ~ i g ,

35)

become z e r o because t h e dead weight i s assumed t o be a uniform l o a d , However, t h e assump- t i o n of a uniform e o e f f i c i e n t over t h e e n t i r e roof i s o n l y a rough one, and a t t h e windward s i d e t h e s u c t i o n s a c t u a l l y have h i g h e r values. Therefore, t h e f o r c e s a t t h e diagonal i n q u e s t i o n a r e n o t zero.

However, when a t r u s s i s designed t h e u s e o f l i g h t - w e i g h t and weak s e c t i o n s a r e avoided, T h e r e f o r e , t h e s e members s h o u l d be s u f f i c i e n t - l y s t r o n g t o w i t h s t a n d f o r c e s .

(21)

( 4 )

A t t e n t i o n s h o u l d a l s o be p a i d t o o s c i l l a t i o n s a t c o n s t a n t v e l - o c i t y normal t o t h e d i r e c t i o n of t h e win& ( c f , American C i v i l E n g i n e e r s Bndbook. iderriman, 1930. p. 295).

Model t e s t s w i t h c y l i n d e r s showed t h a t v o r t i c e s (SD-called Karmants v o r t i c e s ) a r e r e l e a s e d a t t h e l e e s i d e , a l t e r n a t e l y a t t h e l e f t - h a n d a n d r i g h t - h a n d s i d e s and t h a t t h e p e r i o d of r e l e a s e of two v o r t i c e s a t t h e same s i d e was a p p r o x i m a t e l y 0.2

8

sec. (v

=

v e l o c i t y i n m. p e r sec. a n d d

=

d i a m e t e r i n m. )

.

S i n c e t h i s n e r i o d i s t h e same as t h a t of t h e n a t u r a l o s c i l l a t i o n , c o n s i d e r a b l e v i b r a t i o n s , which r e q u i r e s p e c i a l p r e c a u t i o n s , may be brought about.

w It i s a well-known phenomenon t h a t when a s t i c k i s p l a c e d p a r a l l e l t o t h e d i r e c t i o n o f flow of w a t e r t h e s t i c k w i l l o s c i l l a t e normal t o t h e d i r e c t i o n o f t h e flow.

(22)

References

1. S t a n t c n , On t h e r e s i s t a n c e of p l a n e s u r f a c e s i n a uniform c u r r e n t of sir. Proc, I n s t i t u t i o n c f C i v i l Engineers, London,

156:

1904. 2. F l a c h s b a r t , Filessungen a n P l a t t e n . E r g e b n i s s e d e r Beordynamischen

V e r s u c h s a n s t a l t xu Gutfingen, no.

4,

1932,

his

number a l s o con- t a i n s a n a b s t r a c t of t e s t s c a r r i e d o u t by t h e same a u t h o r and d e s c r i b e d i n d e t a i l i n no.

4

and

5,

) Also by F l a c h s b a r t : Ninddruck a u f G a s b e h a l t e r "

3.

E i f f e l . Nouvelles r e c h e r c h e s s u r l a r d s i s t a n c e de l s a i r e t I s a v i a t i o n . 1914.

4.

Models of b u i l d i n g s w i t h f l a t r o o f s and s a d d l e ~ o o f s . Jahrbuch der Deutschen G e s e l l s c h a f t fflr Bzuingenieurwesen, 1927.

5 .

Models of open h a n g a r s w i t h f l a t ~ o o f s . Jahrbuch d e r Deutschen G e s e l l - s c h a f t fIlr Bauingenieurwesen, 1928.

6.

I r m i n g e r and Ntlkkentved, :'dodels of b u i l d i n g s w i t h s a d d l e r o o f s , prisms, pyramids, c y l i n d e r s and cones, Copenhagen, 1930.

7.

Bounkin and Tchereaoukhtn. Wind p r e s s u r e on r o o f s and w a l l s of b u i l d i n g s (models of b u i l d i n g s w i t h s a d d l e r o o f s and r o o f s having t h e form of a segment of a c i r c l e ) , Trans,, C e n t r a l 4ero-Hydrbdynamical I n s t i t u t e , Irloscow, 1928.

8.

Coupard. I n f l u e n c e du v e n t sup l e s M t i m e n t s , B u l l e t i n d e l a Chambre S y n d i c a t e des I n d u s t r i e s Aeronautfques, P a r i s , day-June 1927.

( ~ o d e l s as i n r e f e r e n c e 7 ) .

9.

Bureau of S t a n d a r d s , l'lashingkon. S c i e n t i f i c Paper 523, 1926. ( ~ o d e l o f a s k y s e r a p e p ) ,

10. Bureau of Standards, 'dashington. Research Paper

301,

1931.

( ~ o d e l of a hangar),

11. S y l v e s t e r . Windloads on af r s h i p hangars. S i x t h 1\Jational A e r o n a u t i c a l Xeeting o f t h e Aaerican S o c i e t y of ldechanical Engineers, 1932. 12. F l a c h s b a r t , G r u n d s d t z l i c h e s

z u r

Frage d e s Binddrucks a u f GeMlude.

Bauwelt (27, 28) : 1932.

13.

Smith. Windloads on b u i l d i n g s . J o u r n a l o f t h e l e s t e r n S o c i e t y of Engineers, 1912 and

1914,

(23)

14.

F o r t L Bridge. Engineering, Feb. 23, 1890.

15.

Van Genderen S t o r t . Wind p r e s s u r e , P o l y t e c h n i s c h Weekblad:

(29 and 3 0 ) : 1922.

16,

Stanton. Report on t h e measurements of t h e p r e s s u r e of t h e wind on s t r u c t u r e s , Proc. I n s t i t u t i o n of C i v i l Engineers, London, 219: 1925,

17.

Braak. The c l i m a t e of t h e Netherlands,

D,

Nfnd. Kon. Ned. Meteorologisch I n s t i t u u t , 1929.

18. Bauingenfer 1920

w e 39.

(cf. Fig.

36

of t h e p r e s e n t paper).

19.

E r g e b n i s s e d e r Aerodynarnischen V e r s u c h s a n t a l t z u Gbttingen, no. 2, 1923. ( c y l i n d e r s ) ,

20. Bureau of S t a n d a r d s , Nashington. Research paper 221, 1930. ( c y l i n d e r s ) . 21. E r g e b n i s s e d e r Aerodpamischen V e r s u c h s a n s t a l t

xu

C b t t i n g e n , no.

3,

1927, ( ~ r a m e w o r k and t e s t s w i t h s e c t i o n i r o n ) .

22. F l a c h s k r t , Winddruck a u f vollwdndige Bauwerke und Gitterfachwerke. Abhandlungen d e r I n t e r n a t i o n a l e n Vereinigung fUr BrUckenbau und Hochbau, 1932.

Figure

Fig.  1:  C i r c u l a r   p l a t e   i n   a n   a i r  flow;  p o s i t i v e   p r e s s u r e   i n  f r o n t   and  n e g a t i v e   p r e s s u r e   s t  t h e   back
Fig.  6:  Experimen.t.!l_ s e t - u p   i n  t h e   wind  t u n n e l ,   D e l f t
Fig.  11  Yilodel  e  Fig.  1 2  Model  f  u  Fig.  13  Yodel  g  Fig.  14  Model  h  Fig
Fig.  24:  Model  h  i n  t h e   Amster-  dam  wind  tunnel.
+2

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including