• Aucun résultat trouvé

ONE DIMENSIONAL TRANSFER IN CsNiF3

N/A
N/A
Protected

Academic year: 2021

Partager "ONE DIMENSIONAL TRANSFER IN CsNiF3"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00225050

https://hal.archives-ouvertes.fr/jpa-00225050

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

ONE DIMENSIONAL TRANSFER IN CsNiF3

J. Cibert, M. Terrile, Y. Merle d’Aubigné

To cite this version:

(2)

ONE DIMENSIONAL TRANSFER IN CsNiF

3

J. Cibert, M.C. T e r r i l e and Y. Merle d'Aubigné

Laboratoire de Speotrométrie Physique**, Université Saientifiaue et Médicale de Grenoble, B.P. 87, 38402 Saint Martin d'Hèreê Cedex, France

Résumé - Le déclin de 1 'émission intrinsèque dans le ferromagnétique

unidi-mensionnel CsNiF3 est en excellent accord avec le modèle suivant : 1/

trans-fert rapide, à une dimension, entre ions normaux ; 2/ piêgeage lent, assisté

par les magnons dans le cas des pièges peu profonds.

Abstract - Decay of the intrinsic emission in the one-dimensional ferromagnet

CsNiK3 shows excellent agreement with a model of 1/ fast one-dimensional

transfer between normal ions ; 2/ slow trapping,assisted by magnons for

shallow traps.

One dimensional excitation transfer is of current interest from both a theoretical

and experimental point of view : simple models are amenable to rather complete

ana-l y s i s , and a number of reaana-l systems are known to be fairana-ly ID. A non exponentiaana-l

decay of the intrinsic emission, related to the trapping of the mobile excitation,

is often compared to a exp-(kr+k'/ff) law / l / : the two parameters k and k' are

ex-tracted from a single experimental curve, and their ratio bears information about

the importance of ID transfer (k') relative to 3D motion and one-center

deexcita-tion (k).

We present results on the ID ferromagnet CsNiF3 which clearly disagree with such a

law (§2). Other sources of non-exponential ity - existence of different traps,

bi-exciton decay, long-range transfer - being reasonably excluded, we have developped

twoextreme models of ID transfer and trapping (§1), one of them showing excellent

agreement with our experimental results. We conclude that the excitations in CsNiF3

are characterized by a fast one dimensional transfer between normal ions, over

seg-ments cut on the chains by randomly distributed traps, then trapping at the ends of

the segment. The trapping is slow for deep traps, and for shallow traps when a

ma-gnetic field is applied. A fast transfer to the shallow traps when the mama-gnetic

field is decreased suggests that i t is assisted by the magnons.

I - MODELS

In both models randomly distributed deep traps (no back transfer) cut the chains

in-to independent segments. We consider one dimensional motion along the segments (e.g.

incoherent transfer with hopping rate w from one normal ion to i t s nearest

neigh-bour), and trapping (rate W) from the normal ion at one end of the segment to the

neighbouring trap. Both traps and normal ions have a radiative lifetime T.

Consider a segment with n normal ions ; l e t Pi(t) be the probability that the ion i

is excited at time t if one ion of the segment has been excited at t = 0. The traps

are labelled 0 and (n+1). The probability that the excitation remains untrapped on

the segment a t time t is Pp(t) = 2,", p-j(t). The intrinsic emission from the whole

crystal is given by a statistical average over segments of different lengthes, and

On leave from IFQSC, U. Sao Paulo (Brasil), under grant from CNPq Laboratoire associe au C.N.R.S. (L.A. 08).

(3)

C7-136 JOURNAL

DE

PHYSIQUE

i s p r o p o r t i o n a l t o I ( t ) = I.

cm

n c2(1-c) P n ( t ) ( t h e probabi l i t y t h a t a g i v e n i o n i s a normal i o n which belong;=:o a c h a i n o f l e n g t h "

is

n c 2 ( 1 - c ) ~ ) ) .

Dynamics o f t h e segment i s governed by a master equation :

Po

= - 1 / T Po + Wpl (+Wp-l)

tl

= -(W + w

+

l / ~ ) p 1

+

Wp2 ( 1 )

ti

= - ( & + J - / T ) P ~ + w ( P ~ - 1 +

L e t us d e f i n e a v e c t o r

fS

= (PI,. .Pi,. .pn). The master equation i s s h o r t l y w r i t t e n i

* + +

p.=

-

~ . p

-

p / r . The r a d i a t i v e l i f e t i m e gives o n l y an o v e r a l l e x p ( - t / ~ ) fa- t o r ; the f l r s t p a r t i s e a s i l y s o l v e d i f we know the e i genval ues ( h j ) o f t h e * ~ t r i x

3,

and the sorresponding l e f t and r i h t eigenvzctors,

Zj

= ( a l j

,.

..a .) w i t h a . x j =

Xj

Xj

,

and Y j = (Bjl ....,Bjn) w i t h

fjd

= i j y j ; we can normalize &de vectors, i .e.

.Za a a i B j a = 6 i j . Then, a f t e r a u n i f o r m e x c i t a t i o n o f t h e segment, we have P n ( t ) = Ca,b,j a a j e x ~ ( - i j t ) B j b .

I a

-

Rode1 A : u n i f o r m d i f f u s i o n

We take t h e t r a p p i n g r a t e W equal t o t h e hopping r a t e w between normal i o n s . Then t h e m a t r i x

%

i s e a s i l y diagonal i z e d : a a j = Bj, =

1

/

v

s i n ( n a j / ( n + l ) )

)

x j

= 4w s i n 2 ( a j / Z ( n t l ) ) .

A f t e r s t r a i g h t f o r w a r d c a l c u l a t i o n we get w i t h o u t approxi mation :

I ( t ) = I,C 2 c2(1-c) c o t 2 a j exp -4 w t s i n 2 a j (2)

n

n + l j=1,3,5..

.

For low concentrations and wt >> 1, t h e d i s c r e t e sums a r e replaced by i n t e g r a l s and t h e t r i g o n o m e t r i c f u n c t i o n s l i n e a r i z e d , w i t h t h e approximate r e s u l t ( f i g . 1) :

As expected, t h e o n l y r e l e v a n t parameter i s wczt, and t h e c h a r a c t e r i s t i c time (wc2)-? Note t h a t eq. 3 i s v a l i d o n l y f o r wt >> 1 ; e.g. f ( o ) / I ( o ) i s i n f i n i t e u s i n g eq. 3, b u t equal t o -2 wc (as expected) from eq. 2.

(4)

For incoherent motion t h i s model i s governed by t h e same master equation ( e q . l ) , b u t w i t h f a s t hopping between normal ions, and slow t r a p p i n g . I f ld = 0, t h e problem i s a c l a s s i c a l one : segment w i t h r e f l e c t i v e b a r r i e r s /2/. Then the m a t r i x

2

has ( n

-

1) e i genval ues s i m i l a r t o t h e e i genval ues o f model A ( r a n g i n g from win2 t o w)

,

and one eigenvalue equal t o zero ( t h e p o p u l a t i o n o f t h e segment i s constant). For times l o n g compared t o w/n2, t h e p o p u l a t i o n i s uniform, i .e. pi = l / n . I f we i n t r o - duce a slow t r a p p i n g ( W << w/n), t h e ( n

-

1) non-vanishing eigenvalues a r e o n l y s l i g h t l y modified, and a n t h eigenvalue (= 2 w/n) describes t h e t r a p p i n g from t h e normal ions a t b o t h ends o f t h e segment w i t h u n i f o r m p o p u l a t i o n over t h e segment. A s i m i l a r r e s u l t should be obtained f o r coherent t r a n s f e r (Frenkel e x c i t o n s ) which a l - so leads t o a u n i f o r m p o p u l a t i o n over t h e normal i o n s o f t h e segment. The same ap- proximation, i f a p p l i e d t o three-dimensional systems (e.g. I"nF2) 131, leads t o an exponential decay w i t h a time constant wcz, where z i s the n u t h e r o f n e a r e s t neigh- bours. For one dimensional systems t h e segments are independent ; as f o r model A, a s t a t i s t i c a l average gives f o r l o n g times ( i .e. wczt >> 1)

and f o r low .concentrations ( f i g . 1 ) .

I ( t ) = I, ,-x ,-2 Wct/x dx = 4 Wct K2 ( 2 m ) where K2 i; a-modi,fied Bessel f u n c t i o n o f t h e second k i n d .

Now t h e o n l y r e l e v a n t parameter i s Wct, and t h e c h a r a c t e r i s t i c time (!&lc)-l. I 1

-

EXPERIKENTAL RESULTS

CsNiF3 i s a one-dimensional ferromagnet where s h o r t range o r d e r i s c o n t r o l l e d by temperature and a p p l i e d magnetic f i e l d s /4/. Emission i n the near i n f r a r e d ( z e r o phonon l i n e s

+

v i b r o n i c band) i s e x c i t e d ( g e n e r a l l y w i t h i n t h e v i b r o n i c band) u s i n g a KC1 :TI0 pulsed l a s e r . The o v e r a l l time r e s o l u t i o n ( l a s e r

+

d e t e c t o r + e l e c t r o n i c s ) i s 0.6 1.1s. Due t o t h e c r y s t a l s t r u c t u r e , and t o t h e magnetic d i p o l e c h a r a c t e r o f t h e t r a n s i t i o n , we expect a s t r o n g 1D t r a n s f e r o f t h e e x c i t a t i o n . !<any samples o f two d i f f e r e n t o r i g i n s (L from L E T I - C r i s t a l t e c , Grenoble ; C k i n d l y given by Pr. Chapelle) have been s t u d i e d .

A t moderately low temperatures (2K t o 4K), we observe /5/ emission from normal ions, from a shallow t r a p (AE = 12 cm-l) and from deep t r a p s . E x c i t a t i o n s p e c t r a show t h a t t h e shallow t r a p i s t h e dominant one : deepertraps have a lower concentration. A very shallow t r a p i s a l s o detected on the e x c i t a t i o n spectra, b u t n o t i n emission : p o s s i b l y t h i s t r a p and t h e 12 cm-1 t r a p are the next-nearest and t h e nearest neigh- bours o f a d e f e c t ; then they c o u l d r a p i d l y reach therttal e q u i l i b r i u m , and we can i g n o r e t h e very s h a l l ow t r a p .

Thermal e q u i l i b r i u m between normal i o n s and shallow t r a p s i s reached r a p i d l y ( < l US). When back t r a n s f e r i s s i g n i f i c a n t they s l o w l y decay, due t o t r a n s f e r t o deeper t r a p s A t lower temperature no back t r a n s f e r i s p o s s i b l e (exp (-AE/kT) = 5 f o r

T = 1.4 K) and t h e i n t r i n s i c emission disappears ( f i g . 2 ) . Applying a mannetic f i e l d slows t h e dynamics down : we now observe a r i s i n g time on the shallow t r a p s i g n a l , which corresponds t o t h e decay o f t h e i n t r i n s i c emission ( f i g . 2).

(5)

C7-138 JOURNAL

DE

PHYSIQUE TRAP

- .

-- 0 T I M E ( m s ) 1 H z 0 Tzl.4K H = 4 T Tz1.3K 6 7 7 0 ENERGY (cm-I ) 6 8 0 0

F i g . 2

-

Sample C : e x c i t o n and shallow t r a p a t low temperature ; R i g h t : spectra w i t h and w i t h o u t a p p l i e d magnetic f i e l d . Due t o t h e f a s t r e p e t i t i o n r a t e , t h e r a t i o o f t h e t r a p t o e x c i t o n i n t e n s i t i e s i s underestimated. L e f t : dynamics w i t h a p p l i e d f i e l d ( B = 4.2 Teslas, T = 1.54 k ) .

Fig. 3

-

Sample C

-

Experimental decay o f t h e e x c i t o n ( d o t s ) a t T = 1.

K,

B = 3.8 Teslas

-

L e f t : f i t t o model B (one a d j u s t a b l e parameter ( w c ) - j = 110 u s )

-

Right : t e n t a t i v e f i t o f t h e experimental data t o a e x p - ( k t t k ' f i ) law

;a

good f i t should r e s u l t i n a s t r a i g h t l i n e .

The c o n c e n t r a t i o n has been estimated i n r e f . 5 : c = . 4

lom3.

From t h e f i t on fig.3, (wc)-1 = 140 ps, we g e t f o r t h e t r a p p i n g r a t e w-1

=

60 ns. Once t h e dynamics has slowed down, t h e measured t r a p p i n g r a t e does n o t change very much w i t h f i e l d (3T t o 5T) and temperature.

I1 b

-

Samples L

E x c i t a t i o n s p e c t r a reveal a deeper t r a p (AE = 63 cm-l) which a l s o dominates the low temperature emission. As i n samples C, a shallower t r a p (AE = 40 cm-l) appears i n

(6)

T = 12 ms.

h i g h e r temperatures. Hence o n l y deep t r a p s a r e r e l e v a n t .

Emission from these deeps t r a p s ( f i g . 4) f i r s t r i s e s , then decays w i t h a l i f e t i m e (12 ms) equal t o t h e r a d i a t i v e l i f e t i m e measured f o r

~

i

as i m p u r i t y i n diamagnetic

~

+

f l u o r i d e s . Even a t "high" temperature and w i t h o u t a p p l i e d f i e l d , t h e decay o f t h e i n - t r i n s i c emission f o l l o w s model B. The c h a r a c t e r i s t i c time changes o n l y smoothly w i t h temperature ( f r o m (wc)-1 = 20 ps a t 1.4 K t o 30 us a t 7K), o r w i t h a p p l i e d f i e l d .

111

-

CONCLUSION

The decay o f t h e i n t r i n s i c emission i n CsNiF n i c e l y agrees w i t h the p r e d i c t i o n s o f our model 1 : f a s t 1D t r a n s f e r between norma? i o n s o v e r segments l i m i t e d by randomly d i s t r i b u t e d t r a p s , and slow t r a p p i n g a t t h e end o f t h e segment. This i s v e r i f i e d :

-

when deep t r a p s (e.g. 63 cm-l) are dominant,

-

when shallow t r a p s ( e .g. 12 cm-l) a r e dominant and a magnetic f i e l d i s applied. I n the absence o f a p p l i e d f i e l d , t h e t r a n s f e r t o shallow t r a p i s f a s t . However, t h e f i e l d i s o f no i n f l u e n c e on t h e over- a1 1 dynamics when o n l y deep t r a p s a r e present. This suggests t h a t the t r a n s f e r t t o shallow t r a p s i s a s s i s t e d by one o r more magoons : a p p l y i n g a f i e l d opens a gap i n the magnon d i s p e r s i o n curve, and t h e number o f thermal magnons d r a m a t i c a l l y decreases. These experiments bear no i n f o r m a t i o n about t h e n a t u r e o f t h e motion between normal i o n s : coherent o r incoherent. L e t us j u s t mention t h a t i n t r i n s i c emission w i t h crea- t i o n o f a zone boundary magnon has been detected and i d e n t i f i e d through i t s behaviour under a p p l i e d f i e l d . I t s s h i f t from t h e zero-magnon l i n e i s equal t o t h e d i s p e r s i o n o f the magnon /6/ : hence t h e d i s p e r s i o n o f t h e e x c i t e d s t a t e i s very weak

;

assuming t h a t S t e i n e r ' s model and parameters /6/ describe c o r r e c t l y t h e energy o f t h e zone boundary magnon, we deduce an upper bound o f I 1 cm-I f o r t h e d i s p e r s i o n o f t h e e x c i - t e d s t a t e .

REFERENCES

/1/ Wieting, R.D., Fayer, M.D. and D l o t t , D.D., J. Chem. Phys. 69 (1978) 1996 Mc Pherson, G.L., Auerbach, R.A., Kwawer, G.N. and T a l l u t o , T . F . , 3 . Luminesc. 31-32 (1984) 296

(7)

C7-140 JOURNAL

DE

PHYSIQUE

/3/ Hegarty, J., t h e s i s (Galway, I r e l a n d , I9 76)

/4/ C i b e r t , J., and Merle d1Aubign6, Y

.,

Phys. Rev. L e t t . 46 (1981) 1428

/5/ Soscip, M., C i b e r t , J., T e r r i l e , M.C. and Merle d1Aubi*e, Y., J. Luminesc.

31-32

119841 87

Références

Documents relatifs

We show that the time dependences of the spatial degrees of freedom are reflected by memory effects at the leve1 of the O-D reduced balance equation for the

Abstract 2014 The transfer matrix in one dimension is generalized in order to treat a wide class of problems. Solutions involving the Schrödinger and Dirac equations

The one-dimensional model is used to analyze necking localization for nonlinear elastic materials that experience a maximum load under tensile loading, and for a class of

We prove some features related to the classical two-dimensional Keller-Segel system: blow-up may or may not occur depending on the initial data.. More precisely a singularity appears

The partition function, pair correlation function and the zero-field susceptibility for the one-dimen- sional Ising model with arbitrary spin are shown to be expressed in

The uniform one-dimensional fragment of first-order logic, U 1 , is a recently introduced formalism that extends two-variable logic in a natural way to contexts with relations of

Building on this construction, we address the issue of pasting weak solutions to (1), or, more, generally, the issue of pasting stopping strategies for the optimal stopping problem

We show that the solution of the two-dimensional Dirichlet problem set in a plane do- main is the limit of the solutions of similar problems set on a sequence of