• Aucun résultat trouvé

Chemical vapor deposition of low reflective cobalt (II) oxide films

N/A
N/A
Protected

Academic year: 2021

Partager "Chemical vapor deposition of low reflective cobalt (II) oxide films"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01264368

https://hal.archives-ouvertes.fr/hal-01264368

Submitted on 4 Mar 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Chemical vapor deposition of low reflective cobalt (II)

oxide films

Eliane Amin-Chalhoub, Thomas Duguet, Diane Samélor, Olivier Debieu,

Elisabeta Ungureanu, Constantin Vahlas

To cite this version:

Eliane Amin-Chalhoub, Thomas Duguet, Diane Samélor, Olivier Debieu, Elisabeta Ungureanu, et al..

Chemical vapor deposition of low reflective cobalt (II) oxide films. Applied Surface Science, Elsevier,

2016, 360, pp.540-546. �10.1016/j.apsusc.2015.10.188�. �hal-01264368�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 14628

To link to this article : DOI :

10.1016/j.apsusc.2015.10.188

URL :

http://dx.doi.org/10.1016/j.apsusc.2015.10.188

To cite this version : Amin-Chalhoub, Eliane and Duguet, Thomas and

Samélor, Diane and Debieu, Olivier and Ungureanu, Elisabeta and

Vahlas, Constantin Chemical vapor deposition of low reflective cobalt

(II) oxide films. (2016) Applied Surface Science, vol.360. pp.540-546.

ISSN 0169-4332

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

Chemical

vapor

deposition

of

low

reflective

cobalt

(II)

oxide

films

Eliane

Amin-Chalhoub,

Thomas

Duguet

,

Diane

Samélor,

Olivier

Debieu,

Elisabeta

Ungureanu,

Constantin

Vahlas

CIRIMAT,CNRS–UniversitédeToulouse,4alléeEmileMonso,BP-44362,31030ToulouseCedex4,France

Keywords:

Opticalreflectivity

MOCVD

Refractiveindexgradient

CoO

Cobaltoxide

a

b

s

t

r

a

c

t

LowreflectiveCoOcoatingsareprocessedbychemicalvapordepositionfromCo2(CO)8attemperatures

between120◦Cand190Cwithoutadditionaloxygensource.Theopticalreflectivityinthevisibleand

nearinfraredregionsstemsfrom2to35%dependingondepositiontemperature.Thecombinationof specificmicrostructuralfeaturesofthecoatings,namelyafractal“cauliflower”morphologyandagrain sizedistributionmoreorlesscoveringthenearUVandIRwavelengthrangesenhancelightscattering andgivesrisetoalowreflectivity.Inaddition,thecolumnarmorphologyresultsinadensitygradientin theverticaldirectionthatweinterpretasarefractiveindexgradientloweringreflectivityfurtherdown. Thecoatingformedat180◦Cshowsthelowestaveragereflectivity(2.9%),andpresentsaninteresting

deepblackdiffuseaspect.

1. Introduction

Lowreflectivityfilmsareusedinopticalinstrumentsand sen-sorswiththeaimtoattenuatenoise,namelytoreducetheeffect ofstrayandscatteredlightindifferentspectraldomains[1].Such filmsfindapplicationsinmilitarynightsightforopticalguidance systems[2],in space applications[3] and canalso beused for heatdissipationbetweendifferentcomponentsinmicroelectronic devices[4].Moreover,lightabsorberfilmsareusedinthe renew-ableenergydomaininphotothermalenergyconversion[5–8],in photoelectricenergy conversion[9], and insolar thermophoto-voltaicconversionsystems[10–12].

Blackcoatingsarespread overalargevarietyofmaterialsin thefamilies of metals, alloys, ceramics, and polymers[5,6,13]. Amongthem,thecobalt(II,III)oxideCo3O4 exhibitshighoptical

absorbancewhichisappropriateforsolarabsorbersfor photother-malconversion[14].Indeed,Co3O4 presentsspectrallyselective

surfacesexhibitinghighvaluesofsolarabsorbance(˛)inthe visi-bleandthenearinfra-red(NIR)spectrumandlowvaluesofthermal emittance(ε)intheIRspectrumwhichimprovestheirthermal per-formancebyreducingtheradiativeheatlosscomponent.Moreover, incontrasttochromiumbasedblackcoatings,Co-basedones main-tainacceptablevaluesof˛andεevenafterexposuretoair(1000h at650◦C[15]).

∗ Correspondingauthor.Tel.:+33534323439.

E-mailaddresses:thomas.duguet@ensiacet.fr,doug181@gmail.com(T.Duguet).

Cooxidefilmsareobtainedbywetprocessessuchasthermal decomposition,electrodeposition[14,16,17]andsol–gel[18].Dry processesarealsoemployedsuchasPVD[19,20],ALD[21–24]and

metalorganicCVD(MOCVD)[25–28].SeveralauthorsuseMOCVD

togrowcobalt oxidefilms. Fujiet al.formedCooxidefilmsby

plasmaenhancedMOCVD(PEMOCVD).TheyobtainCoOfilmsat

lowoxygenflowratewithasurfacemorphologyintheformof

packedcolumnargrains.Increasingtheoxygenflowrateleadsto theformationofcolumnarCo3O4filmswithinthesame

temper-aturerange(400◦C)[29].Similarobservationsarementionedby

Tyezkowskietal.whoshowthatfilmcompositionishighly corre-latedtotheO2molarfraction.Filmsarecomposedessentiallyof

Co3O4 withthepresenceofcarbonandamorphousCoOxatlow

O2 flowrate[25].ManeandShivashankar similarlyobtainedby

MOCVDdenseandcontinuousCo3O4 filmswithapackedgrains

morphologywhenusingO2,butporousfilmscomposedofa

mix-tureofCo3O4andCoOwhileusingN2O[30].Co3O4filmsaregrown

aswellbyDirectLiquidInjection(DLI-)MOCVDunderaworking pressureof5Torrbutattemperatureshigherthanours:350–600◦C

[26]. Authors notice that while increasing deposition tempera-ture,thefilmmorphologyvariesdependingonthesubstratetype. FilmroughnessincreasesinthecaseofLaAlO3substratewhileit

decreasesinthecaseofsapphireandMgO;aninterestingwayfor tailoringthemicrostructureofCooxidefilms.

Finally,differentMOCVD precursorscanbeusedin orderto

obtain Co oxide films, suchas tricarbonyl nitrosyl [27], dicar-bonylcyclopentadienylcobalt[31],Cobalt(II)b-diketonateadducts

[26], andCobalt(II) acetylacetonate[30]. In particular,dicobalt octacarbonyl(Co2(CO)8)isusedtoprocessfilmsatlowtemperature

(4)

Table1

MOCVDprocessparametersusedforthedepositionofcobaltoxidefilms.

Depositiontemperature(◦C)Td 120–190

Precursortemperature(◦C) 27

Totalpressure(Torr) 5

SaturationvaporpressureofCo2(CO)8(Torr) 0.0041

N2carriergasflowrate(sccm) 30

N2dilutiongasflowrate(sccm) 170

Co2(CO)8flowrate(sccm) 24.6×10−3

Co2(CO)8molarfraction* 1.23×10−4

Depositionduration(min) 80

*Upperlimitassumingfullefficiencyofprecursorvaporizationandtransport.

(<200◦C),ultimatelyallowingprocessingthermallysensitive

sub-strates[32–36].ThepresentworkrevisitstheuseofCo2(CO)8for

thelowtemperatureMOCVDofcobaltoxides,withfollowingthree peculiarities:(a)itinvestigatesthethermolysisoftheprecursorin theabsenceofreactivegas,e.g.oxygen,(b)itaimsatprocessing pureCoOfilms,(c)itfocusesonthemicrostructureofthefilms.Itis worthnotingthatsuchanapproachhasneverbeeninvestigatedfor theMOCVDofcobaltoxides.Therationaleoftheworkisto

elab-orateaprocessoperatinginaparametricwindowwhichallows

processingfilmswithstablephysicochemicalandmicrostructural characteristicsandthushighperformanceopticalproperties.

The paper is organized as follows. After the experimental

details section, we present and discuss the results

concern-ing the process–structure–properties relationship. Growth rate,

crystallography, composition, and morphology of the coatings

arecorrelatedwithdepositiontemperature(Td).Then, the

opti-cal reflectivity of the films is correlated with chemical and

microstructural characteristics,namelysurfaceroughness, grain sizedistributionandfractaldimension,beforeproviding conclud-ingremarks.

2. Experimentaldetails

CVDexperiments areperformedinaverticalcold-wall

reac-torcomposedofa46mmdiameterquartztube.Siliconsamples

(20×10×1mm3)arecutfrom4′′Si(100)wafersandsonicated

inacetoneandethanolbathsfor5min,driedinanArflow,and

baked at 60◦C for 20min.Theyare weighted and immediately

positionedflatonaninductivelyheatedstainlesssteelsusceptor. DepositiontemperatureTdiscontrolledbyaK-typethermocouple

insertedintothecoreofthesusceptor.Surfacetemperatureis cali-bratedwithanadditionalthermocoupleattachedtothesurfaceofa dummySisample.PureN2(99.9999%,AirProducts)isusedasboth

carrieranddilutiongasandisdeliveredthroughtwogaslines, ther-mallyregulatedat35◦C,andequippedwithmassflowcontrollers.

Avanepumpandpressuregaugesconnectedtotheoutputofthe

quartztubeisusedtoregulatethereactionpressureat5Torr.Tdis

variedfrom120to190◦Cinordertoinvestigateitseffectonthe

filmsmorphology,compositionandopticalabsorptivity.Co2(CO)8

powder(AlfaAesar,stabilizedin5%hexane)isfilledintoaUshaped tube,inagloveboxunder99.9997%pureAr(AirProducts)before beingconnectedunderN2flowwiththeCVDset-up.Theprecursor

isthermallyregulatedat27◦Cresultinginasaturatedvapor

pres-sureof0.0041Torr.ItsvaporiscarriedwithN2leachingthesurface

ofthepowder,andthenmixedwiththedilutiongasN2.Thisgas

mixtureisintroducedfromtheupperpartofthereactorthroughan 8mmtubefacingthesubstrateholder.Theresultinginputprocess conditionsarelistedinTable1.

Surfacemorphologyandroughnessaremeasuredusing

scan-ning electron microscopy (SEM) and atomic force microscopy

(AFM).SEMisperformedonaLEO435VPmicroscope.AFMisused

inambientconditionsonanAgilentTechnologies5500instrument. Scanningisperformedincontactmodewithtipsofspringconstant

Fig.1.Arrhenius-typeplotofthegrowthrateofCoOfilmsfromCo2(CO)8onSi.

ofabout0.292N/m(AppNano). Scanningrateis2mm/s.Images

areprocessedwiththesoftwarePicoImage(AgilentTechnologies). FilmsthicknessesaremeasuredbySEMoncrosssectional micro-graphsatthecenterofeachsample.Crystallographicstructuresare determinedbyX-raydiffraction(XRD)onaSEIFERT-3000TT instru-mentusingaCuKa(1.5418 ˚A)X-raytubeoperatedat40kVand

40mA,aNifilterandsolid-stateLynxeyedetector.EPMAisusedto determinetheelementalcompositionofthefilms(CamecaSXFive instrument).Calibrationisperformedusinghighpuritystandards.

Each measurement is repeatedfive times atdifferent locations

todeterminespatialhomogeneity.Finally,theUV–vis–NIRtotal

reflectivity spectra are measured by a Perkin-Elmer

Lambda-19spectrophotometerequippedwithanintegrationsphere.The

reflectedlightiscollectedinthedirectional-hemispherical geom-etrywithanincidenceangleof8◦.

3. Resultsanddiscussions 3.1. Growthkinetics

Processedfilmssystematicallypresentamataspect.Thecolor changeisvisuallyobservedonthesiliconsubstratesduringthefirst minutesofdeposition,correspondingtotheupperlimitof incuba-tiontime.Visualinspectionofthesurfacefacingthefeedingtube revealsthatfilmsdepositedat160◦Cand180Careblack,while

thoseobtainedat120◦C,130C,140Cand190Caregrey.Fig.1

presentsanArrhenius-typeplotoftheglobaldepositionreaction. Linesconnectingpointsareguidetotheeye.Growthratefluctuates asafunctionofTd,increasingfrom120to130◦C,thendecreasing

downto160◦CandfinallyincreasingupagainathigherTd.Growth

ratevaluesvarybetween110nm/minatTd=120◦Cand160◦C,and

225nm/minatTd=130◦C,resultinginfilmswhosethicknessvaries

between9and18mm,asmeasuredoncrosssectionsbySEM.

Then,thegrowthratedoesnotshowanArrhenius-type behav-ior.Itevolvesbetweentwomaximaat130◦Cand190Candone

minimumat160◦C.Thisbehaviorhasalreadybeenreportedfor

processesinvolvingCo2(CO)8.Whilescanningarangeof

tempera-turefrom50◦Cto250Cataworkingpressureof0.01Torr(which

istwoordersofmagnitudelowerthanours),Yeetal.noticetwo growthratemaximaat120◦Cand220C.Theyattributethesharp

increaseofthedepositionratearound120◦Ctoapossibleincrease

of the stickingcoefficient of the precursor at low temperature

[33,37].Then,thegrowthrateislikelytodecreaseasTdisfurther

(5)

Fig.2.XRDpatternsoffilmsprocessedatdifferentTd.StarscorrespondtotheSi

substratepeaks.

thesamepressurerange(0.05Torr)andatasubstratetemperature

varyingfrom160◦Cto280C,RheeandAhnobtainamaximum

growthrateat200◦C[38],ingoodaccordancewiththe

tempera-turesdeterminedinthepresentstudy(190◦C)andreportedbyYe

etal.’s(220◦C).Similarly,Koetal.observedamaximumat140C

(P=0.6Torr)[35],ingoodaccordancewithourlowestmaximum (130◦C)andYeetal.’s(120C).

3.2. StructureandmorphologyoftheCoOfilms

Fig.2presentsX-raydiffractogramsofthefilmsprocessedat varioustemperatures. TheX-raypeaksat2 equal36.4◦,42.4,

61.5◦,73.7and 77.6correspondto(111)(200),(220),(331)

and(222)planesofthecubiccobaltoxide(II)CoOphase.Noother cobaltoxide,namelyCo3O4orCo2O3isrevealedfromthe

diffrac-tograms.Filmspresentnopreferentialorientationandtheaverage crystallitediametercalculatedfromtheSherrerequationis esti-matedbetweenca.100nmand150nm.Itisconcludedthatallfilms arecomposedofCoOwithnoothercrystallinephase.Thisresultis corroboratedwiththeelementalcompositionofthefilms, deter-minedas50±1at.%Co,50±1at.%O(exceptat140◦Cwherethe

compositionis47%at.%Co,53at.%O)withoutcarbon contamina-tion,withinthedetectionlimitofEPMA.Itisinterestingtorecall thatweobtainpureCoOfilmswithoutintroductionofanyreactive gas.Thisprecursorisgenerallyusedforthedepositionofsmooth metalliccobaltfilmsatlow pressure(0.03–0.2Torr)[33–36,39]. Theappliedworkingpressureof5Torrinthisworkleadstothe formationofcobalt(II)oxide.Asimilarresultismentionedinref

[28],whereauthorsobtainedcobaltoxidefilmsunderN2working

pressuresof2.2and45Torr.Whereastheyintentionallyadda par-tialpressureofhydrogenfordecreasingtheamountofCoOinthe films,theyobservedanincreaseoftheamountofCoOfrom43to 76at.%!Thispinpointsthecomplexchemistrytakingplaceatthe surfaceofagrowingtransitionmetaloxidefilminthepresenceof

Fig.3.Topview(left)andcrosssection(right)SEMimagesoffilmsdepositedunder

differenttemperatures.Filmthickness(mm)isshownatcorrespondinglocations.

acarbonylprecursor,bothbeingcatalysts.Thoroughinvestigation ofsuchphenomenonhasbeenattemptedintheliterature(seefor example[40])butitisoutsideofthescopeofthepresentwork.

Fig.3showsSEMimagesoftheCoOfilmsdepositedat

differ-enttemperatures, both in surface viewand cross-section view.

Filmsaredenseandpresentacompactcolumnarstructurewith

acauliflowermorphologywhichisreproducedatdifferentlength scalesfrom0.05mmatthesurfaceofthegrainsto5mmforthe larger features diameter. Films processed at 120◦C and 160C

(6)

Fig.4.AFMimageofaCoOcoatinggrownat160◦C.

present asurface thatis more accidentaland rougherthanthe

otherfilms,andtheircolumnsarewiderwithalargerconicalangle. Interestingly,theycorrespondtothetwominimumgrowthratesas showninFig.1,andtheyaretheonlysampleswithnovisiblecracks. CrosssectionSEMimagesshowthatfilmthicknessvariesbetween

9mmand19mminagreementwiththoseestimated

experimen-tallybysamplemassdifferencebeforeandaftereachdeposition;a goodhintforalimitedporositywithinthefilms.

Fig.4showsanAFMimageofthe160◦CCoOfilm,withthe

typ-icalcauliflowermorphology.Itexhibitsaroot-meansquare(RMS)

roughnessofca.350nm,whereasfilmsgrownat190◦Cshowa

RMSroughnessof120nm,only.Thedifferencebetweenthe

pro-jectedsurface(400mm2for160◦Cand300mm2for190◦C)andthe scannedsurface(225mm2forboth)showsahigherspecificarea forthesampleprocessedat160◦C.Interestingly,fractal

dimen-sionsdeterminedbytheboxpartitioningmethodare2.35and2.31, at160◦Cand190C, respectively;values thatequalthenatural

cauliflowerfractaldimensionof2.33.

Therefore,thepresentCoOfilmsexhibitafractalmorphology. Thecauliflowershape isrepeatedidenticallyat differentscales, fromnano-tomicro-.Intheliterature,onlyafewgroupsreported ontheformationofCoOfilmswithacauliflowerstructure[41,42].

Guptaetal.obtainedthecauliflower morphologyon

electrode-positedfilmsofcobalt–nickeloxide(intheformsofNiOandCo3O4)

withatypicalthicknessofabout10mm[42].Alternatively, differ-entfractalstructuresofcobaltoxide(CoOandCo3O4)thinfilms

havebeensynthesizedbyusinglaserCVDatroomtemperatureand atmosphericpressure.Sizeandmorphologyofthestructurescan betailoredbythelaserirradiationtimeandthegasflowratio[43]. Atwo-stepprocesscanalsobeusedinordertoobtainaporousand fractalsurfacemorphology,wheresmoothmetalliccobaltsurface arefirstformedbyPEMOCVDandthenpost-treatedinanO2plasma

[44].Theabove-mentioneddepositiontechniquesprovideCooxide filmswithtargetedcauliflower microstructure.However,unlike abovewhereonlysomedegreesoffreedomaretechnically avail-able,MOCVDallowstoobtainthefractalcauliflowermorphology

withauniqueprecursorandnoreactivegaswhateverthe

depo-sitiontemperatureis.ButwewillshowbelowthatTdaffectsthe

microstructure,whichinturnimpactsthereflectivityperformance ofthefilms.

Inanattempttoperformastatisticalanalysisofthegrainsize distributionweusethefollowingprocedure.SEMImagesata mag-nificationof×10,000areprocessedateachdepositiontemperature (Gwyddionfreeware[45]).First,amaskisappliedoneachimageby adjustingaslopethreshold,takingadvantageofthefactthatgrains visibleonthesurfaceareseparatedbyvalleys.Thereforethemask

floodsdepressionsbetweengrainsand underlinessurface grain

boundaries.Inordertoassesstheconsistencyofthisanalysis,four slopethresholds(7.5%,10%,12.5%and15%)areused;thetwo max-imabeingdeterminedvisuallybytheoperator.Itshowsthatthe

Fig.5. Grainsizedistribution(Countsvs.Diameter)forsixdifferentdeposition

temperatures.

trenddoesnotvary,meaningthatthetemperaturedependenceof thegrainsizedistributionisconstantwhatevertheslopecriterion.

Oncethemaskhasbeeninverted,anequivalentradiusis

auto-maticallycomputedforeachgrain.Then,weperformafrequency analysistoextractthegrainsizedistributions.

Fig.5showstheresultswithaslopethreshold fixedat10%. Weobserveaclassificationofgrainsizedistributions.The distri-butionforfilmsgrownat160◦Cislargerthanthatat190C,180C

and120◦C,themselvesbeinglargerthanthat130Cand140C.

Therefore,withinstatisticalandSEMresolutionlimits,twomain featurescanbeextractedfromthegrainsizedistributionanalysis. First,eachTdleadstotheformationofsurfacegrainswith

diam-etersintherange50nmtoca.200nm(ingoodagreementwith

thebulkSherreranalysisofmeancrystallitessizeof100–150nm). Secondly,thedispersionofthedistributiondependsonTd,andthe

threehighestdepositiontemperaturesproducethelargest distri-butions.Hence,surfacesgrownat160◦C,190Cand180Cexhibit

arelativelylargersizedistributionoflighttraps,inthe subwave-lengthlightscale,inadditiontocauliflowerswithdiametersupto severalmicrometers.

3.3. Opticalproperties

Fig.6showsthereflectivityspectraoftheCoOfilmsprocessed at different Td. Each spectrum shows a low reflectivity

broad-bandwhichpresentsasignificantevolutionwithvaryingTd.Its

positionisshiftedtolongerwavelengthsanditswidthgradually increaseswithincreasingTduntilitcoversthewholevisible

spec-traldomainat160◦Cand180C.The160Cand180C-CoOfilms

showariseoftheirreflectivityat1050nmwhichcorrespondstothe band-gapenergyoftheSisubstrate.Theyexhibitinterestinglylow [400–800nm]averagereflectivityof4.2and2.9%,respectively.This observationiscomparablewithliteratureresultsbyseveralgroups whodepositedeitherCoO[41]orCo3O4[46]filmsby

electrodepo-sitiontechniquesforsolarabsorberapplications.Interestingly,the electrodepositedCoO(OH)films,thatresultfromsurfacehydration, showaverysimilarsurfacemicrostructure.Thereflectivitytrendof thefilmprocessedat190◦Cisratheroffsetcomparedtotheother

fivefilms.Whileitpresentsalowreflectivitybandaswell,itis nar-rowandlocatedatlowwavelengths(i.e.300nm);similartothatof thefilmprocessedat120◦C.Themeanvalueofthereflectivityof

thisfilminthe400–800nmdomainislargelyhigherthanthoseof theotherfilms.However,itdecreaseswithincreasingwavelength, reachingca.8%at1200nm.Whereasitcouldrepresentthemost

(7)

Fig.6. ReflectivityspectraofCoOfilmsonSiwafersforvariousTd.

appropriatesampleforapplicationsintheinfraredpartofthe elec-tromagneticspectrum,weconsideritasanexperimentalartifact regardingthetrendvs.Td.

Inthefollowingwediscusspossiblemechanismsresponsible

forthelowreflectivity,anditsevolutionwithTd.

SincetheCoOfilmsthicknessismuchhigherthanthevisible wavelengths,andsincethesefilmsarenotcomposedofnanoscale multilayersstack,weassumethatinterferencesdonotaffect reflec-tivity.Besides,spectralfeaturescannotbeattributedtointerference fringes.Distinctinterferencefringescouldbeobservedbutonlyfor thinnerfilms(notshownhere).

Althoughseveralstudies onCoO show a bandgapof about

5–6eV (200–250nm) [47,48], othergroups showthat the

indi-rect band gap of CoO ranges from 2.3 to 2.8eV (440–550nm)

[30,49,50].Asa result,interbandtransitions cannot explainthe reflectivityofallthespectra.Especiallythetwolowerreflective samplesdepositedat160◦Cand180Cshowariseoftheir

reflec-tivityatnoticeablylowerenergies of1.2–1.3eV(950–1000nm). However,onecannottotallyexcludethattransitionsatenergies

lowerthantheCoObandgapcanoccurinourfilmsasreported

elsewhere[47,49].AndCoOiseffectivelystudiedforitsabsorption propertiesforsolarthermalabsorbers[51],showingthatitisable toabsorbefficientlyinthevisiblerange.Nevertheless,thedistinct riseofthereflectivityattheSiband-gapat1050nmofthe160◦C

and180◦C-CoOfilmsdemonstratesthattheabsorptiondecreases

towardsNIRwavelengths.Theabruptincreaseofreflectivityisdue tothethresholdwheretheextinctioncoefficientofSibecomesnull, andwherethemetallicsampleholdercontributionincreases.

AscanbeennoticedfromSEMobservationinFig.3,thelow reflectivefilmdepositedat160◦Cshowsasurfacewiththehighest

densityofmicrometriccauliflowergrains.Butasimilarfilmsurface isobtainedat120◦Cwhereasitshowstheworsevisible

reflectiv-ityperformance.Then,weassumethattheTd-dependenceofthe

reflectivityisnotduetoscatteringcausedbymm-wide cauliflow-ers:reflectivityismanifestlynotcorrelatedtosurfacedensityand shapeofmm-sizedcauliflowers.However,lightscatteringplaysa significantroleinthereflectivitysincethediffuselightreflectivity spectrumoverlapalmostperfectlywiththetotalreflectivity spec-trum(notshown).Therefore,intheabsenceofastrongcorrelation betweenmicrometricfeaturessurfacedensityandreflectivity,we focusontheevolutionofthefilmstructureatthenanoscale.

Takingintoaccountthecomplexsurfacemicrostructure,wecan consideramodelsurfacelayermadeofsubwavelengthCoOgrains

andvoids(air).Thesurfacecanthenbemacroscopicallyconsidered usingtheeffectivemediumapproximationbyalayerwhose refrac-tiveindexisavolumedensity-weightedaverageofthetwomedia. Althoughtherefractiveindex(n)ofCoOsingle-crystalliesbetween 1.8and2.6(imaginarypart0.03<k<1.37)inthewavelengthrange [200–1200nm][47],therefractiveindexoftheeffectivemediumat thesurfacecanbesignificantlyloweredbecauseofthecontribution ofair(n=1.0).Moreover,thelikelyoccurrenceofmicrostructural changesalongthecolumnarstructurecouldresultinariseofthe densityfromfreesurfacetowardsthebulk.Asaconsequence,the refractiveindexoftheCoOfilmsincreaseswithdepth.Suchfilms havebeenfirstanalyzedbyLordRayleigh[52]whonoticedthat reflectioncanbeconsiderablyreducedwhenthetransitionofthe densitybetweentwomediaisgradual.Foraninfinitelythick non-absorbinglayer,asmoothtransitionbetweentherefractiveindex oftheincidentmediumandtherefractiveindexinthebulkofthe layerresultsinreflectivityclosetozeroaccordingtotheFresnel coefficient[53,54].Foranabsorbinglayerhavingafinitethickness, thatisgreaterthantheskindepthoftheeffectivemedium,the reflectivityisreducedprovidedthattherefractiveindexatthefree surfaceofthelayerisclosefromtheoneoftheairandalsoifno sharpmodificationoftheeffectiverefractiveindexoccursalongthe skindepthofthelayer.

Accordingtothismodel,weconcludethatTdappearsto

influ-encetheeffectiverefractiveindexofthelayerprobablythrough thefilmdensity.Severalauthorsdemonstratethatthewideningof therefractiveindexgradientresultsinasignificantincreaseofthe lowreflectivebroadbandwidth[54,55]similartoourexperimental spectra.Otherparameterscouldalsoinfluencetherefractiveindex suchasthestructuralconfigurationofCoOwhichvaries accord-ingtothedepositionparametersand/orimpuritiesinclusioninthe film.Whateverthecauseleadingtothemodificationofthe effec-tiveindex,itresultsinasignificantreflectanceresponsevariation withTd.

4. Conclusions

We formblackCoO films(ca.50at.% Co,50at.%O) onSiby MOCVDfromCo2(CO)8ataworkingpressureof5Torr.Wefocus

ontheinfluenceofgrowthtemperature(120–190◦C)onthefilm

microstructureandtheresultingopticalreflectivity.Weformthick

(9–18mm)columnarfilmswhichexhibitafractalmorphologyof

cauliflowers,aspecificityofferedbyMOCVDascomparedtoother

depositiontechniques.ThefractaldimensiondeterminedonAFM

surfaceimagesis2.31–2.35;i.e.veryclosetothatofthenatural cauliflower(2.33).Opticswise,filmsareverydiffuseandturnblack fortwopeculiardepositiontemperatures,160and180◦C,forwhich

reflectivityisthelowestonthewholevisiblerange(2–5%). Thelow reflectivityarises fromthe peculiar filmstructures.

Sinceweuseaspectrophotometerequippedwithanintegrating

spherethetotalreflectedlightistakenintoaccountintheanalysis. Hence,thedecreaseoftheintegratedlightintensityisdueto(i) specularreflectivity(arelativelylowrefractiveindexofthe effec-tivesurfacelayermaterial(CoO+voids(air)),(ii)lightdiffusion,(iii) absorptionwithinthelayer,andmostlikely(iv)acombinationof

theabove-mentionedmechanisms.

Thetrendofthereflectivitywithincreasingdeposition temper-atureisassumedtocomefromarisingrefractiveindexgradient fromtheair/surfaceinterfacetowardsthebulkoftheCoOcoating.

Thecoatingsshowacolumnarstructurewithaconicalgeometry

whosesurfaceisassumedtobeaneffectivemediumofCoO+voids (air)(withn«2.2).Hence,weassumethatthereisarefractiveindex gradientfromthesurfacelayertowardsdeepercoordinateswhere thefilmgetsdenser,andconsequentlyclosertonCoO=2.2.This

(8)

onthespectra.Itissomehowlinkedtothemicrostructureofthe filmsbutwearenotsuccessfulintheclassificationofthe struc-tureswithTd(mainlybecause190◦Cshowsanunclearreflectivity

behaviormakingthisclassificationtoospeculative). Acknowledgments

TheDIRECCTEMidi-Pyrénéesisacknowledgedforfinancial

sup-port in the framework of the AEROSAT 2012 program, under

contractn◦43186.

References

[1]H.Kaplan,Blackcoatingsarecriticalinopticaldesign,PhotonSpectra31 (1997)48–50.

[2]H.Shi,J.G.Ok,H.W.Baac,L.J.Guo,Lowdensitycarbonnanotubeforestasan index-matchedandnearperfectabsorptioncoating,Appl.Phys.Lett.99 (2011)211103.

[3]Y.Goueffon,L.Arurault,C.Mabru,C.Tonon,P.Guigu,Blackanodiccoatings forspaceapplications:studyoftheprocessparameters,characteristicsand mechanicalproperties,J.Mater.Process.Technol.209(2009)

5145–5151.

[4]C.-K.Leong,D.D.L.Chung,Carbonblackdispersionsasthermalpastesthat surpasssolderinprovidinghighthermalcontactconductance,Carbon41 (2003)2459–2469.

[5]C.E.Kennedy,ReviewofMid–ToHighTemperaturesSolarSelectiveAbsorber Materials,NREL/TP-520-31267,2002.

[6]W.Bogaerts,C.Lampert,Materialsforphotothermalsolarenergyconversion, J.Mater.Sci.18(1983)2847–2875.

[7]K.M.Yousif,B.E.Smith,Investigationofmicrostructureof

molybdenum-copperblackelectrodepositedcoatingswithreferencetosolar selectivity,J.Mater.Sci.31(1996)185–191.

[8]X.Xiao,L.Miao,G.Xu,L.Lu,Z.Su,N.Wang,S.Tanemur,Afacileprocessto preparecopperoxidethinfilmsassolarselectiveabsorbers,Appl.Surf.Sci. 257(2011)10729–10736.

[9]D.Kraemer,B.Poudel,H.-P.Feng,J.C.Caylor,B.Yu,X.Yan,Y.Ma,X.Wang,D. Wang,A.Muto,K.McEnaney,M.Chiesa,Z.Ren,G.Chen,High-performance flat-panelsolarthermoelectricgeneratorswithhighthermalconcentration, Nat.Mater.10(2011)532–538.

[10]A.Lenert,D.M.Bierman,Y.Nam,W.R.Chan,I.Celanovic,M.Soljacic,E.N. Wang,Ananophotonicsolarthermophotovoltaicdevice,Nat.Nanotechnol.9 (2014)126–130.

[11]H.N.Noh,S.Y.Myong,AntireflectivecoatingusingaWO3–TiO2nanoparticle photocatalyticcompositionforhighefficiencythin-filmSiphotovoltaic modules,SolarEnergyMater.SolarCells121(2014)108–113.

[12]P.Bermel,M.l.Ghebrebrhan,M.Harradon,Y.X.Yeng,I.Celanovic,J. Joannopoulos,M.Soljacic,Tailoringphotonicmetamaterialresonancesfor thermalradiation,NanoscaleRes.Lett.6(2011)549.

[13]M.He,R.Chen,StructuralandopticalpropertiesofCuMnCoOxspinelthin filmspreparedbyacitricacid-basedsol–geldipcoatingrouteforsolar absorberapplications,J.Sol-GelSci.Technol.74(2015)528–536.

[14]Z.A.Hamid,A.A.Aala,P.Schmuki,Nanostructuredblackcobaltcoatingsfor solarabsorbers,Surf.InterfaceAnal.40(2008)1493–1499.

[15]G.McDonald,PreliminaryStudyofaSolarSelectiveCoatingSystemUsing BlackCobaltOxideforHighTemperatureSolarCollectors,1980,NASA TM-81385report.

[16]N.D.Ivanova,E.I.Boldyrev,S.V.Ivanov,I.S.Makeeva,Electrochemical synthesisofblackcobalt,Russ.J.Appl.Chem.76(2003)

1589–1592.

[17]N.A.M.Barakat,M.S.Khil,F.A.Sheikh,H.Y.Kim,Synthesisandoptical propertiesoftwocobaltoxides(CoOandCo3O4)nanofibersproducedby

electrospinningprocess,J.Phys.Chem.C112(2008) 12225–12233.

[18]E.Barrera,L.Huerta,S.Muhl,A.Avila,Synthesisofblackcobaltandtinoxide filmsbythesol–gelprocess:surfaceandopticalproperties,SolarEnergy Mater.SolarCells88(2005)179–186.

[19]H.Yamamoto,T.Naito,M.Terao,T.Shintani,Nanostructureanalysisof sputteredthinfilmsconsistingofcobaltoxideandsoda-limeglasscomposite, ThinSolidFilms411(2002)289–297.

[20]T.Warang,N.Patel,A.Santini,N.Bazzanella,A.Kale,A.Miotello,Pulsedlaser depositionofCo3O4nanoparticlesassembledcoating:roleofsubstrate

temperaturetotailordisorderedtocrystallinephaseandrelated

photocatalyticactivityindegradationofmethyleneblue,Appl.Catal.A:Gen. 423–424(2012)21–27.

[21]T.Q.Ngo,A.Posadas,H.Seo,S.Hoang,M.D.McDaniel,D.Utess,D.H.Triyoso, C.B.Mullins,A.A.Demkov,AtomiclayerdepositionofphotoactiveCoO/SrTiO3 andCoO/TiO2onSi(001)forvisiblelightdrivenphotoelectrochemicalwater oxidation,J.Appl.Phys.114(2013)084901.

[22]M.E.Donders,H.C.M.Knoops,M.C.M.vandeSanden,W.M.M.Kessels,P.H.L. Notten,RemoteplasmaatomiclayerdepositionofCo3O4thinfilms,J. Electrochem.Soc.158(2011)G92–G96.

[23]M.Diskus,O.Nilsen,H.Fjellvag,Thinfilmsofcobaltoxidedepositedonhigh aspectratiosupportsbyatomiclayerdeposition,Chem.VaporDepos.17 (2011)135–140.

[24]M.Burriel,G.Garcia,J.Santiso,A.N.Hansson,S.Linderoth,A.Figueras,Co3O4 protectivecoatingspreparedbypulsedinjectionmetalorganicchemical vapourdeposition,ThinSolidFilms473(2005)98–103.

[25]J.Tyczkowski,R.Kapica,J.Łojewska,Thincobaltoxidefilmsforcatalysis depositedbyplasma-enhancedmetal–organicchemicalvapordeposition, ThinSolidFilms515(2007)6590–6595.

[26]S.Pasko,A.Abrutis,L.G.Hubert-Pfalzgraf,V.Kubilius,Cobalt(II)b-diketonate adductsasnewprecursorsforthegrowthofcobaltoxidefilmsbyliquid injectionMOCVD,J.Cryst.Growth262(2004)

653–657.

[27]A.R.Ivanova,G.Nuesca,X.Chen,C.Goldberg,A.E.Kaloyeros,B.Arkles,J.J. Sullivan,Theeffectsofprocessingparametersinthechemicalvapor depositionofcobaltfromcobalttricarbonylnitrosyl,J.Electrochem.Soc.146 (1999)2139–2145.

[28]F.Fau,F.Maury,GrowthandcharacterizationsofCocoatingsdepositedby MOCVDbelow120◦CusingCo2(CO)8,in:3rdInter.Symp.onTrendsandNew

ApplicationsinThinFilms,LeVide,lesCouchesMinces,vol.259,Société Franc¸aiseduVide,Paris,1991,pp.95–97.

[29]E.Fuji,H.Torii,A.Tomozawa,R.Takayama,T.Hirao,Preparationofcobalt oxidefilmsbyplasma-enhancedmetalorganicchemicalvapourdeposition,J. Mater.Sci.30(1995)6013–6018.

[30]A.U.Mane,S.A.Shivashankar,MOCVDofcobaltoxidethinfilms:dependence ofgrowth,microstructure,andopticalpropertiesonthesourceofoxidation,J. Cryst.Growth254(2003)368–377.

[31]S.Schmid,R.Hausbrand,W.Jaegermann,Cobaltoxidethinfilmlowpressure metal-organicchemicalvapordeposition,ThinSolidFilms567(2014) 8–13.

[32]M.E.Gross,K.SchnoesKranz,D.Brasen,H.Luftman,Organometallicchemical vapordepositionofcobaltandformationofcobaltdisilicide,J.Vac.Sci. Technol.B6(1988)1548–1552.

[33]D.X.Ye,S.Pimanpana,C.Jezewski,F.Tang,J.J.Senkevich,G.-C.Wang,T.-M.Lu, LowtemperaturechemicalvapordepositionofCothinfilmsfromCo2(CO)8, ThinSolidFilms485(2005)95–100.

[34]J.Lee,H.J.Yang,J.H.Lee,J.Y.Kim,W.J.Nam,H.J.Shin,Y.K.Ko,J.G.Lee,E.G.Lee, C.S.Kim,HighlyconformaldepositionofpureCofilmsbyMOCVDusing Co2(CO)8asaprecursor,J.Electrochem.Soc.153(6)(2006)

G539–G542.

[35]Y.K.Ko,D.S.Park,B.S.Seo,H.J.Yang,H.J.Shin,J.Y.Kim,J.H.Lee,W.H.Lee,P.J. Reucroft,J.G.Lee,Studiesofcobaltthinfilmsdepositedbysputteringand MOCVD,Mater.Chem.Phys.80(2003)560–564.

[36]G.Dormans,OMCVDofcobaltandcobaltsilicide,J.Cryst.Growth114(3) (1994)364–372.

[37]Q.Zhao,D.W.Greve,K.Barmak,UHV/CVDgrowthofCoonSi(001)using cobaltcarbonyl,Appl.Surf.Sci.219(2003)136–142.

[38]H.S.Rhee,B.T.Ahn,Cobaltmetallorganicchemicalvapordepositionand formationofepitaxialCoSi2layeronSi(100)substrate,J.Electrochem.Soc. 146(1999)2720–2724.

[39]J.Lee,J.G.Lee,DepositioncharacteristicsofCothinfilmsoverhighaspect ratiotrenchesbyMOCVDusingCO2(CO)8asaprecursor,J.KoreanPhys.Soc. 49(2006)697–701.

[40]H.Chen,A.A.Adesina,Improvedalkeneselectivityincarbonmonoxide hydrogenationoversilicasupportedcobalt-molybdenumcatalyst,Appl.Catal. A:Gen.112(1994)87–103.

[41]M.G.Hutchins,P.J.Wright,P.D.Grebenik,Comparisonofdifferentformsof blackcobaltselectivesolarabsorbersurfaces,SolarEnergyMater.16(1987) 113–131.

[42]V.Gupta,T.Kawaguchi,N.Miura,Synthesisandelectrochemicalbehaviorof nanostructuredcauliflower-shapeCo-Ni/Co-Nioxidescomposites,Mater.Res. Bull.44(2009)202–206.

[43]P.Haniam,C.Kunsombat,S.Chiangga,A.Songsasen,Synthesisofcobalt oxidesthinfilmsfractalstructuresbylaserchemicalvapordeposition, ScientificWorldJournal2014(2014)685270–685276.

[44]G.L.Chen,C.Guyon,Z.X.Zhang,B.D.Silva,P.D.Costa,S.Ognier,D.Bonn,M. Tatoulian,Catkinlikednano-Co3O4catalystbuilt-inorganicmicroreactorby PEMOCVDmethodfortraceCOoxidationatroomtemperature,Microfluid Nanofluid16(2013)141–148.

[45]D.Neˇcas,P.Klapetek,Gwyddion:anopen-sourcesoftwareforSPMdata analysis,Cent.Eur.J.Phys.10(2012)181–188.

[46]E.Barrera,I.González,T.Viveros,Anewcobaltoxideelectrodepositbathfor solarabsorbers,Sol.EnergyMater.Sol.Cells51(1998)

69–82.

[47]T.D.Kang,H.S.Lee,H.Lee,OpticalpropertiesofblackNiOandCoOsingle crystalsstudiedwithspectroscopicellipsometry,J.KoreanPhys.Soc.50 (2007)632–637.

[48]J.G.Cook,F.P.Koffyberg,SolarthermalabsorbersemployingoxidesofNiand Co,Sol.EnergyMater.10(1984)55–67.

[49]L.Liao,Q.Zhang,Z.Su,Z.Zhao,Y.Wang,Y.Li,X.Lu,D.Wei,G.Feng,Q.Yu,X. Cai,J.Zhao,Z.Ren,H.Fang,F.Robles-Hernandez,S.Baldelli,J.Bao,Efficient solarwater-splittingusingananocrystallineCoOphotocatalyst,Nat. Nanotechnol.9(2014)69–73.

[50]R.Gillen,J.Robertson,Accuratescreenedexchangebandstructuresforthe transitionmetalmonoxidesMnO,FeO,CoOandNiO,J.Phys.:Condens.Matter 25(2013)165502.

(9)

[51]A.Amri,Z.T.Jiang,T.Pryor,C.-Y.Yin,S.Djordjevic,Developmentsinthe synthesisofflatplatesolarselectiveabsorbermaterialsviasol–gelmethods: areview,Renew.Sustain.EnergyRev.36(2014)316–328.

[52]J.S.Rayleigh,Onreflectionofvibrationsattheconfinesoftwomediabetween whichthetransitionisgradual,Proc.Lond.Math.Soc.11(1880)51.

[53]M.F.Schubert,F.W.Mont,S.Chhajed,D.J.Poxson,J.K.Kim,E.F.Schubert, Designofmultilayerantireflectioncoatingsmadefromco-sputteredand low-refractive-indexmaterialsbygeneticalgorithm,Opt.Express16(2008) 5290–5298.

[54]M.Bass,Opticalpropertiesoffilmsandcoatings,in:M.Bass(Ed.),Handbook ofOptics:VolumeIV-OpticalPropertiesofMaterials,NonlinearOptics, QuantumOptics,Thirded.,McGraw-HillProfessional,NewYork, 2010.

[55]F.Guillemot,Couchesporeusesdesilicestructuréespardeslatex:structure, propriétésmécaniquesetapplicationsoptiques,Materialschemistry,Ecole PolytechniqueX,Paris,2010,PhDThesis.

Figure

Fig. 1. Arrhenius-type plot of the growth rate of CoO films from Co 2 (CO) 8 on Si.
Fig. 2 presents X-ray diffractograms of the films processed at various temperatures. The X-ray peaks at 2  equal 36.4 ◦ , 42.4 ◦ , 61.5 ◦ , 73.7 ◦ and 77.6 ◦ correspond to (1 1 1) (2 0 0), (2 2 0), (3 3 1) and (2 2 2) planes of the cubic cobalt oxide (II)
Fig. 4. AFM image of a CoO coating grown at 160 ◦ C.
Fig. 6. Reflectivity spectra of CoO films on Si wafers for various T d .

Références

Documents relatifs

Si le résultat est positif ou si le test cutané ne peut être effectué, les experts proposent trois options : remplacer la céphalosporine par un antibiotique d’une autre

We present here preliminary results on the influence of deposition temperature on the X-ray diffraction patterns, Hall mobility and carrier concentration and the optical

Abstract : ABSTRACT SnO2 thin films were electrodeposited on fluorine tin oxide substrate in nitric acid solution.. The films were found uniform, adherent to the substrate

In order to see the effect of deposition times on the morphological properties of different Cu2O thin layers, surface topographical characterization using an atomic force

Nickel oxide is a p-type semiconductor, is an important material because of its large direct optical gap between 3.6 and 4.0 eV; and easy to deposit in thin layers by many

From the 381 known mature miRNAs that were found highly expressed in the discovery samples, we observed and replicated an association between increased plasma levels of

On 300 MHz quadrature volume coil for rodent head imaging in vivo Vyacheslav Volotovskyy and Boguslaw Tomanek. This technical report includes:  description of the coil

Some of the unique concepts of the approach include an impact assessment for access holes, a defect coding system that includes unique structural and service defects found in