• Aucun résultat trouvé

SPIN DEPENDENT FORCES IN QUARK MODELS

N/A
N/A
Protected

Academic year: 2021

Partager "SPIN DEPENDENT FORCES IN QUARK MODELS"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: jpa-00224519

https://hal.archives-ouvertes.fr/jpa-00224519

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SPIN DEPENDENT FORCES IN QUARK MODELS

J. Rosner

To cite this version:

J. Rosner. SPIN DEPENDENT FORCES IN QUARK MODELS. Journal de Physique Colloques,

1985, 46 (C2), pp.C2-77-C2-93. �10.1051/jphyscol:1985208�. �jpa-00224519�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, supplément au n°2, Tome k(>, février 1985 page C2-77

SPIN DEPENDENT FORCES IN QUARK MODELS J . L . Rosner

CERN, CH-1211 Geneva, Switzerland and

Enrico Fermi Institute and Department of Physios, University of Chicago, Chicago, II 60637, U.S.A.*

Résumé - Les expériences des récentes années nous ont donné une compréhension qualitative des forces entre les quarks qui dépendent du spin: ?v$2» t ' ^ ' s12- Une perspective : théorique est présentée et d'autres expériences sont suggérées.

A b s t r a c t - Q u a l i t a t i v e understanding o f h y p e r f i n e , s p i n - o r b i t , and tensor forces i n systems of both l i g h t and heavy quarks i s now a v a i l a b l e . The experimental s i t u a t i o n leading t o t h i s understanding i s reviewed, t h e o r e t i c a l perspectives are g i v e n , and some suggestions f o r f u r t h e r study are made.

I - INTRODUCTION

From heavy quarkonium systems (cc and b b ) , much has been learned about forces between quarks. I n i t i a l e f f o r t s led t o the n o t i o n of a f l a v o r - i n d e p e n d e n t p o t e n t i a l whose form i s n e a r l y uniquely s p e c i f i e d between 0.1 and 1 fm / I - 5 / . Concurrent w i t h these s t u d i e s , and j u s t now approaching s i g n i f i c a n t experimental t e s t s , have been attempts t o understand the spin-dependence o f these f o r c e s . (Recent reviews appear i n Refs. / 6 - 1 0 / . )

At s h o r t distances quark-quark and q u a r k - a n t i q u a r k i n t e r a c t i o n s appear t o be gov- erned by the exchange o f a s i n g l e v e c t o r gluon. N o n r e l a t i v i s t i c p o t e n t i a l models, s p i n - s p i n , s p i n - o r b i t , and tensor forces a l l are i n q u a l i t a t i v e accord w i t h t h i s n o t i o n . The question j u s t now being s e t t l e d regards the nature o f the f o r c e a t longer d i s t a n c e s . To the degree t h a t d e s c r i p t i o n o f t h a t force by a p o t e n t i a l makes sense, a consensus i s forming t h a t t h i s p o t e n t i a l behaves as a Lorentz s c a l a r . This a r t i c l e reviews some experiments r e l e v a n t t o spin-dependent forces i n quark models, and some t h e o r e t i c a l approaches t o these f o r c e s . Suggestions f o r f u r t h e r work are g i v e n . A companion review / l l / examines i n more d e t a i l the spin-deoendent forces i n the u p s i l o n (bb) system.

Quark spins are useful i n q u a n t i t a t i v e c a l c u l a t i o n s , p a r t i c u l a r l y o f magnetic moments. The s t a t u s o f baryon moments and some other prospects f o r measuring quark magnetic moments i n hadrons are r e c a l l e d i n Sec. I I . Ue then disqyss the formalism o f spin-dependent e f f e c t s , which are n e c e s s a r i l y r e l a t i v i s t i c (Sec. I l l ) , and t u r n t o d e t a i l s o f s p i n - s p i n i n t e r a c t i o n s (Sec. IV) and s p i n - o r b i t and tensor forces (Sec. V). The s p i n - o r b i t force i s a key t o understanding how quarks i n t e r a c t a t large d i s t a n c e s . Both l i g h t and heavy quarks are needed t o o b t a i n a l l the necessary i n f o r m a t i o n .

Some remarks on spin-independent r e l a t i v i s t i c c o r r e c t i o n s are made i n Sec. V I . These concern the question o f s c a l a r v s . v e c t o r exchange a t long d i s t a n c e s , and the

p o s s i b l e d i s t o r t i o n s of the n o n r e l a t i v i s t i c p o t e n t i a l t h a t can a r i s e i f spurious spin-independent r e l a t i v i s t i c c o r r e c t i o n s are adopted. I t i s shown how toponium ( t t ) and s c a l a r quarkonium (qq) spectra can provide i n f o r m a t i o n i n order t o resolve

Permanent a d d r e s s .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985208

(3)

C2-78 JOURNAL DE PHYSIQUE

t h i s ambiguity. A b r i e f summary (Sec. V I I ) , i n c l u d i n g a discussion o f some open questi ons,concludes.

I I - QUARK SPINS IN HADROMS: EXAMPLES

A. Baryon magnetic moments. One cannot ask f o r a n i c e r system i n which t o discuss the e f f e c t s o f quark spins t h a n t h e magnetic moments o f the n e u t r o n , p r o t o n , and r e - l a t e d ground-state baryons. This s u b j e c t has been reviewed e a r l i e r / 1 2 / , so we s h a l l be b r i e f about a l l but the l a t e s t developments.

In the s i m p l e s t form o f the quark model, magnetic moments o f SU(3) o c t e t baryons B composed o f quarks aa@ are given by

vB=3ya - 3ye ( 2 - 1 )

w h i l e yA = us and v ^ A = ( yd - %)/S3.

This reproduces a l l baryon magnetic moments t o w i t h i n ± 0.3 UM. In order t o do b e t t e r , i t seems necessary t o i n t r o d u c e c o n f i g u r a t i o n mixing / T 3 - 1 7 / , a l l o w i n g f o r o r b i t a l angular momentum among the quarks. A p a r a m e t r i z a t i o n which allows f o r t h i s mixing i s / 1 4 , 1 5 /

Vn

=

°

+ a ) y

u,d "

a

»d,u

( 2

-

2

>

vz ± = ( l + a ' ) u{u} - a ' vs ( 2 . 3 )

u=o = ( l + a ' ) ys - a 'P {u} ( 2 . 4 )

The coefficients a and a' differ because E ' S and H'S can mix with SU(3) decimet mem- bers, while nucleons cannot. The coefficients of ya and yg in baryons <xag still add up to 1, as is true when the net result of admixtures of configurations with nonzero total orbital angular momentum cancels. The deviation from 1 in the sum of these coefficients has been estimated not to exceed 10% /14/.

Eqs. (2.2)-(2.4) contain five unknowns for six quantities. There is one relation among them /16/; defining y E (yp + yn)/2, we find

(uE+ - y )2 - („j._ - y )2 = (yH.o - u )2 - (uH_ - v )2 , (2.5)

TABLE 1 . Baryon magnetic moments 1n units of v^ in naive quark model and with configuration mixing.

Baryon

P n A i*

z~

-.•

= -

u(E° - A)

"u

"d

H

a a1

vJvi

Experiment (From Ref. / 1 4 / )

2.793 -1.913 -0.613iO.005

2.38:0.02

-

- I . l l i 0 . 0 4 -1.250»0.014

-0.69t0.04 ' •8 2- 0 . 2 5

Naive Model

Input input input 2.67 U+ + l")/2

-1.09 -1.44 -0.50 -1.60

1.852 -0.972 -0.613 1/3 (input) 1/3 (input)

-1.91

Mixinq / 1 4 /

input input not predicted

input (£* • r " ) / 2 -1.04s0.06(exp)±0.06(th)

input input -1.74j0.20(exp)±0.03(th)

1.875 -0.995 -0.739 0.32 0.20 -1.88

(4)

The values o f a and a ' i n Table 1 f o r t h e mixed s o l u t i o n support t h e idea t h a t mix- i n g affects mainly t h e hyperons: a % 1/3, b u t a ' < 1/3. This l a s t e f f e c t leads t o a "quenching"/l6/ of t h e odd q u a r k ' s moment i n hyperons.

The d e v i a t i o n from uu/ud=-2 may be due t o small quark anomalous moments /13,17/.

One model f o r such moments /13/ envisions a c o n t r i b u t i o n from Y + ( l i g h t quark loops) -+ 3 gluons -+ quark. T h i s ought t o l e a d t o a u n i v e r s a l c o n t r i b u t i o n t o t h e t o t a l moment, e.g.,

!lU= uUO

+

A ; p d = udO

+

A ; u c = p c 0 + A . (2.6) If one sets ! J ~ O / ! J ~ ~ = - ~ and takes t h e values o f !JU and u d from Table 1, one e s t i - mates A =- (0.03 t o 0 . 0 4 ) ~ ~ . How e l s e c o u l d such e f f e c t s show up?

1 2

B.

~ a ~ n e t i c moment o f charmed quark. k!ith u c O

-

gvU0=-5 1111 ( s i n c e mc = 5 mu) t h e c o r r e c t i o n A t o t h e charmed quark moment i n (2.6) can be o f o r d e r 10%. There a r e several i n t e r e s t i n g ways t o measure !lc, though probably n o t t o t h a t accuracy.

1. Charmed baryon ~~(2280). J u s t as i n t h e A , t h e u and d quarks i n A, = udc a r e i n a s t a t e o f t o t a l s p i n zero. Thus vhc = u c = 0.2yu I 0 . 4 ~ Measurement o f t h e magnetic moment o f such a s h o r t - l i v e d p a r t i c l e ( r A C = 2 ~ 1 0 - ' ~ ' s ) would be a use- f u l t o u r de f o r c e , n o t t o t a l l y o u t o f t h e q u e s t i o n (K. H e l l e r , p r i v a t e communica- t i o n ) .

2 . Magnetic d i p o l e t r a n s i t i o n s i n charmonium. A systematic study o f M1 t r a n s i - t i o n s such as JI 4 ,,C., JII + n C B Y

,. . .

, has been made by several authors r e c e n t l y 1 8 1 9 I n p r i n c i p l e these t r a n s i t i o n s should proceed j u s t v i a a s p i n f l i p , so t h e i r r a t e s are c a l c u l a b l e : r(3S1 -+ 'So + y ) = 4 ~ 3 ~ ~ 7 - 1 I 2/27n. where I i s an

l

o v e r l a p i n t e g r a l which would be 1 i n t h e n o n r e l a t i v i s t i c i m i t , and U i s t h e photon energy. I n f a c t i t appears t h a t

I

112 < 1 both i n charmonium and i n l i g h t - q u a r k /12/ systems. Given t h e experimental r a t e /20/

r

(J, -+ y n C ) = 0.5

-

1 keV

,

and the d e f i n i t i o n o f t h e anomalous moment K , u c = Q c l c l ( l + ~)/2m,, we f i n d ( l + ~ ) (1.5 GeV/mc)l 11 = 0.4 t o 0.6. E i t h e r mc i s s u b s t a n t i a l l y above 1.5 GeV (values above 1.9 EeV are u n l i k e l y i n p o t e n t i a l models), K < 0, o r

11 l 2

= 1/4. I t i s t h e conclusion o f Ref. 18 t h a t the r a t e s f o r Q -+ usc can be e x p l a i n e d w i t h o u t recourse t o anomalous moments, b u t t h e c a l c u l a t i o n s o f 11

l 2

a r e n o t y e t a t t h e accuracy r e - q u i r e d t o determine K a t an i n t e r e s t i n g l e v e l .

3. Magnetic quadrupole t r a n s i t i o n s i n $ ' + yx and -P v$. The dominant t r a n s i - t i o n s i n r a d i a t i v e decays of heavy quark systems a r e e l e c t r i c d i p o l e ( E l ) . Under some circumstances, however, i t may be p o s s i b l e through c a r e f u l study o f photon angular d i s t r i b u t i o n s t o see t h e i n t e r f e r e n c e of M2 t r a n s i t i o n s w i t h the dominant El amplitude. The M2 t r a n s i t i o n amplitude i s p r o p o r t i o n a l t o t h e t o t a l quark magnetic moment.

Present data a r e on t h e verge o f being a b l e t o see t h e M2 t r a n s i t i o n ' s effects.

When p r e d i c t i o n s /21,22/ a r e compared w i t h experiment /23/, one f i n d s (see Eq. (6-7) and Fig. 6-1 of t h e f i r s t o f Refs. 23) a charmed quark t o t a l moment

These numbers are based on 10 6- rl' decays. From Eq. (2.7) one would expect a sub- s t a n t i a l impact from t h e study o f 1 0 7 $' decays. Since M2 e f f e c t s a r e p r o p o r t i o n a l t o py/mS, they are probably b e s t s t u d i e d i n charmonium and n o t b6 systems.

C . Magnetic moment o f b quark. By t h e same reasoning o f the previous subsection,

we estimate ubO = -0.06 UN. The b quark l i v e s l o n g enough (about 10-12s) t h a t i t may n o t be any harder t o study yhb than uhc, given a s u i t a b l e source o f hb z udb.

(Since t h i s p a r t i c l e has n o t y e t been produced, we are being o p t i m i s t i c ! ) An anomaly o f -0.03 !JH would s u b s t a n t i a l l y a f f e c t t h e magnitude o f b.

I f t h e r a t e f o r T + nby exceeds t h a t c a l c u l a t e d w i t h one's b e s t estimates o f t h e o v e r l a p i n t e g r a l I, w h i l e t h a t f o r $ + ncy i s lower than c a l c u l a t e d , i t may be worth t a k i n g t h e i d e a o f anomalous quark moments m o r e i o u s l y . T h i s adds t o t h e impor- tance o f c o n t r o l l i n g r e l a t i v i s t i c c o r r e c t i o n s enough t o e s t i m a t e I r e l i a b l y .

(5)

C2-80 JOURNAL DE PHYSIQUE

A. S c a l a r and v e c t o r exchanges. The c o v a r i a n t m a t r i x element f o r quark-antiquark s c a t t e r i n g may be w r i t t e n

where q i s t h e 4-momentum t r a n s f e r . These are t h e two forms t h a t have a s t a t i c l i m i t and hence make sense f o r a n o n r e l a t i v i s t i c p o t e n t i a l . Tensor, a x i a l , and pseudo- s c a l a r i n t e r a c t i o n s o f course are a l s o allowed.

B. Short-and long-range forces.

1. A t s h o r t r a n e, t h e exchange o f a s i n g l e gluon leads t o a v e c t o r form o f t h e

inters-ore

F o u r i e r t r a n s f o r m i s V ( r ) = - ( 4 / 3 ) [ a s ( r ) / r ] . The s t r o n g f i n e - s t r u c t u r e constant a s ( r ) has a slow l o g a r i t h m i c v a r i a t i o n .

2. A t l o n g range, l i n e s o f force between a quark and a n t i q u a r k appear t o be c o l l i - mated i n t o a " s t r i n g " o f l i m i t e d cross s e c t i o n a l area. By Gauss' law, t h i s leads t o a constant force, o r a s t a t i c energy ~ ( r ) = k r , where k = 0.18 GeV2. This value o f k i s deduced from t h e spectra o f h i g h o r b i t a l e x c i t a t i o n s i n l i g h t - q u a r k systems, o r l i n e a r Regge t r a j e c t o r i e s . A simple p i c t u r e o f a r e l a t i v i s t i c r o t a t i n g s t r i n g /24/ y i e l d s the r e l a t i o n L = a'M2 between o r b i t a l angular momentum L and resonance mass 11, where t h e slope a ' i s r e l a t e d t o t h e energy d e n s i t y k by a ' = 1/(2*k). The e m p i r i c a l value a ' = 0.9 G ~ V - ~ then leads t o t h e estimate quoted.

The Lorentz t r a n s f o r m a t i o n p r o p e r t i e s o f t h e l o n g range f o r c e a r e n o t known a p r i o r i . I t i s these we seek t o l e a r n from experiment, and deduce from theory.

C. The e f f e c t i v e p o t e n t i a l . L i m i t i n g t h e discussion t o s c a l a r and v e c t o r exchanges, we w r i t e t h e n o n r e l a t i v i s t i c p o t e n t i a l as V = V(r) + S ( r ) . The e f f e c t i v e p o t e n t i a l between a quark and a n t i q u a r k , each o f massN/$, can be w r i t t e n /25,6/

Here

V-

i s a

ipin-independent pieces

'4 v2vNR

- 'fii

+ P.

PTRv.?

Vl

E - b + 4m2

mL

,

where R = 1

-

and V acts o n l y on V w h i l e

$

a c t s b o t h on V and wave f u n c t i o n l . We s h a l l discuss t h e s i g n i f i c a n c e o f V1 f u r t h e r i n Sec. V I I . The s p i n - o r b i t term i s

t . 5

v,

= ( 3 V ' - S ' ) (3.4)

w h i l e t h e s p i n - s p i n and t e n s o r terms are 252 - 3 S12

v '

"3 = "V

+ m -

V")

Here S = 2 [ 3 ( $ . r ) ( f . r )

-

3 2 3 i s t h e t e n s o r operator, which o n l y c o n t r i b u t e s when L > ~ . ' ~ ~ e c h n i q u e s f o r e v a l u a t i n g t h e m a t r i x elements o f t h e t e n s o r o p e r a t o r S12 are given, f o r example, i n Ref. /26/. Values o f V2 and V3 f o r unequal-mass cases are given, f o r example,in Refs. /27/ and /28/.

We n o t e several p o i n t s about V2 and V3.

1. The s i n d i f f e r e n c e i n V2 between V and S c o n t r i b u t i o n s a r i s e s from t h e con- t r i b u t i o n ingV o f t r a n s v e r s e and Coulomb gluon exchange which i s absent i n S. Only t h e Thomas precession term i s present i n S. I t i s a l s o present i n V, b u t over- whelmed by t h e o t h e r c o n t r i b u t i o n s .

2. Only V c o n t r i b u t e s t o s p i n - s p i n and t e n s o r forces. The s i g n a l s f o r such forces i n experimental spectra then p o i n t t o exchange o f

some

v e c t o r p a r t i c l e . The

(6)

rcagnitudes o f such forces appear t o be i n accord w i t h expectations from gluon ex- change.

3. A Coulomb p o t e n t i a l V %

-

l / r c o n t r i b u t e s t o S waves only, s i n c e

v - l . I n p a r t i c u l a r f o r such a p o t e n t i a l t h e l P 1 - T s p l i t t i n g i s zero.

D. I s t h e p o t e n t i a l an e f f e c t i v e s c a l a r a t l a r g e r ? An appealing d i s t i n c t i o n be- tween t h e behavior o f t h e p o t e n t i a l i n QCD a t s h o r t and long distances has been drawn by Buchm'u'ller /9,29/ and supported i n more r i g o r o u s language by Gromes /30/.

A t s h o r t distances t h e quark-antiquark system i s e f f e c t i v e l y Coulombic. As i l l u s - t r a t e d i n Fig. l a , an a n t i q u a r k o r b i t i n g a quark crosses f i e l d l i n e s and i s s u b j e c t t o an e f f e c t i v e chromomagnetic f i e l d

B

=

3

X

e,

where i s t h e ( r a d i a l ) chromoelec- t r i c f i e l d . T h i s leads t o an e x p l i c i t s p i n - o r b i t f o r c e . The Thomas term w i l l be present i n a d d i t i o n .

Fig. 1. Chromoelectric l i n e s o f f o r c e a c t i n g on a quark

4

r o t a t i n g about a source

Q. (a) a t s h o r t distances; (b) a t l o n g distances (From Ref. /g/.)

A t l o n g distances, an o r b i t i n g anqiquark drags chromoelectric f i e l d l i n e s around w i t h i t ( F i g . I b ) . There i s then no e x p l i c i t

P*$

f o r c e . Because i t i s i n a r o t a - t i n g reference frame, t h e o r b i t i n g a n t i q u a r k i s o f course s t i l l s u b j e c t t o a Thomas f o r c e . Since t h i s i s o f opposite s i g n t o the

r-3

f o r c e associated w i t h $ X

p,

the e f f e c t i v e p o t e n t i a l here would be i n t e r p r e t e d as a s c a l a r exchange. The n e t

P-$

term i n t h i s p i c t u r e i s thus p o s i t i v e a t small distances and n e g a t i v e a t l a r g e distances. This has some i n t e r e s t i n g consequences.

1. As r grows, one expects a diminished

t.$

e f f e c t as compared w i t h t h e t e n s o r f o r c e . This i s borne o u t by a comparison between c € and b6 systems.

-

2. A t v e r l a r e r , one ex e c t s m u l t i l e t i n v e r s i o n , i . e . , M(3P ) > M(3P1) >

M(3P2) /31/.Y We %ave n o t fou:d a suitabee system t o d i s p l a y t h i s i f h e r s i o n , how- ever, as w i l l be mentioned i n Sec. V.

A s c a l a r c o n f i n i n g n o t e n t i a l i n the D i r a c equation, behavina i n t h e same way as t h e mass

1

i $

+

m

+

V(r)]$ = 0, avoids a K l e i n paradox as ~ ( r ) gets l a r g e 1321. Some e a r l y phenomenological analyses 133,341 viewed s c a l a r confinement favorably, and more r e c e n t treatments, /9,19,25,28,29,35-411 a r e s t i l l c o n s i s t e n t w i t h t h e n o t i o n . The reasons f o r c o n t i n u i n g t o r a i s e t h e q u e s t i o n a r e several, however. Some approaches t o t h e behavior o f QCD a t l a r g e distances /42/ seem t o preserve t h e form o f v e c t o r exchange, b u t w i t h the gluon propagator simply m o d i f i e d a t small q2.

Another p o s s i b i l i t y /43-451 i s t h a t t h e i n t e r a c t i o n i s o f v e c t o r form a t s h o r t d i s - tances, b u t t h a t the transverse degrees o f freedom o f t h e exchanged p a r t i c l e do n o t c o n t r i b u t e t o t h e long-range i n t e r a c t i o n . This d e s c r i p t i o n appears phenomenologi- c a l l y adequate, b u t d i f f e r s i n p r i n c i p l e from t h e long-range s c a l a r i n t e r a c t i o n . I t has a l s o been suggested on t h e b a s i s o f f l u c t u a t i o n s i n s t r i n g s t h a t t h e r e may be a long-range t e n s o r i n t e r a c t i o n 1461.

With these t k e o r e t i c a l p o s s i b i l i t i e s t o choose from, what do we l e a r n from t h e data themselves?

(7)

JOURNAL DE PHYSIQUE

I V

-

SPIN-SPIN FORCES A. Light-quark systems

1. L=.O mesons and baryons. A simple mass formula 127,471 F? = c mi + h C -c&: .&.>/m.m. f i t s 7 meson masses:

i i r j 1 J 1 J

r , K,

1

mu = md = 310 MeV

p , U ,

X*,

( I m s = 485 MeV

w i t h one value o f h = h M and 8 baryon masses:

N, A , c ,

e

mu = md = 365 MeV

* *

A , y 1 ,

e

9 "

w i t h a value o f A ,= A i n p r i n c i p l e r e l a t e d by QCD t o h#. Note t h a t t h e values o f quark masses f o r t h e Earyons i n (4.2) are s h i f t e d by 53 MeV w i t h regard t o those f o r t h e mesons i n (4.1) 1481. Thus one may i n t e r p r e t the f i t s i n terms o f 4-6 f r e e parameters t o determine 15 masses. The h y p e r f i n e i n t e r a c t i o n i s t h e n e x t most im- p o r t a n t q u a n t i t y a f t e r t h e strange-nonstrange quark mass d i f f e r e n c e i n determining t h e values o f t h e l i g h t hadron masses.

L - l b a r ons. The s i m p l e s t o r b i t a l l y e x c i t e d baryons c o n s i s t o f a mixed s t a t e o

t i . t l

; a -0 and (a12=0, a 3 = l ) , where a l p i s t h e o r b i t a l angular momentum be- tween quarks and 2, and a3 i s t h e o r b i t a l angular momentum o f quark 3 r e l a t i v e t o t h e 1-2 system.

The s p i n - s p i n i n t e r a c t i o n

z1 .z2

f a v o r s (31+32)2=0, a12=0, which i s allowed i f I12=0 (we consider here f o r s i m p l i c i t y systems o f nonstrange quarks o n l y ) . Then one can understand t h e observed masses o f t h e L = l nonstrange baryon resonances /27,49/:

1

*

3 * * 1

( S q = $ < ( s 2 = T ) . ) I ,I, (S q = $ A

The h y p e r f i n e i n t e r a c t i o n gives r i s e t o an average s p l i t t i n g o f about 150 f!eV f o r the L=l baryons. T h i s magnitude even t u r n s o u t t o be q u a n t i t a t i v e l y p r e d i c t e d /27/

t o be h a l f t h a t o f t h e N-A s p l i t t i n g , which i s 300 MeV.

B. Mixed l i g h t - h e a v y systems: D, F, B:

1. The D*-D d i f f e r e n c e i s p r e d i c t e d t o be ms/mc)

*

1/3 t i n e s t h e K -K d i f f e r e n c e ,

*

which i s % 400 MeV. The observed value I 4 9 1 o f 144 MeV i s i n accord w i t h t h i s pre- d i c t i o n .

2. The F -F d i f f e r e n c e should be about mu/m

*

c 213 times t h e D*-D d i f f e r e n c e . Recent measurements o f 1442957 FleV (ARGUS /50/? o r 139.558.33.7 MeV (TPC 1511) a r e s l i g h t l y l a r g e r than t h i s n r e d i c t i o n . Here, however, one must t a k e account o f t h e v a r i a t i o n o f the wave f u n c t i o n a t t h e o r i g i n , s i n c e AM due t o , t h e term V3 i n Eq.

(3.5) ( g e n e r a l i z e d t o unequal masses) i s p r o p o r t i o n a l t o ly(0)62. For h e a v i e r qyarks, A y ( 0 ) / 2 i s b i ger. Taking account o f t h i s , A. M a r t i n 1-21 p r e d i c t s t h a t F -F I 1 0 MeV, and .?F*) = 2110 MeV by i n t e r p o l a t i n g between ss and cc systems.

This l a s t p r e d i c t i o n i s p a r t i c u l a r l y close t o t h e r e c e n t value m ( ~ * ) = 2 1 0 9 ~ 9 ~ 7 MeV quoted by ARGUS /50/.

3. The B*-B d i f f e r e n c e should be mp/mc

*

1/3 times t h e D -D d i f f e r e n c e , o r about

*

48 MeV. The CUSB group 1531 sees a s i g n a l f o r B* + By a t h i g h CESR energies Etm 2 11 GeV: Ey = 50

5

6 GeV.

(8)

C. Heavy quarkonia.

l. The 3S -IS s p l i t t i n g s due t o V3 a r e expected t o r e c e i v e s t r o n g c o r r e c t i o n s : l- 0

where t h e c o e f f i c i e n t o f a /a quoted i s t h a t a p p r o p r i a t e f o r t h e cc system /54/, and m i s t h e quark mass. bne may f i n d 1 ~ ( 0 ) 1 ~ from t h e l e p t o n i c decay r a t e o f the 3S1 s t a t e :

the two-g1 uon decay r a t e o f t h e ISo s t a t e :

o r from t h e geometric mean o f t h e two, f o r which t h e e r r o r would l a r g e l y cancel out. U n f o r t u n a t e l y t h e two-gluon widths o f t h e S s t a t e s a r e n o t known p r e c i s e l y enough y e t . For t h e observed J/$-nC spacing o f ll8+6 MeV /20,49/, one r e q u i r e s a value o f as=0.3-0.4 i n Eq. (4.6) i f I u ( 0 ) 12 i s e x t r a c t e d from ( 4 . 7 ) . The p r e d i c t e d

'

spacing i s then 8 0 3 0 MeV /54/, t o be compared w i t h t h e observed value /20/

o f 9&5 MeV.

The T -nb spacing i s n o t so r e p r o d u c i b l y p r e d i c t e d . A best e s t i m a t e from a p e r t u r - b a t i v e QCD c a l c u l a t i o n , w i t h c o r r e c t i o n s , gives /54/ T

-

nb = 30 MeV, b u t values up t o 100 MeV have appeared i n t h e l i t e r a t u r e . T h i s l a s t p r e d i c i i p n can be understood q u a l i t a t i v e l y . E m p i r i c a l l y t h e p a r t i a l decay r a t e s r(3S1 -+ e e ) appear mainly t o depend on quark charges so I y ( 0 ) I2/m 2 i s almost constant over a wide range o f quark masses.

The Crystal+Bi11 group /11,55/ has observed a 4-50 peak i n t h e photon spectrum ob- t a i n e d i n e e a n n i h i l a t i o n s a t Ec-m.=M(~). The photon energy i s about 1.07 GeV, correspondi~ng t o a s t a t e a t 8.32 GeV. T h i s s t a t e , c a l l e d t h e " g " , has a t o t a l w i d t h

r

< 80 tleV,narrow compared w i t h t h e d e t e c t o r r e s o l u t i o n , and i s produced w i t h an apparent branching r a t i o B[T -+ a 0.5%. Since T

-

= 1.14 GeV i s more than 10 times the h i g h e s t estimated T -nb spacing, we can conclude t h a t 5 i s n o t t h e ~ b - . 2. The I P

-

3P S a c i n S are o f i n t e r e s t because they probe non-Coulombic p a r t s o f t h e ~ o h *e$ti:l. more complete discussion o f t h i i p o i n t has been given i n Refs. / l , 6, 1 l, 56/. The mass s p l i t t i n g i s p r o p o r t i o n a l t o the m a t r i x element o f t h e spin-spin+term i n Vg: AM X <Plv2V P> which vanishes i f V s

- 1

s i n c e v 2 ( - l / r ) = 4 ~ 6 ~ ( r ) . I t i s s t i l l very sma

1

1 i f a ( r ) has o n l y a slow l o g a r i t h m i c v a r i a t i o n . Most models p r e d i c t t h a t t h e lP1 s t a t e l i e s w i t h i n a few MeV o f t h e 3 P ~ c e n t e r - o f - g r a v i t y . As p o i n t e d o u t by A. M a r t i n a t t h i s conference, t h e very l a s t experiment t o , be r u n a t the ISR /57/ detected a few candidate events f o r t h e 'P1 s t a t e o f charmonium a t t h e a p p r o p r i a t e mass, M('P1) = 3.52 GeV.

D. What i s t h e G ?

So f a r , t h e 5 has been detected o n l y under r e s t r i c t e d circumstances i n one e x p e r i - ment. I t i s n o t seen i n T' decay: BY ( T ' ) / B ~ ( T ) < 0.22 (90% c.7 . ) , though many i n t e r p r e t a t i o n s r e q u i r e t h i s r a t i o t o be o f o r i e r 1. A t some l e v e l , i t should show up i n T' -t T T T , T -+ gy. F u r t h e r data w i l l be taken both a t DORIS and a t CESR, and by t h e time t h i s a r t i c l e i s i n p r i n t one should know much more about the e x p e r i - mental s i t u a t i o n . Meanwhile, here are some suggested i n t e r p r e t a t i o n s .

1. I f t h e i s a H i S boson /58/, i t s Yukawa c o u p l i n g gy t o b quarks a u s t be about t e n timzs t h e st::dard value: g s t d = mb/v, where v-247 GeV 2 - 1 / 4 ~ ~ - 1 / 2 i s t h e electroweak symmetry-breaking parameter.

For any p o i n t s p i n l e s s p a r t i c l e H coupled w i t h Yukawa c o u p l i n g gy t o a heavy quark

4, one f i n d s

(9)

C2-84 JOURNAL DE PHYSIQUE

where V i s the 3~ Q0 bound s t a t e /59/, as l o n g as one can t r u s t a f r e e quark calcu- l a t i o n . I t i s t h j s r e s u l t t h a t l e d t o t h e e x p e c t a t i o n o f

2

1 f o r t h e r a t i o

By5(T')/BY (*). Eq. (4.7) i s independent o f whether H i s s c a l a r (o+ ) o r pseudo- s c a l a r ( 0 - f .

Bound-state m o d i f i c a t i o n s o f (4.7) have been estimated /60/. The r a t i o

B ( T ' ) / B ~ ( T ) i s s t i l l expected t o be % l f o r a pseudoscalar, b u t i s l e s s than 1 bJS20-40% For a s c a l a r w i t h the mass o f

c .

J. D. Jackson and I f i n d t h a t f o r t h e weak-binding and soft-photon l i m i t ( l e v e l spacings) << E << M

,

(4.7) i s reproduced both f o r J ~ ( H ) = o - (where t h e r e s u l t i s e s s e n t i a l l y t r i v i a l ) a i d f o r J~(H)=o+, if one performs a sum o v e r 0- o r O+ bound s t a t e s c o u p l i n g t o H, and 1- bound s t a t e s c o u p l i n g t o

.

The 0' r e s u l t occurs as a consequence o f t h e r e l a t i o n

...

among S- and P-wave r a d i a l wave f u n c t i o n s and d i p o l e m a t r i x elements. This work i s s t i l l i n progress.

2. A g l u i n o - g l u i n o bound s t a t e /61/ can be produced i n r a d i a t i v e T decays. Pre- d i c t e d r a t e s tend t o be t o o low f o r t h e observed 5 s i g n a l , b u t can be r a i s e d w i t h an unusual J~~ f o r t h e 6 (l++) o r i f a l i g h t s c a l a r quark b e x i s t s (J. H. Kuhn, p r i v a t e communication). The 2S/1S r a t i o remains a problem.

3. H y b r i d (qqg) o r g l u e b a l l i n t e r p r e t a t i o n s have been suggested (B.F.L. Ward, unpublished; /62/).

4. S c a l a r quarkonium p r o p e r t i e s were s t u d i e d a few years ago (/63,64/), and t h e 5 has been i n t e r p r e t e d /65/ as t h e ground s t a t e of such a system. We s h a l l r e t u r n

t o t h i s i d e a i n Sec. VI. B.

V

-

SPIN-ORBIT AND TENSOR FORCES A. L i g h t quarks

1. Baryons. A example. I n Fig. 2a we show t h e behavior of t h e f i n e s t r u c t u r e f o r A++ = uuu s t a t e s as a f u n c t i o n o f i n c r e a s i n g o r b i t a l angular momentum L. The A system i s p a r t i c u l a r l y clean i n t h a t c o n f i g u r a t i o n mixings /66,67/ are expected t o be a t a minimum.

Fig. 2. Fine s t r u c t u r e in l i g h t - q u a r k systems. a) Baryons ( A example); b) Kesons ( I = l example). Parentheses denote u n c e r t a i n mass o r assignment.

(10)

The f i n e s t r u c t u r e f o r A ' S i s small (no more than several tens of HeV f o r L = l ) and appears t o be decreasing w i t h i n c r e a s i n g L. A s a t i s f a c t o r y d e s c r i p t i o n o f baryon spectra has i n f a c t been obtained w i t h o u t any f i n e s t r u c t u r e a t a l l 1671.

2. Mesons. 1=1 example, 3LJ s t a t e s . The l i g h t - q u a r k mesons p r o v i d e s c a t t e r e d h i n t s , b u t n o t a complete p i c t u r e , o f f i n e s t r u c t u r e . The present experimental s i t u a t i o n i s i l l u s t r a t e d i n F i g . 2b. Masses a r e quoted from Ref. /56/. Several p o i n t s remain t o be resolved.

(a) We do n o t know i f t h e ~ ~ ( 1 " ) i s r e a l l y as close as shown t o t h e Az(2

++

). A r e cent Mark I 1 experiment I 6 8 1 sees a ps peak around 1100 GeV i n T -9- p ~ , . Estimates o f s h i f t s i n t h e p n mass from a " t r u e " A1 a t h i g h e r mass are not.enough t o e x p l a i n the e f f e c t 1691.

(b) The 6(0+) s t a t e may be a

KR

l?nolecule" r a t h e r than a t r u e qq s t a t e 1701. One i s s t i l l searching, i f so, f o r the 3Po qq 1=1 s t a t e .

( c ) No guidance i s p r o v i d e d by 1=0 s t a t e s , among which g l u e b a l l candidates (0"

I 7 1 1 and 2" 1721) are p r o l i f e r a t i n g .

(d) The p ' may be an L=O s t a t e

or

a m i x t u r e o f L=2 and L=O.

(e) A 2-- s t a t e i s needed t o complete t h e p i c t u r e f o r L=2 mesons.

For L=2 l i g h t - q u a r k mesons, H. S c h n i t z e r 1401 f i n d s t h a t s p i n - o r b i t e f f e c t s are, again, decreasing w i t h i n c r e a s i n g L.

B. Heavy quarks.

Here t h e p i c t u r e i s much more s a t i s f a c t o r y , as i l l u s t r a t e d i n Fig. 3. The existence o f f l a v o r thresholds, below which 94 s t a t e s are very narrow, i s a boon t o spectros- COPY

1. The cc system has a w e l l - d e f i n e d s e t o f ~ P J l e v e l s . The corresponding ~ D J l e v e l s l i e above DD t h r e s h o l d , and i n p a r t i c u l a r , t h e 3D1 s t a t e , $(3772) i s a copious and clean source o f DD-in e+e- a n n i h i l a t i o n s 1731. I t may be p o s s l b l e t o produce t h e ' ~ 2 and 3 ~ 2 s t a t e s i n pp a n n i h i l a t i o n s . These s t a t e s a r e expected t o be narrow (we thank R. Cester-Regge f o r t h i s suggestion), singe,they cannot decay t o DD; t h e low- e s t a v a i l a b l e channel i s expected t o be DD o r DD

,

w i t h t h r e s h o l d 3.87 GeV. Nearly a l l p o t e n t i a l models e s t i m a t e t h e ID2 and 3D2 masses t o l i e below t h i s value.

2. The b6 system has provided x b 1741 and x b ' 1751 s t a t e s , as reviewed i n Ref.

/Ill. The s p l i t t i n g s i n t h e x b ' s t a t e s a r e s m a l l e r than those f o r x b , as expected.

Some o f t h e p r e d i c t e d L=2 s t a t e s may be observable i n accurate searches f o r ( L = l ) +

(L=2) + y t r a n s i t i o n s , o r i n e+e- p r o d u c t i o n o r decays o f 3 ~ 1 s t a t e s . These a r e

Fig. 3.

note f l

0 1 2 0 2

L

Fine s t r u c t u r e i n heavy-quark systems. a) cc; b) b6. H o r i z o n t a l l i n e s de- avor threshold. Dotted l i n e s denote l e v e l s p r e d i c t e d b u t n o t y e t observed.

(11)

C2-86 JOURNAL DE PHYSIQUE

expected t o have p a r t i a l ete- decay w i d t h s o f a few eV a t most /44/.

3. Models. The masses o f 3 ~ J mesons a r e described by t h e expression M ( 3 ~ J ) = fi

+

a <

P.3

>

+

b < S12 >

,

where, f o r 3PJ s t a t e s ,

S p e c i f i c values o f a and b a t t a i n e d from experiment and i n v a r i o u s models a r e shown i n Table 2. S a t i s f a c t o r y agreement occurs i n most models. Exceptions a r e the Eichten-Feinberg model, which underestimates t h e t e n s o r f o r c e f o r charmonium, t h e McClary-Byers model, which overestimates t h e t e n s o r f o r c e f o r t h e b6 systems ( p o s s i b l y because o f a l a r g e assumed U, value), and t h e Moxhay-Rosner model, which underestimates t h e

1.3

s p l i t t i n g s i n bg. Generally scalar-confinement models f a r e q u i t e w e l l . However, a) a modest improvement i n accuracy f o r t h e b6 measurements would h e l p exclude some models, and b) t h e t e c h n i c a l d i f f e r e n c e s among various models are a t l e a s t as g r e a t as those due t o u n d e r l y i n g physics. This stresses t h e need f o r a r e l a t i v i s t i c a p r i o r i d e s c r i p t i o n independent o f t h e p o t e n t i a l idea.

One p a r t i c u l a r l y simple v e r s i o n o f t h e model w i t h s c a l a r confinement has been d i s - cussed by Buchm'u'ller /9,29/. I f one takes a short-range Coulomb p o t e n t i a l

V ( r ) =- (4/3)?,/r ( n e g l e c t i n g t h e v a r i a t i o n o f w i t h r ) and a long-range s c a l a r p o t e n t i a l S ( r ) = k r , one f i n d s

TABLE 2. Experimental v a l w s and predictions i n MeV f o r s p i n - o r b i t (a) and tensor (b) parameters i n PJ nuss fonnula (5.1)

Experiment

~Refs./11.49,74,75/) 34.8 9.9 12.7 2.2 9.4 1.4

1 . 3 t0.4 1 . 3 i0.9 i2.5 i1.5

Eichten-Feinberg 38 4.4 14 1.7 11 1.3

(Ref. /43/)

Ruchmiiller 35 3.6 15 2.8

(RefS./9,29/) 2.1 8 1.6 C)

Gupta e t a l . 36 10.6 11 2.3 9 1.8 c)

(Ref. /36/)

HcClary-Bye- 33 12.2 17 5.3 15 4.2 c)

(Ref. /25/)

Moxhay-Rosner 27 8.5 8.8 3.0 6.5 2.1

(Ref. /44/)

Bander e t a l . 37 6.8 17 3.0 11 1.8 c). d)

(Ref. /37/)

Carlson e t al. 34 8.0 13 3.1 11 2.4 c)

(Ref. 1391)

Crater-Van A l s t i ne 36 7.7 17 3.1 12 2.2 c)

(Ref. /41/)

Grotch e t al. 24 10.3 14 2.5 10 1.8 c)

(Ref. /19/)

a) @,(l)

-

0.49 ; b) a S f r ) = 0.28

c) Scalar confinement a s s m d . Differences a k technical. Not a l l approaches attenpt f i t s t o R.

d) Representative choice of pure scalar confinement w i t h a p a r t i c u l a r cutoff scheme.

(12)

Euchmiiller's predictions f o r Table 2 are based on a standard nonrel a t i v i s t i c poten- t i a l /5/ and the choices k = 0.153 GeV2, as($) = 0.53, a ? ( ~ ) = 0.43 (case ( a ) ) or 0.28 (case ( b ) ) . These l a s t two estimates are obtained via d i f f e r e n t extrapolation methods. CJhile t h e value of as($) i s large f o r perturbation theory, t h e agreement i s s a t i s f a c t o r y .

In most models the r a t i o a/b i s predicted t o be l e s s than 6 , as expected from Ens.

(5.4) and (5.5). The value of a would change sign f o r I < l / r z / < l / $ > ) ' 2 (1 fm) in the Buchmijller model. This r a t i o i s only (0.4, 0.2) fm

G

f o r the

( C C , b6) s y s t e m considered.

C. Mixed hadrons

Some hope f o r seeing the change of sign in spin-orbit forces due t o s c a l a r exchange a t long distances e x i s t s f o r systems of one l i g h t and one heavy quark /31/. In

Fig. 4, we compare such a system ( b ) with one of two l i g h t quarks ( a ) . A s t r i n g calculation parallel t o t h a t of Ref. 24 shows t h a t the l i g h t quark i s a f a c t o r of 4 7 f a r t h e r from the center-of-mass i n the light-heavy system than i n the l i g h t - l i a h t system. Since one sees l i t t l e fine s t r u c t u r e in the lioht-quark baryons, i n d i c a t i n ~ a

2

0

,

One might expect multiplet inversion ( a < 3 ) in the mixed s y s t e m .

This expectation i s not borne out in one s p e c i f i c calculation with a s c a l a r confin- ing potential /37/. B. Klima has calculated the soectra f o r mixed ( E an$

B)

mesons and finds the r e s u l t s i l l u s t r a t e d i n Fig. 5. No multiplet inversion occurs. un the other hand, i t i s i n t e r e s t i n g t h a t the 1P1 mass i s perceptibly s h i f t e d from the

Fig. 4. String pictures of quark-antiquark systems. ( a ) Two l i g h t quarks; ( b ) one l i g h t quark q and heavy quark 0. Here r denotes the distance from the center-of-mass.

Fig. 5. Spectra of rnt'xed mesons (one l i g h t and one heavy quark) calculated in a model /37/ with a s c a l a r confining p o t e n t i a l . Note t h a t multiplet inversion does not occur. a) D mesons (one c3armed quark); b) B mesons (one b auark).

(13)

C2-88 JOURNAL DE PHYSIQUE

3Pj center of gravity. The same pattern i s found for the f i r s t radially excited P states. De Rujula ejt aX-, also did not f i n d inverted multiplets /27,76/, but they did not assume scalar confinement.

The d i f f i c u l t i e s of finding P states in D mesons are exacerbated by numerous kine- matic reflections /76/77/ from D*-»• DTT. The search f o r P-wave B = bq (q= u or d) mesons may be easier, since B* cannot decay to Bit but only to By.

VI - SPIN-INDEPENDENT EFFECTS

Here we discuss some possible effects of the spin-independent r e l a t i v i s t i c correc- tion V-| in Eq. (3.9). With a scalar (S) or vector (V) potential the different terms in V-] containing S and V lead to s l i g h t differences in the underlying nonrelativis- t i c potential used to f i t observed cc and bb spectra. Tests of this underlying potential may be provided by t t spectra, f o r which the r e l a t i v i s t i c effects w i l l be less important, and by scalar quarks ( i f they e x i s t ) , for which the r e l a t i v i s t i c corrections ought to provide further d i s t i n c t i o n between scalar and vector confine- ment.

A. Toponium in a nutshell

A popular value for the t quark mass these days i s 30-50 GeV /7S/. Choosing mt_ = 40 GeV, we i l l u s t r a t e in Table 3 the differences among predictions of some potentials for t t spectra. The Martin potential / 5 2 / , V =- A + Br0-1, predicts a pattern of level spacings behaving as m~l/2-1, and hence a 2S-1S spacing smaller than that in charmonium (589 MeV) or bB (563 MeV). In almost a l l potentials with a short-distance Coulonb-like singularity due to gluon exchange, the effects of this singularity should become visible in an increased 2S-1S spacing by the time the quark mass attains 40 GeV. (The short-Compton-wavelength t quarks are able to probe this s i n g u l a r i t y ) . Similar differences occur i n the ratios of 2S and 3S leptonic widths relative to that of the IS state. The stronger the Coulomb-like s i n g u l a r i t y , the larger the 2S-1S spacing and the smaller the 2S/1S and 3S/1S leptonic width r a t i o s . We regard the potential of Ref. /44/ as the most singular credible potential i n the l i t e r a t u r e , but even more singular cases are quoted from time to time. The singularity in the potential of Ref. /44/ was due in some degree to the need to reproduce the observed cc and bb spin-independent spectra in the presence of r e l a t i v i s t i c corrections, and to reproduce t h e i r fine structure s p l i t t i n g s while assuming that transverse degrees of freedom in the gluon f i e l d be- come damped at large distances. The large 2S-1S spacing predcited in Table 3 f o r that model may be a key feature of the assumed physics.

TABLE 3. Examples of differences among predictions for t t spectra (nv=40 GeV) Quantity

2S-IS 3S-2S 4S-3S 2S-2P 3S-3P re e( 2 S ) / re e( l S ) re e( 3 S ) / re e( l S )

Martin ( R e f . / 5 2 / )

520 303 217 145 107 0.55 0.39

Buchmuller-Tye ( R e f . / 5 / )

A(MeV) 200 629 310 209 129 79 0.44 0.27

500 847 344 220 93 63 0.28 0.16

K'lihn- Ono

a) 644 308 217 91 65 0.33 0.21

b) 913 368 221 96 70 0.27 0.15

Moxhay- Rosner ( R e f . / 4 4 / )

958 372 231 105 66 0.27 0.15

a) "Potential T" ; b) Richardson potential. [See f i r s t of Refs. / 7 9 / ]

(14)

Many o t h e r i n t e r e s t i n g features o f t h e toponium system are discussed i n more d e t a i l elsewhere /79,80/. b!hen f r e e t quarks a r e produced, weak quark decay w i l l occur so r a p i d l y t h a t i t competes w i t h T* +.Ty. Thus i f a t quark i s "dressed" i n t o a T*, whose p o l a r i z a t i o n i s c o r r e l a t e d w ~ t h t h a t o f t h e t, t h e decay products i n t + b+

...

w i l l c a r r y some i n f o r m a t i o n about t h e i n i t i a l t quark p o l a r i z a t i o n /80/.

B. S c a l a r quarkonium

The bound s t a t e s o f a s c a l a r quark and s c a l a r a n t i q u a r k are i n general d i f f i c u l t t o f i n d /63-65 ; see a l s o appendix F o f Ref. 47/. L e t us suppose t h a t when p r o d u c i n ~ T i n e+e- a n n i h i l a t i o n s , through sheer l u c k we have a l s o e x c i t e d t h e t h i r d P s t a t e o f s c a l a r quarkonium. Then t h e 5 may be i n t e r p r e t e d as the ground s t a t e o f t h i s system, reached by an e l e c t r i c d i p o l e t r a n s i t i o n /65/.

To i l l u s t r a t e t h i s p o s s i b i l i t y we chose a s c a l a r quark mass, m- = 4.34 GeV, so as t o o b t a i n a 3P s t a t e degenerate w i t h T

,

and " f i n e - t u n e d " the p o t 8 n t i a l o f Ref. /44/ by s e t t i n g A= 600 MeV t o o b t a i n a r; a t 8.32 GeV. The r e s u l t i n g l e v e l s ? r e shown i n Fig.

6. The p r e d i c t e d l e v e l s would simply be a carbon copy o f those i n bb, s h i f t e d by a constant, i f t h e p o t e n t i a l were o f t h e form /2,81/ V c I n r. Ke have i g n o r e d r e l a - t i v i s t i c and coupled-channel s h i f t s . S i m i l a r r e s u l t s are found i n Ref. 1651. Inde-

pendently o f t h e r;

,

t h e e x e r c i s e i s worth considering as a guide t o t h e search f o r s c a l a r quarkoni um.

The p r o p e r t i e s o f s c a l a r quarkonium are a l l c a l c u l a b l e , g i v e n t h e quark charge, quark mass, and p o t e n t i a l /63/.

1. The l e p t o n i c widths o f P wave ( I - - ) s t a t e s are ree = 24 e - 2 a 2 ( R p ' ( 0 ) ( 2 / M 4,

9 (6.1)

where e i s t h e quark charge, R ( r ) i s t h e r a d i a l P wave wave f u n c t i o n , and M i s t h e resonanse mass. For resonance! i n t h e 8-10 GeV range, we o b t a i n re, = (30,120) eV f o r e q = (-1/3, 2/31. The values o f Rpl(0) do n o t vary appreciably w i t h p r i n c i p a l quantum number. The values (6.3) a r e t o be compared w i t h r e e ( ~ ) = 1.2 keV and t h e experimental upper l i m i t s from the LENA group /X?/, re ( r /rt t) S 300 eV f o r any resonance i n ete- a n n i h i l a t i o n s i n t h e ranges E,-.. =

f7.d -

9.481 and (8.67

-

9.43) GeV. No s c a l a r quarkonium resonance would have been seen by t h e LENA scan.

S P D F

Fig. 6. R a d i a t i v e t r a n s i t i o n s i n a h y p o t e n t i c a l s c a l a r quarkonium system w i t h t h e t h i r d P s t a t e taken degenerate w i t h t h e T . The h o r i z o n t a l l i n e denotes an estimate o f f l a v o r threshold.

(15)

C2-90 JOURNAL DE PHYSIQUE

2. The p r e d i c t e d r a d i a t i v e decay widths o f the 3P s t a t e (the one assumed degener- ate w i t h T ) are shown i n Table 4 . Whatever the branching r a t i o B o f 3P t o

Y +?(1S), one expects equal o r l a r g e r branching r a t i o s t o y + 2S', y + 3S, and Y + 2D. These t r a n s i t i o n s are i l l u s t r a t e d i n F i g . 6. A f u r t h e r photon l i n e o f about 180-190 MeV occurs when the 2D s t a t e decays t o 2P, which i t ' s h o u l d do w i t h about an 85% branching r a t i o .

3. The p r e d i c t e d t h r e e - g l u o n widths o f the P states have been r e - e s t i m a t e d since the Conference. Recent c a l c u l a t i o n s by P. Moxhay, Y. J . Ng, and S.-H. H. Tye f i n d

160 a 3 M

r ( P - 3g) = - gi j rf - | R p ' ( 0 ) |2 I n J , ( 6 . 2 )

where A = 2< r > " . This i s s m a l l e r by a f a c t o r o f 4ir than the value i n published l i t e r a t u r e / 6 3 / . I t e n t a i l s r(3P ->• 3g) = (9+3, 22±7) keV f o r a? = ( 0 . 1 5 , 0 . 2 ) . The sum o f a l l r a d i a t i v e decay modes o f the 3P s t a t e i s about ( 4 4 , 171) keV f o r

eq = ( - 1 / 3 , 2 / 3 ) . Hence when the t h r e e - g l u o n width i s added t o the r a d i a t i v e w i d t h , the n e t . branching r a t i o f o r 3P •*• y+ IS i s about 15%. T h i s , combined w i t h the r a t i o . re e( 3 P ) / re e( T ) = 3%, leads t o a s i g n a l which would be o f acceptable magnitude

( ft 1/2%) f o r t h a t observed f o r the 5.

4. The value o f AR i n e+e " a n n i h i l a t i o n s due t o a s c a l a r quark o f eq = ( 1 / 3 , 2 / 3 ) i s ( 1 / 1 2 , 1 / 3 ) . Experiments a t high energies may j u s t b a r e l y be able t o exclude the l a t t e r p o s s i b i l i t y w i t h improved systematic e r r o r s / 8 3 / . Since a ( e+e " .* eft} * g3, no sharp step i n R w i l l be seen.

To summarize, p r o p e r t i e s o f the s c a l a r quarkonium system are so w e l l - d e f i n e d t h a t i f i t h a s n ' t been discovered a l r e a d y , systematic searches f o r i t are p o s s i b l e w i t h ex- periments o f present-day accuracy. I t would add immeasurably t o our understanding o f the spin-dependent forces between quarks, by p r o v i d i n g the textbook " s p i n l e s s c a s e . "

V I I - CONCLUSIONS

Q u a r k s have s p i n s . The d e s c r i p t i o n o f hadron s p e c t r a , t r a n s i t i o n s , and magnetic moments a l l depend q u a n t i t a t i v e l y on t h i s f a c t . Magnetic moments o f baryons are described t o w i t h i n 0 . 2 - 0 . 3 nuclear magneton i n the simplest model, and more accur- a t e l y i f d e s i r e d .

Hyperfine e f f e c t s i n quark models are w e l l understood, from the l i g h t e s t mesons ( T T , P , . . . ) and baryons ( N , A , . . . ) t o the h e a v i e s t . They are i n accord w i t h the p r e - d i c t i o n s o f a short-range s p i n - s p i n i n t e r a c t i o n mediated by v e c t o r gluon exchange.

With t h i s understanding, one can p r e d i c t w i t h confidence t h a t the e i s not the n^,!

Studies o f f i n e s t r u c t u r e {t-t and tensor e f f e c t s ) p o i n t toward the n o t i o n Of a s c a l a r q u a r k - c o n f i n i n g f o r c e . Many models based on t h i s n o t i o n agree i m p r e s s i v e l y w i t h s p e c t r a , e s p e c i a l l y those observed r e c e n t l y i n the bb system. A note o f

TABLE 4. P r e d i c t e d r a d i a t i v e decay rates o f s c a l a r quarkonium 3P s t a t e s , f o r m- = 4.34 GeV and p o t e n t i a l o f Ref. / 4 4 / , w i t h A * 600 MeV.

Decay

3P * 1S+Y 2S+r 3S+Y 1D+T ZD+r

u (MeV)

- T f J L

1070 520 180 380 92

r(keV)

«o = " 1 / 3

8.5 8.4 14.2 0.7 11.9

eq = 2 / 3 34 33 57 2.8 48

(16)

c a u t i o n : Many models based on a long-range s c a l a r f o r c e i n v o l v e e x t r a phenomenolopical parameters, u s u a l l y i n t h e form o f c u t o f f s . These models then cannot be e x t r a n o l a t e d r e l i a b l y t o s h o r t e r distances and h e a v i e r quarks. One o b t a i n s adequate d e s c r i p t i o n s o f most o f t h e phenomena so f a r observed w i t h models o t h e r than those i n v o l v i n g s c a l a r long-range exchange. Modest improvements i n xb, xb' l e v e l measurements, and discovery o f lP1 and D-wave s t a t e s i n quarkonium, would be most welcome.

The " o n e - p a r t i c l e " r e l a t i v i s t i c problem o f o r b i t a t l y e x c i t e d D and B mesons i s worth pursuing experimentally, as i t ought t o p r o v i d e f u r t h e r c o n s t r a i n t s on our under- standing o f t h e s p i n - o r b i t force. One i s s t i l l searching ( b o t h t h e o r e t i a l l y and ex- perimental l y ) f o r a system which would d i s p l a y t h e hypothesized m u l t i p l e t i n v e r s i o n expected i f a long-range s c a l a r f o r c e e x i s t s .

To n a i l down t h e n o n r e l a t i v i s t i c p o t e n t i a l , t h e toponium ( t f ) spectrum wi l 1 be very h e l p f u l . I f s c a l a r quarks e x i s t , they may p r o v i d e valuable clues t o spin-independent r e l a t i v i s t i c e f f e c t s .

What can a r e a l t h e o r y o f hadrons provide? I t would be very s a t i s f y i n g t o v e r i f y t h e i n t u i t i v e f l u x - t u b e p i c t u r e o f s c a l a r confinement. E v e n t u a l l y one hopes t o be a b l e t o c a l c u l a t e s p e c t r a and t r a n s i t i o n r a t e s independent o f t h e use o f a long-range

" p o t e n t i a l " . A t present, l a t t i c e gauge t h e o r i e s have made an encouraging s t a r t i n t h i s d i r e c t i o n . (See, e.g., Refs. /84/.) For t h e moment, p e r t u r b a t i v e QCD a t s h o r t distances, j o i n e d w i t h simple phenomenological p i c t u r e s a t l a r g e r ones, has l e d t o a very s a t i s f a c t o r y d e s c r i p t i o n o f t h e f o r c e s between s p i n n i n g quarks.

ACKNOWLEDGEEIENTS

I wish t o thank M. Bander, L. Brekke, W. Buchmuller, N. Byers, J . D. Jackson, B. Klima, J. H. Klhn, U. Maor, P. Moxhay, M. O r e g l i a and R. G. Sachs f o r f r u i t f u l d i s c u ~ s i o n s , and t h e CERN theory group f o r i t s h o s p i t a l i t y d u r i n g t h e . p r e a r a t i o n o f t h i s r e o o r t . This work was supported i n p a r t by t h e U. D. Department o f &ergy under c o n t r a c t no.

DE-AC02-82ER-40073.

REFERENCES

1. C. Quigg, i n Proc. o f 1979 I n t . Symp. on Lepton and Photon I n t e r a c t i o n s a t High Energies, Aug. 23-29, 1979, ed. T. B. W. K i r k and H. D. I. Abarbanel

,

Fermilab, Batavia, I L 1979, p. 239.

2. C. Quigg and J. L. Rosner, Phys. Reports 56C (1979) 167.

3. H. Grosse and A. Martin, Phys. Fep. @ ( 1 m 341.

4. A. M a r t i n , Proc. 21st I n t . Conf. on High,Energy Physics, P a r i s , J u l y 26-31, 1982, ed. P. P e t i a u and M. Porneuf, Les e d i t i o n s de Physique, Les U l i s , France, 1982 (J. Phys. 43, Colloque C-3, suppl. 12), p. 96.

5. b:. EuchmUller and S.-H. H. Tye, Phys. Rev.

D24

(1981) 132.

6. J. L. Rosner, i n Experimental Meson Spectroscopy-1983 ( 7 t h I n t . Conf. Brookhaven) ed. S. J. Lindenbaum, AIP, New York, 1984, p. 461.

7. K. G o t t f r i e d , Proc. I n t . Europhys. Conf. on High Energy Phys., Brighton, J u l y 20- 27, 1983, ed. J . Guy and C. Costain, Rutherford Lab, C h i l t o n , England, 1983, p. 743.

8. E. ~ i c h t k n , Fermilab r e p o r t 83/101-THY, Proc. o f 1983 SLAC Summer I n s t . on P a r t i c l e Phys., ed. P. McDonough.

9. W. Buchmiiller, CERN TH.3938/84, l e c t u r e s presented a t I n t . School o f Phys. of E x o t i c Atoms, E r i c e , 31 March-6 A p r i l , 1984.

10. A. Silverman, Proc. 22nd I n t . Conf. High Energy Physics, L e i p z i g , J u l y 19-25, 1984, t o be published.

11. A. Fridman, t h i s conference.

12. J . L. Rosner, i n High Energy Physics-1980 (20th I n t . Conf., Madison, WI), ed. L.

Durand and L. Pondom, AIP, New York, 1980, p. 540; J. F r a n k l i n , i n High Energy Spin Physics-1982 ( 5 t h I n t . Symp., Brookhaven N a t i o n a l Lab), ed.. G. Bunce, AIP, New York, 1983. p. 323.

13. D. A. Geffen and W. J. Wilson, Ph S. Rev. L e t t .

8

(1980) 370.

14. R. G. Sachs, Phys. Rev.

023

(19817 1148.

(17)

C2-92 JOURNAL DE PHYSIQUE

15. L. Brekke and R. G. Sachs, Phys. Rev. D28. (1933) 1178.

16. H. J . Lipkirw N u c l . Phys. B241 (1984) 477.

17. Lee Brekke, E. Fermi I n s t , r e p o r t EFI 8 4 / 2 0 , submitted t o Phys. Rev. D.

18. V. Zambetakis and N. Byers, Phys. Rev. D28 (1983) 2908; UCLA r e p o r t TEP/83/14, t o be p u b l i s h e d .

19. H. Grotch, D. A. Owen and K. J . S e b a s t i a n , Penn. State Univ. r e p o r t s , 1984, submitted t o Phys. Rev. D and t o XXII I n t . Conf. on High Energy Phys., L e i p z i g , J u l y 19-25, 1984.

20. J . Gaiser, t h e s i s , Stanford 1982, SLAC r e p o r t SLAC-255; and New F l a v o r s : P r o c , (2nd Mori on d Workshop, Les A r c s , France, Jan. 24-30, 1982), ed. Tran Thanh Van and L. Montanet, E d i t i o n s F r o n t i e r e s , G i f - s u r - Y v e t t e , France, 1982, D. 1 1 . 2 1 . G. K a r l , S. Meshkov, and J . Rosner, Phys. Rev. Dl_3 (1976) 1203.

22. G. K a r l , S. Meshkov and J . Rosner, Phys. Rev. L e t t . 45_ (1980) 215.

23. M. O r e g l i a , t h e s i s Stanford U n i v . , 1980, SLAC 236; M. O r e g l i a e t a l . , Phys. Rev.

D25 (1982) 2259.

24. Y. Nambu, Phys. Rev. Dl£ (1974) 4262.

25. R. McClary and N. Byers, Phys. Rev. D2J3 (1983) 1692.

26. L. D. Landau and E. M. L i f s h i t z , Quantum Mechanics, 3d. e d . , Pergamon, Mew York, 1977.

27. A. De R u j u l a , H. Georgi, and S. L. Glashow, Phys. Rev. D_12 (1975) 147.

28. H. J . S c h n i t z e r , Phys. L e t t . 134B (1984) 253.

29. W. Buchm'uller, Phys. L e t t . 112B~Tl982) 479; and i n New F l a v o r s : P r o c , (2nd Moriond Workshop, Les A r c s , France, Jan. 24-30, 1982), ed. J . Tran Thanh Van and L. Montanet, E d i t i o n s F r o n t i e r e s , G i f - s u r - Y v e t t e , France, 1982, p. 9 1 .

30. D. Gromes, Heidelberg Rep. HD-THEP.84.5, 1984, t o be published i n Z. Phys. C (1984) , and e a r l i e r references t h e r e i n .

31. H. J . S c h n i t z e r , Phys. Rev. D J i (1978) 3482.

32. J . F. Gunion and L. F. L i , Phys. Rev. DIJL (1975) 3583.

33. A. B. Henriques, B. H. K e l l e t t , and R. G. Moorhouse, Phys. L e t t . 6JB (1976) 85.

34. H. J . S c h n i t z e r , Phys. Rev. L e t t . 35 (1975) 1540 ( C ) ; J . Pumplin, W. Repko and A. Sato, Phys. Rev. L e t t . 35 (1975"pl538(C).

35. D. Beavis ejt a l _ . , Phys. Rev. D20 (1979) 743; 2£ (1979) 2345.

36. S. N. Gupta, S. F. Radford, and W. W. Repko, Phys. Rev. D2£ (1982) 3305.

37. M. Bander ejt a]_., Phys. Rev. D29_ (1984) 2038; B. Klima and U. Maor, DESY 84-029, A p r i l , 1984, presented by B. Klima a t 19th Rencontre de Moriond, La Plagne, March 4 - 1 0 , 1984.

38. D. Lichtenberg and W. Namgung, Indiana Univ. IUHET 95, J u l y , 1984, t o be pub- l i s h e d .

39. J . C a r l s o n , J . Kogut and V. R. Pancharipande, Phys. Rev. D28_ (1983) 2807.

40. H. J . S c h n i t z e r , Brandeis Univ. r e p o r t BRX-TH-171 (Harvard HUTP-84/A058), 1984, t o be p u b l i s h e d .

4 1 . H. Crater and P. Van A l s t i n e , Phys. L e t t . 100B (1981) 166; Phys. Rev. L e t t . 53 (1984) 1527.

42. TT Baker, J . B a l l and F. Zachariasen, N u c l . Phys. B186 (1981) 5 3 1 , 560; B226 (1983) 455; B229 (1983) 445.

43. E. Eichten and F. L. Feinberg, Phys. Rev. L e t t . 43 (1979) 1205; Phys. Rev.

D23 (1981) 2724.

44. P. Moxhay and J . Rosner, Phys. Rev. D28 (1983) 1132.

45. P. Moxhay, t h e s i s , Univ. o f Minnesota, 1983 (unpublished).

46. J . Kogut and G. P a r i s i , Phys. Rev. L e t t . 47 (1981) 1089.

47. J . Rosner, i n Techniques and Concepts o f High Energy P h y s i c s , ed. by T. F e r b e l , Plenum, New York, 1981, p. 1 .

48. H. J . L i p k i n , Phys. L e t t . 74B (1978) 399.

49. M. A g u i l a r - B e n i t e z e t al_. , ~ X F a r t i c l e Data Group), Rev. Mod. Phys. 56^, No. 2 , Part I I , A p r i l , 19S4T

50. ARGUS C o l l a b o r a t i o n : H. A l b r e c h t e t a l . , DESY 84/052, t o be p u b l i s h e d ; H.

Schroeder, 22nd I n t . Conf. on High Energy Phys., L e i p z i g , J u l y 19-25, 1984.

5 1 . TPC C o l l b o r a t i o n : H. Aihara e_t a l _ . , (PEP-4 TPC C o l l a b o r a t i o n ) , Univ. o f Tokyo, UT-HE-84/12, t o be p u b l i s h e d .

52. A. M a r t i n , Phys. L e t t . 100B_(1981) 5 1 1 . . . 53. J . L e e - F r a n z i n i , presented at 22nd I n t . Conf. on High Energy Physics, L e i p z i g ,

J u l y 19-25, 1984.

Références

Documents relatifs

n’admettant que la même singularité (en r ’) que celle qui caractérise le potentiel-vecteur de la théorie de Maxwell-Lorentz; les équations de Dirac, en présence

- poids P (il dépend de la masse de la Terre et de la distance de l’objet au centre de la Terre), point d’application : centre de gravité car c’est une force à distance,

Plus la masse d'un corps est faible, plus la modification engendrée par une force sur son mouvement est marquée... 3) Le principe d'inertie :. → activité 4

A l'intérieur d'un solénoïde (schéma ci-contre) parcouru par un courant électrique continu, la valeur du champ magnétique est constante en tout point. Ce champ magnétique a

The method is based on the observation that the Hamiltonian of these models is a quadratic form of sublattice magnetizations and that the free energy.. can be evaluated in

Résumé - Les forces de spin dépendent de la saveur. ELl.es induisent ainsi des effets importants à travers la brisure chirale. La brisure d'isospin peut aussi être importante.

From the mathematical point of view, the basic issues concerning positivity of the spectral gap inside the ergodicity region and its scaling with the parti- cle density p remained

On peut citer le mod`ele d’Ising ordinaire, le mod`ele de Sherrington-Kirkpatrick et, d’un int´erˆet particulier pour cette th`ese, le mod`ele de