• Aucun résultat trouvé

Calculation of below-grade residential heat loss: low-rise residential building

N/A
N/A
Protected

Academic year: 2021

Partager "Calculation of below-grade residential heat loss: low-rise residential building"

Copied!
47
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

ASHRAE Transactions, 93, 1, pp. 743-783, 1987

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=2250b6cb-aee4-4ee0-a8a5-4cd24686945f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=2250b6cb-aee4-4ee0-a8a5-4cd24686945f

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Calculation of below-grade residential heat loss: low-rise residential

building

(2)

Natlonal Research

Consell natlonal

C .

ncll Canada

de recherche8 Canada

BLDG

Institute for

lnstitut de

-

- -

.. -

Research in

recherche en

Construction

construction

Calculation

of Belo w-Grade Residential

Heat Loss: Lo w-Rise Residential Building

by

G.P. Mitalas

ANALYZED

Reprinted from

ASHRAE Transactions

Vol.

93,

Part

1, 1987

p.

743-783

(IRC Paper No.

1564)

NRCC

29605

f

P N R C

-

ClSTl

Q

8

I R C

I: t

L I B R A R Y

I !I

1

19

l U S B

il

1

I It

I

B I B L I O T H ~ Q U E

i

,

I R C

I

C N R C

- IC19T

'I

<

(3)

Un calcul simple pennet de dCterminer le taux maximum de

perk

de chaltur

d'un

sousbassement au-dessous du niveau du sol,

alinsi

que

la

pmte

de

chaleur

totale

au cours

de

la p6riode de chauffe. Cette mCthode tient colmpte

de

la

variation de

la perte de

chaleur

au-

dessous du niveau du sol pendant l'annb.

11

s'agit

18

d'un important facteur dans

le bilan

thermique de la maison. L'auteur se sert de donnees andytiques

et

exp6rimentales

pour

definir une serie de facteurs qui servent ensuite au calcul de la perte de chaleur audess~ns

du niveau du sol. Cette note est une version revue et augmentee d'un document

de

1'ASHRAE (Mitalas 1983). La mCthode de

c:alcd

applicable

aux

sous-sols

complets

y

est

(4)

CALCULATION OF BELOW-GRADE

1

RESIDENTIAL HEAT LOSS:

LOW-RISE RESIDENTIAL BUILDING

G.P.

Mitalas,

P.E.

(5)

CALCULATION OF BELOW-GRADE

RESIDENTIAL HEAT LOSS:

LOW-RISE RESIDENTIAL BUILDING

G.P. Mitalas,

P.E.

ASHRAE Fellow

ABSTRACT

A s i m p l e c a l c u l a t i o n makes i t p o s s i b l e t o d e t e r m i n e t h e maximum r a t e of below-grade h e a t l o s s from a basement and t h e t o t a l h e a t l o s s o v e r t h e h e a t i n g s e a s o n . The p r o c e d u r e a c c o u n t s f o r t h e v a r i a t i o n of below-grade h e a t l o s s d u r i n g t h e y e a r . T h i s i s a s i g n i f i c a n t f a c t o r i n t h e h o u s e h e a t b a l a n c e . A n a l y t i c a l a s w e l l a s e x p e r i m e n t a l d a t a a r e u s e d t o d e v e l o p a s e t of f a c t o r s t h a t a r e t h e n u s e d i n t h e c a l c u l a t i o n of below-grade h e a t l o s s . T h i s n o t e i s a

r e v i s e d and e x t e n d e d v e r s i o n of a n ASHRAE p a p e r ( M i t a l a s 1983). T h i s r e v i s i o n e x t e n d s t h e f u l l basement c a l c u l a t i o n p r o c e d u r e t o i n c l u d e slab-on-grade and s h a l l o w basement h e a t l o s s c a l c u l a t i o n s .

INTRODUCTION

E x p e r i m e n t a l and a n a l y t i c a l s t u d i e s were c a r r i e d o u t t o d e v e l o p a method f o r c a l c u l a t i n g d e e p basement* h e a t l o s s . The d e t a i l s of t h e s e s t u d i e s a r e r e p o r t e d i n M i t a l a s ( 1 9 8 2 ) , and t h e f i n a l v e r s i o n of t h e c a l c u l a t i o n p r o c e d u r e i s p r e s e n t e d i n M i t a l a s (1983). T h i s p r o c e d u r e u s e s basement h e a t l o s s f a c t o r s (BHLF) t h a t r e l a t e basement i n t e r i o r s u r f a c e h e a t f l u x t o v a r i o u s t e m p e r a t u r e s t h a t g o v e r n basement h e a t l o s s . BHLFs a c c o u n t f o r t h e basement i n s u l a t i o n s y s t e m , s o i l t h e r m a l c o n d u c t i v i t i e s , and basement g e o m e t r y , a s w e l l a s t h e a n n u a l v a r i a t i o n of ground s u r f a c e t e m p e r a t u r e s . I t was r e c o g n i z e d t h a t a s i n g l e c a l c u l a t i n g p r o c e d u r e f o r a l l t y p e s of h o u s e

foundations--deep basement, s h a l l o w basement, and s l a b on grade--would be a d v a n t a g e o u s f o r t h e f o l l o w i n g r e a s o n s :

1. P r e s e n t a t i o n and i m p l e m e n t a t i o n of t h e method i s s i m p l i f i e d b e c a u s e one c a l c u l a t i n g p r o c e d u r e (computer program o r manual c a l c u l a t i o n ) h a n d l e s a l l t y p e s of h o u s e f o u n d a t i o n s . 2. I n c a s e s where t h e g r a d e l e v e l , i n s u l a t i o n c o v e r a g e of t h e w a l l , a n d / o r s o i l c o n d u c t i v i t i e s d i f f e r s u b s t a n t i a l l y from t h e " s t a n d a r d " f o u n d a t i o n s y s t e m s u s e d f o r BHLF c a l c u l a t i o n s , t h e below-grade h e a t l o s s e s c a n b e e s t i m a t e d by i n t e r p o l a t i o n of t h e h e a t l o s s c a l c u l a t e d f o r t h e two " s t a n d a r d " f o u n d a t i o n s y s t e m s t h a t b r a c k e t t h e f o u n d a t i o n c o n f i g u r a t i o n u n d e r c o n s i d e r a t i o n .

3. A more a c c u r a t e comparison c a n b e made of t h e below-grade h e a t l o s s from v a r i o u s t y p e s of h o u s e f o u n d a t i o n s and t h e i r i n s u l a t i o n s y s t e m s u s i n g a s i n g l e c a l c u l a t i n g p r o c e d u r e r a t h e r t h a n a s p e c i a l p r o c e d u r e f o r e a c h c a s e .

C o n s e q u e n t l y a p r o c e d u r e was d e v e l o p e d and u s e d t o c a l c u l a t e below-grade h e a t l o s s from s h a l l o w basements and s l a b on g r a d e . The c a l c u l a t i n g p r o c e d u r e , b a s e d on t h e p r e v i o u s l y

--

*The terms "deep basement," " s h a l l o w basement," and " s l a b on g r a d e " a r e u s e d t o d e n o t e t h e t h r e e t y p e s of house basements: ( 1 ) "deep basement" d e n o t e s a basement where t h e basement f l o o r i s a t l e a s t 1.0 m below g r a d e ; ( 2 ) " s h a l l o w basement" d e n o t e s a basement where t h e basement f l o o r i s 0.25 m t o 1.0 m below g r a d e (e.g., " c r a w l s p a c e " ) ; ( 3 ) " s l a b on g r a d e " d e n o t e s a basement where t h e s l a b i s l e s s t h a n 0.25 m below t h e s u r r o u n d i n g g r a d e .

G.P. M i t a l a s i s a R e s e a r c h O f f i c e r , I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n , N a t i o n a l Research C o u n c i l Canada, O t t a w a , Canada, K 1 A OR6.

(6)

r e p o r t e d d e e p basement work

i it alas

1 9 8 3 ) , i s d e s c r i b e d i n t h i s paper. The n e c e s s a r y m o d i f i c a t i o n s of t h e deep basement c a l c u l a t i n g p r o c e d u r e t o e x t e n d i t t o slab-on-grade and s h a l l o w basement h e a t l o s s c a l c u l a t i o n s a r e p r e s e n t e d h e r e .

The aim of t h i s p a p e r i s t o o u t l i n e t h e a p p r o a c h u s e d t o g e n e r a t e t h e basement h e a t l o s s f a c t o r s (BHLFs) and t h e u s e of t h e BHLFs i n c a l c u l a t i o n s of house f o u n d a t i o n h e a t l o s s . More s p e c i f i c a l l y , t h i s p a p e r d e s c r i b e s : 1. M a t h e m a t i c a l model f o r c a l c u l a t i o n s of h o u s e f o u n d a t i o n h e a t l o s s e s . 2. R e p r e s e n t a t i v e p h y s i c a l house f o u n d a t i o n models of t h e t h r e e f o u n d a t i o n t y p e s t h a t were u s e d f o r BHLF c a l c u l a t i o n s . 3. A l g o r i t h m s f o r f o u n d a t i o n h e a t l o s s d e t e r m i n a t i o n b a s e d on BHLFs (Appendix A). 4. Sample c a l c u l a t i o n (Appendix B). M a t h e m a t i c a l Model

F i g u r e s . 1 , 2, and 3 show r e p r e s e n t a t i v e p r o f i l e views of p h y s i c a l models of a d e e p basement, a s h a l l o w basement, and a s l a b o n g r a d e , r e s p e c t i v e l y . F i g u r e 4 shows a p l a n v i e w . common t o a l l t h r e e t y p e s .

The main f a c t o r s and v a r i a b l e s t h a t d e t e r m i n e t h e below-grade h e a t l o s s from d e e p

basements, s h a l l o w basements, and s l a b o n g r a d e a r e ( 1 ) ground s u r f a c e t e m p e r a t u r e around t h e f o u n d a t i o n , ( 2 ) l o w e r t h e r m a l boundary r e p r e s e n t e d by a c o n s t a n t t e m p e r a t u r e , ( 3 ) i n t e r i o r s p a c e t e m p e r a t u r e , ( 4 ) basement d i m e n s i o n s and i n s u l a t i o n system, and

(5)

t h e t h e r m a l c o n d u c t i v i t y of t h e s o i l s u r r o u n d i n g t h e f o u n d a t i o n .

Based on t h e d e e p basement h e a t l o s s c a l c u l a t i n g a p p r o a c h of M i t a l a s (1982) and t h e p h y s i c a l models d e s c r i b e d above, t h e i n s t a n t a n e o u s h e a t l o s s f r o m t h e below-grade s e c t i o n of a house f o r a l l t h r e e f o u n d a t i o n t y p e s c a n be e x p r e s s e d a s

where

A = a r e a of segment, n

q n ( t P = i n s t a n t a n e o u s h e a t f l u x a t time, t , a v e r a g e d o v e r t h e segment a r e a ,

h.

.

Note t h a t summation b e g i n s w i t h n = l i f above-grade f o u n d a t i o n h e a t l o s s i s i n c l u d e d i n t h e summation. The i n s t a n t a n e o u s h e a t f l u x , q n ( t ) , c a n be approximated by

q n ( t ) = qa,, + qV,, s i n ( w ( t

+

~ t , ) ) where

qa,, = a n n u a l mean v a l u e of q (t)

q,,. = a m p l i t u d e of t h e annua? h e a t f l u x v a r i a t i o n

o

= a n g u l a r v e l o c i t y of t h e v a r i a b l e component,

i.e.,

30°/month

t = t i m e (month)

A t n = t i m e l a g of t h e h e a t f l u x harmonic r e l a t i v e t o t h e s u r f a c e t e m p e r a t u r e

v a r i a t i o n .

The a m p l i t u d e v a l u e s f o r t h e a n n u a l and s e m i a n n u a l harmonics of t h e ground s u r f a c e t e m p e r a t u r e f o r s e v e r a l l o c a t i o n s i n Canada a r e g i v e n i n T a b l e 2, d e r i v e d from t h e d a t a g i v e n i n P h i l l i p s and Aston (1979). A s t h e a m p l i t u d e of t h e two c y c l e s p e r y e a r component of ground s u r f a c e t e m p e r a t u r e i s r e l a t i v e l y small a n d t h e h i g h e r h e a t f l u x harmonics a r e a t t e n u a t e d more t h a n t h e f i r s t , t h e a n n u a l ground s u r f a c e t e m p e r a t u r e v a r i a t i o n c a n be approximated u s i n g o n l y t h e o n e c y c l e p e r y e a r component.

The h e a t c o n d u c t i o n t h r o u g h a l i n e a r t h e r m a l s y s t e m i s a f u n c t i o n of t h e t e m p e r a t u r e d i f f e r e n c e a c r o s s t h e s y s t e m and t h e o v e r a l l conductance. The two components of q n ( t ) g i v e n by E q u a t i o n 2 c a n t h e r e f o r e be e x p r e s s e d a s

(7)

and q v , , ( t ) = V n an Ov s i n ( w ( t + b t n ) ) where Sn

--

= BHLF f o r t h e s t e a d y - s t a t e h e a t l o s s component = o v e r a l l c o n d u c t a n c e between t h e b o u n d a r i e s a t t e m p e r a t u r e s Op and

"

0, U = S + S n and

S n P s and S = f o r d k e a d y - s t a t e h e a t l o s s component t o t h e ground s u r f a c e and l o w e r n ' g boundary, r e s p e c t i v e l y

QB = i n t e r i o r a i r t e m p e r a t i r e (assumed t o b e c o n s t a n t t h r o u g h o u t t h e e n t i r e y e a r ) OG = ground s u r f a c e t e m p e r a t u r e a v e r a g e d o v e r t i m e and a r e a , which e q u a l s mean

ground t e m p e r a t u r e

Vn = BHLF f o r t h e p e r i o d i c h e a t l o s s an = a m p l i t u d e a t t e n u a t i o n f a c t o r

Qv = a m p l i t u d e of t h e o n e c y c l e p e r y e a r component of t h e ground s u r f a c e t e m p e r a t u r e .

Thus E q u a t i o n s 3 and 4 a r e t h e b a s i c h o u s e f o u n d a t i o n m a t h e m a t i c a l models: h e a t f l u x e s a r e e x p r e s s e d i n t e r m s o f BHLFs, (Sn, V n ,

an,

and Atn) and t h e t e m p e r a t u r e s . It i s assumed t h a t t h e f o u n d a t i o n ' s t h e r m a l s y s t e m c h a r a c t e r i s t i c s d o n o t s i g n i f i c a n t l y change w i t h t i m e and t e m p e r a t u r e .

F o u n d a t i o n Heat Loss F a c t o r s (BHLFs) f o r R e p r e s e n t a t i v e House F o u n d a t i o n s

BHLFs a r e s p e c i f i c s e t s of f a c t o r s t h a t a r e u s e d i n E q u a t i o n s 3 and 4 t o r e l a t e below-grade h e a t l o s s and boundary t e m p e r a t u r e s f o r s p e c i f i c f o u n d a t i o n s y s t e m s . The a v a i l a b l e number of BHLF s e t s , t h e r e f o r e , w i l l d e t e r m i n e t h e r a n g e of a p p l i c a b i l i t y of t h i s method f o r p r e d i c t i n g s p e c i f i c h o u s e f o u n d a t i o n h e a t l o s s . The number of BHLF s e t s , however, must be b a l a n c e d a g a i n s t t h e c o s t t o c a l c u l a t e them and t h e t a b u l a t i o n and c o n v e n i e n c e of u s i n g t h e s e f a c t o r s .

F o r t h e s e r e a s o n s , S n ' s and V n ' s w e r e c a l c u l a t e d f o r t h e c r o s s - s e c t i o n a l models of t h e basement and s u r r o u n d i n g ground shown i n F i g u r e s 1, 2, 6nd 3 w i t h t h e f o l l o w i n g p e r t i n e n t d i m e n s i o n s t h a t a r e deemed t o b e r e p r e s e n t a t i v e of common h o u s e f o u n d a t i o n s y s t e m s : a ) Deep basement: H e i g h t of a r e a A 2 = 0.6 m H e i g h t of a r e a A3 = 1.07 m Width of a r e a A4 = 1.0 m Width of a r e a A5 = 3 . 6 m

A v e r t i c a l d i m e n s i o n of 0.6 m f o r A2 was s e l e c t e d b e c a u s e t h a t i s the e x t e n t of basement i n s u l a t i o n recommended i n s e v e r a l p r o v i n c i a l b u i l d i n g c e d e s . b) S h a l l o w basement: H e i g h t of a r e a A2 = 0 m H e i g h t of a r e a A3 = 0.85 m Width of a r e a A4 = 1.0 m Width of a r e a A5 = 3 . 6 m

F o r s h a l l o w basements, a l l a b o v e - g r a d e w a l l area i s d e s i g n a t e d

as

A l and a l l below-grade w a l l a r e a i s d e s i g n a t e d a s A3. c ) S l a b on g r a d e H e i g h t of a r e a A2 = 0 m H e i g h t of a r e a A3 = 0 m Width of a r e a A4 = 1.0 m Width of a r e a A5 = 3 . 6 m For s l a b on g r a d e t h e e n t i r e w a l l a r e a i s d e s i g n a t e d a s A l .

The basement f l o o r was d i v i d e d i n t o a p e r i m e t e r and a c e n t r a l r e g i o n , b e c a u s e

(8)

from t h a t t h r o u g h t h e r e m a i n d e r of t h e f l o o r , and b e c a u s e s u c h a d i v i s i o n makes i t p o s s i b l e t o a c c o u n t f o r a s t r i p of f l o o r i n s u l a t i o n a d j a c e n t t o t h e w a l l .

It i s assumed t h a t two-dimensional h e a t c o n d u c t i o n p r e v a i l s around t h e f o u n d a t i o n and t h a t t h e t h r e e - d i m e n s i o n a l h e a t f l o w due t o c o r n e r s c a n be a c c o u n t e d f o r by s p e c i a l c o r n e r a l l o w a n c e f a c t o r s , Cn.

The c a l c u l a t i o n s of S 's and V n l s a l l o w f o r s p a t i a l v a r i a t i o n s i n s o i l t h e r m a l p r o p e r t i e s

*

by a s s i g n i n g d i f f e r e n t s o i l c o n d u c t i v i t i e s above and below t h e f o u n d a t i o n f l o o r l e v e l .

S n 1 s and V ' S f o r s l a b on g r a d e were c a l c u l a t e d f o r t h r e e s l a b l w a l l c o n f i g u r a t i o n s t o a c c o u n t f o r d i f p e r e n t w a l l / s l a b j u n c t i o n s ( s e e T a b l e 1 )

,

namely,

1. The c o n c r e t e f l o o r s l a b i s i n good t h e r m a l c o n t a c t w i t h t h e c o n c r e t e w a l l and t h e s l a b i s i n s u l a t e d o n t h e i n t e r i o r o r e x t e r i o r .

2. The w a l l i s i n s u l a t e d (U=0.31 w / ( m 2 * ~ ) ) t o a d e p t h of 0.2 m below g r a d e and t h e f l o o r s l a b i s i n s u l a t e d on t h e i n t e r i o r o r e x t e r i o r . 3. The d e p t h of i n s u l a t i o n on t h e w a l l below g r a d e i s a v a r i a b l e ( i . e . , 0.5 m , 1.0 m, o r 1.5 m below g r a d e ) and t h e f l o o r s l a b i s n o t i n s u l a t e d . Sn and Vn, n u m e r i c a l l y e q u a l t o t h e a v e r a g e h e a t f l u x e s t h r o u g h i n t e r i o r s u r f a c e segments d u e t o a p p r o p r i a t e u n i t t e m p e r a t u r e d i f f e r e n c e s , were c a l c u l a t e d u s i n g f i n i t e - e l e m e n t n u m e r i c a l methods f o r h e a t c o n d u c t i o n ( M i t a l a s 1982).

A n a l y s i s of t h e c a l c u l a t e d S n ' s and V n V s i n d i c a t e s t h a t , i n most c a s e s , t h e basement i n s u l a t i o n t h e r m a l r e s i s t a n c e , R , and t h e S n l s and V n ' s f o r t h e r a n g e 1

<

R

<

5 c a n be r e l a t e d by e q u a t i o n s of t h e form: and C o n s e q u e n t l y , S n and V n a r e p r e s e n t e d i n T a b l e 1 a s f u n c t i o n s of t h e basement i n s u l a t i o n t h e r m a l r e s i s t a n c e , R , i n t h e f o r m of E q u a t i o n s 5 and 6 o r a s c o n s t a n t s f o r s p e c i f i c i n s u l a t i o n s y s t e m (e.g., nonuniform i n s u l a t i o n c o v e r ) . T a b l e 1 p r e s e n t s BHLFs f o r d e e p , s h a l l o w , and slab-on-grade f o u n d a t i o n s , v a r i o u s i n s u l a t i o n s y s t e m s and g e o m e t r i e s , and a r a n g e of s o i l t h e r m a l c o n d u c t i v i t i e s .

The a t t e n u a t i o n f a c t o r ,

an,

and t h e t i m e - l a g f a c t o r , A t n , have been d e t e r m i n e d by

c a l c u l a t i n g h e a t f l u x of i n t e r i o r s u r f a c e s , u s i n g a s i n e wave v a r i a t i o n of t h e ground s u r f a c e t e m p e r a t u r e ( M i t a l a s 1982). C a l c u l a t e d a t t e n u a t i o n and t i m e - l a g f a c t o r s a r e l i s t e d i n T a b l e 1. Based on t h e i n s i d e s u r f a c e h e a t f l u x v a l u e s c a l c u l a t e d a t a c o r n e r f o r two l e v e l s of f o u n d a t i o n i n s u l a t i o n and u s i n g a t h r e e - d i m e n s i o n a l model ( M i t a l a s 1 9 8 2 ) , a s e t of c o r n e r a l l o w a n c e f a c t o r s , Cn, were d e r i v e d f o r a l l of t h e f o u n d a t i o n i n s u l a t i o n s y s t e m s and a r e l i s t e d i n T a b l e 1.

House F o u n d a t i o n Heat L o s s C a l c u l a t i n g P r o c e d u r e and A p p l i c a t i o n i n P r a c t i c e The c a l c u l a t i n g p r o c e d u r e b a s e d o n BHLFs c o n s i s t s of f o u r d i s t i n c t s t e p s :

1. D e t e r m i n a t i o n of S

,

V n ,

an,

At,, and C f a c t o r s f o r a f o u n d a t i o n t y p e , f o u n d a t i o n g e o m e t r y , ground t E e r m a l p r o p e r t i e s , a n 8 i n s u l a t i o n s y s t e m u n d e r c o n s i d e r a t i o n , u s i n g T a b l e 1.

2. C a l c u l a t i o n of f o u n d a t i o n w a l l and f l o o r i n t e r i o r s u r f a c e segment a r e a s and c o r n e r a l l o w a n c e f o r t h e f o u n d a t i o n i n q u e s t i o n .

3. C a l c u l a t i o n of 1 2 monthly v a l u e s of below-grade h e a t l o s s u s i n g ground s u r f a c e , ground mean, and i n t e r i o r t e m p e r a t u r e a p p r o p r i a t e f o r t h e l o c a t i o n i n q u e s t i o n , BHLFs d e t e r m i n e d i n S t e p 1 , and a r e a s c a l c u l a t e d i n S t e p 2.

4 . C a l c u l a t i o n of t h e h e a t i n g s e a s o n below-grade h e a t l o s s u s i n g t h e monthly h e a t l o s s v a l u e s c a l c u l a t e d i n S t e p 3.

(9)

C a l c u l a t i o n of below-grade h e a t l o s s becomes more i n v o l v e d when t h e f o u n d a t i o n d i f f e r s c o n s i d e r a b l y from t h e f o u n d a t i o n s l i s t e d i n T a b l e 1. I n t h i s c a s e , t h e h e a t l o s s c a n be d e t e r m i n e d u s i n g a s i m p l e i n t e r p o l a t i o n p r o c e d u r e : s e l e c t two f o u n d a t i o n s l i s t e d i n T a b l e 1 t h a t " b r a c k e t " t h e a c t u a l f o u n d a t i o n , c a l c u l a t e below-grade h e a t l o s s f o r t h e s e two c a s e s , and t h e n , u s i n g t h i s d a t a , i n t e r p o l a t e t o d e t e r m i n e h e a t l o s s of t h e a c t u a l f o u n d a t i o n .

I f i t i s known t h a t t h e groundwater l e v e l i s j u s t below t h e f o u n d a t i o n f l o o r , and t h a t a p o t e n t i a l e x i s t s f o r g r o u n d w a t e r Elow a r o u n d and u n d e r t h e f o u n d a t i o n , t h e RHLFs f o r t h e s t e a d y - s t a t e h e a t l o s s component t h r o u g h t h e f l o o r s h o u l d be a r b i t r a r i l y i n c r e a s e d by 30% t o 70% t o a c c o u n t f o r a d e c r e a s e d ground t h e r m a l r e s i s t a n c e b e n e a t h t h e f l o o r d e p e n d i n g on t h e p e r c e i v e d s e v e r i t y of t h e g r o u n d w a t e r e f f e c t . I n c a s e s of p o o r l y i n s u l a t e d f o u n d a t i o n s i n which s o i l p r o v i d e s t h e m a j o r p o r t i o n of t h e t o t a l t h e r m a l r e s i s t a n c e , a n a c c u r a t e v a l u e of s o i l t h e r m a l c o n d u c t i v i t y i s r e q u i r e d t o e s t a b l i s h t h e BHLFs a p p r o p r i a t e f o r t h e c a s e u n d e r c o n s i d e r a t i o n . I n a d d i t i o n , t h e f o l l o w i n g may have a s i g n i f i c a n t i n f l u e n c e o n t h e h e a t l o s s f r o m a p o o r l y i n s u l a t e d f o u n d a t i o n :

-

The t i m e v a r i a t i o n i n g r o u n d w a t e r t e m p e r a t u r e and l e v e l ;

-

The f l o w of r a i n o r melt-water i n t o s o i l s u r r o u n d i n g t h e basement;

-

The s p a c e v a r i a t i o n of ground t e m p e r a t u r e a r o u n d t h e f o u n d a t i o n due t o s o l a r e f f e c t s , a d j a c e n t b u i l d i n g s , and v a r i a t i o n i n t h e snow c o v e r ;

-

Changes i n s o i l t h e r m a l c o n d u c t i v i t y due t o m o i s t u r e and t e m p e r a t u r e changes.

The d e t a i l s of t h e a p p l i c a t i o n of BHLFs f o r c a l c u l a t i o n of below-grade h o u s e f o u n d a t i o n h e a t l o s s a r e g i v e n i n Appendix A and a s a m p l e c a l c u l a t i o n i n Appendix B.

A s a m a t t e r of i n t e r e s t , t h e measured basement h e a t l o s s a t t h e t e s t basement and t h e c o r r e s p o n d i n g c a l c u l a t e d v a l u e s a r e p r e s e n t e d i n Appendix B and p l o t t e d i n F i g u r e 4. I n t h i s p a r t i c u l a r c a s e , t h e c a l c u l a t e d a n n u a l basement h e a t l o s s of 24 G J compares w e l l w i t h t h e measured 23.3 G J h e a t Loss. A more e x t e n s i v e comparison of c a l c u l a t e d and measured d e e p basement h e a t l o s s i s g i v e n i n M i t a l a s ( 1 9 8 2 ) .

OBSERVATIONS

V a r i o u s a s s u m p t i o n s h a v e been made i n d e r i v i n g a s i m p l e method of c a l c u l a t i n g below-grade h e a t l o s s . F o r v e r i f i c a t i o n , v a l u e s of f o u n d a t i o n h e a t l o s s o b t a i n e d by means of t h i s method were compared w i t h a c t u a l measured v a l u e s f o r d e e p basements ( M i t a l a s 1982). The comparison

-

s u g g e s t e d t h e f o l l o w i n g :

-

The e f f e c t of t h e a n n u a l v a r i a t i o n of ground s u r f a c e t e m p e r a t u r e on below-grade h e a t l o s s c a n be a c c o u n t e d f o r s a t i s f a c t o r i l y by a p e r i o d i c h e a t f l o w c a l c u l a t i o n a p p r o a c h , u s i n g a m p l i t u d e a t t e n u a t i o n ,

a,,

and t i m e - d e l a y f a c t o r s , A t n .

-

F o u n d a t i o n s w i t h s i m p l e r e c t a n g u l a r s h a p e s c a n b e t r e a t e d by u s i n g BHLFs d e t e r m i n e d f o r s t r a i g h t w a l l s e c t i o n s and c o r n e r a l l o w a n c e f a c t o r s t o a c c o u n t f o r t h r e e - d i m e n s i o n a l h e a t f l o w due t o c o r n e r s .

-

The BHLF method c a n p r e d i c t b o t h t h e t o t a l f o u n d a t i o n h e a t l o s s and t h e h e a t l o s s t h r o u g h s e c t i o n s of t h e f o u n d a t i o n w i t h i n + l o % of measured v a l u e s . NOMENCLATURE* An = a r e a of segment, n a n , b n , c n , a c o n s t a n t s s p e c i f i c t o t h e f o u n d a t i o n t h e r m a l i n s u l a t i o n system; t h e y a r e u s e d t o and d n c a l c u l a t e S and V n f a c t o r s RHLF

-

f o u n d a t i o n g e a t l o s s f a c t o r , namely, S , V , on, A t , o r Cn Cn = c o r n e r allowance f a c t o r D" = h e i g h t of f o u n d a t i o n w a l l a b o v e g r a d e G = f o u n d a t i o n p e r i m e t e r G~ = p e r i m e t e r f o r b o t h end s e c t i o n s G~ = p e r i m e t e r f o r t h e m i d d l e s e c t i o n H = t o t a l h e i g h t of f o u n d a t i o n w a l l k lower = s o i l t h e r m a l c o n d u c t i v i t y below f o u n d a t i o n f l o o r l e v e l k u p p e r = s o i l t h e r m a l c o n d u c t i v i t y above f o u n d a t i o n f l o o r l e v e l * A l l d i m e n s i o n s u s e d i n t h i s p a p e r a r e i n S I u n i t s e x c e p t a s n o t e d

(10)

L = f o u n d a t i o n l e n g t h

M = h e i g h t of i n s u l a t i o n coverage o v e r w a l l m = month number ( 1 t o 12)

N = number of segments c o n s t i t u t i n g t h e i n t e r i o r s u r f a c e a r e a of below-grade p o r t i o n of t h e f o u n d a t i o n

QT = annual h e a t l o s s from below-grade p o r t i o n of f o u n d a t i o n Q ( t ) = h e a t l o s s from below-grade p o r t i o n of f o u n d a t i o n

Q W = below-grade f o u n d a t i o n h e a t l o s s f o r w i n t e r p e r i o d Q a n = annual mean v a l u e of q n ( t )

q n ( t ) = a v e r a g e h e a t f l u x through t h e segment a r e a , An, a t time t

qv,n = amplitude of a n n u a l harmonic of h e a t f l u x v a r i a t i o n

qV,,(t) = v a r i a b l e component of a v e r a g e h e a t f l u x t h r o u g h segment, An, a t time t R = thermal r e s i s t a n c e of f o u n d a t i o n i n s u l a t i o n RT o v e r a l l t h e r m a l r e s i s t a n c e of f o u n d a t i o n w a l l above g r a d e l e v e l S n = BHLF, t h e s teady-s t a t e h e a t l o s s component t = time U = o v e r a l l t h e r m a l conductance of f o u n d a t i o n w a l l above g r a d e l e v e l ,

l/RT

vn = BHLF f o r t h e p e r i o d i c h e a t l o s s component W = f o u n d a t i o n width Xn = c o r n e r allowance S u b s c r i p t s = s t e a d y - s t a t e component, e q u a l i n g a n n u a l mean v a l u e = i n t e r i o r s p a c e = end s e c t i o n = lower t e m p e r a t u r e boundary

= long-term time and s p a c e a v e r a g e

= month number ( 1 t o 12) = middle s e c t i o n = segment of t h e i n t e r i o r s u r f a c e of f o u n d a t i o n = ground s u r f a c e = v a r i a b l e component Greek Symbols = time l a g of h e a t f l u x harmonic r e l a t i v e t o s u r f a c e t e m p e r a t u r e v a r i a t i o n 8 = t e m p e r a t u r e @B = i n t e r i o r s p a c e a i r t e m p e r a t u r e

OG = ground s u r f a c e t e m p e r a t u r e averaged o v e r b o t h time and a r e a , e q u a l l i n g mean ground t e m p e r a t u r e

@o,m = monthly v a l u e of o u t d o o r a i r t e m ~ e r ~ a t u r e

Qv = amplitude of a n n u a l harmonic of ground s u r f a c e t e m p e r a t u r e On = amplitude a t t e n u a t i o n f a c t o r

w = a n g u l a r v e l o c i t y of a n n u a l harmonic

REFERENCES

Environment Canada. 1975. Canadian Normals Temperature 1941-1970, Vol. 1-SI. Environment Canada, Downsview, O n t a r i o (UDC 551-552[7]).

M i t a l a s , G.P. 1982. "Basement h e a t l o s s s t u d i e s a t DBR~NRC." N a t i o n a l Research Council of Canada, D i v i s i o n of B u i l d i n g Research, NRCC 20416.

M i t a l a s , G.P. 1983. " C a l c u l a t i o n of basement h e a t l o s s . " ASHRAE T r a n s a c t i o n s , V. 89, Pt. 1.

P h i l l i p s , D.W., and Aston, D. 1979. " S o i l t e m p e r a t u r e a v e r a g e s 1958-1978

-

Environment Canada, Downsview, O n t a r i o . CL13-79.

The a u t h o r wishes t o acknowledge t h e a s s i s t a n c e of M.J. Lavoie and M.O. P e l l e t i e r i n t h e p r e p a r a t i o n of computer programs and r u n n i n g t h e t e s t . T h i s paper i s a c o n t r i b u t i o n of t h e I n s t i t u t e f o r Research i n C o n s t r u c t i o n , N a t i o n a l Research Council of Canada.

(11)

APPENDIX A

C a l c u l a t i o n of House Foundation Heat Loss

The f o l l o w i n g summarizes t h e s t e p s t o be t a k e n i n c a l c u l a t i n g h e a t l o s s f o r a s p e c i f i c house f o u n d a t i o n system:

S t e p 1. Provide t h e r e q u i r e d i n p u t d a t a f o r ( A l l i n S I u n i t s ) : I n s i d e dimensions ( s e e F i g u r e s 1 , 2, 3, and 4 )

l e n g t h , L,

w i d t h , W , where W

<

L , o r w i d t h , W

,

and w i d t h , W 2 , of L-shaped f l o o r , where W1 and

W 2

a r e t h e widths of t h e two ends of t h e !loor;

t o t a l h e i g h t of w a l l , H , h e i g h t of w a l l above g r a d e , D. I n s u l a t i o n

-

o v e r a l l thermal r e s i s t a n c e of w a l l above g r a d e , RT,

o v e r a l l thermal conductance of w a l l above g r a d e , U (U = 1 / ~ ~ ) , r e s i s t a n c e v a l u e of i n s u l a t i o n , R,

h e i g h t of i n s u l a t i o n coverage of w a l l , M

-

i n c a s e of deep basement,

e x t e n t of i n s u l a t i o n coverage of f l o o r ( i . e . , none, 1 m wide s t r i p a d j a c e n t t o w a l l , o r f u l l coverage).

Temperature

-

i n t e r i o r space t e m p e r a t u r e , QB,

mean ground t e m p e r a t u r e , QG ( s e e T a b l e 2 o r P h i l l i p s and Aston 19791,

amplitude of t h e a n n u a l harmonic of t h e ground s u r f a c e t e m p e r a t u r e v a r i a t i o n , C$,, and t h e timing of t h e f i r s t s u r f a c e t e m p e r a t u r e harmonic ( s e e Table 2 ) ,

monthly average outdoor a i r t e m p e r a t u r e , Q0,,, where m i d e n t i f i e s t h e month (Environment Canada 197 5). S t e p 2. C a l c u l a t e t h e a r e a s of t h e segments c o n s t i t u t i n g t h e f o u n d a t i o n f l o o r and w a l l s where a p p l i c a b l e : A 1 = i n s i d e s u r f a c e a r e a of w a l l

-

above g r a d e , A 2 = upper i n s i d e s u r f a c e a r e a of w a l l

-

below g r a d e , A 3 = lower i n s i d e s u r f a c e a r e a of w a l l

-

below g r a d e , A 4 = i n s i d e s u r f a c e a r e a of f l o o r s t r i p 1 m wide a d j a c e n t t o w a l l , A5 = i n s i d e s u r f a c e a r e a of t h e remainder of t h e f l o o r .

I n some c a s e s t h e f o u n d a t i o n under c o n s i d e r a t i o n must be s u b d i v i d e d i n t o s e c t i o n s , depending on i t s shape and on t h e number of i n s u l a t i o n systems used, s i n c e s e c t i o n s t h a t a r e i n s u l a t e d d i f f e r e n t l y must be c o n s i d e r e d s e p a r a t e l y .

Square basements may be r e g a r d e d a s having two i d e n t i c a l end s e c t i o n s . R e c t a n g u l a r basements may be c o n s i d e r e d a s h a v i n g two i d e n t i c a l end s e c t i o n s w i t h three-dimensional h e a t flow o c c u r r i n g a t t h e c o r n e r s and a middle s e c t i o n w i t h two-dimensional h e a t f l o w ( F i g u r e

4).

The three-dimensional h e a t f l o w of i r r e g u l a r l y shaped basements (such a s an L-shaped basement) cannot be accommodated by t h i s s i m p l e method. Such a basement could be c o n s i d e r e d a s having f o u r c o r n e r s o n l y , s i n c e t h e three-dimensional h e a t flow e f f e c t a t an i n s i d e c o r n e r w a l l w i l l be t h e o p p o s i t e of t h a t a t a n o u t s i d e c o r n e r and s h o u l d t h e r e f o r e approximately

compensate. An L-shaped basement can b e t r e a t e d a s a r e c t a n g u l a r one, u s i n g t h e a c t u a l L-shaped c e n t e r f l o o r a r e a , As, and a c t u a l p e r i m e t e r l e n g t h f o r w a l l a r e a c a l c u l a t i o n s .

Rectangular f o u n d a t i o n s w i t h s i n g l e i n s u l a t i o n system

-

f o r both end s e c t i o n s , GE = 4 W ,

f o r t h e middle s e c t i o n , GM = 2L

-

2W, f o r t h e e n t i r e f o u n d a t i o n , G = 2(L+W),

where G = p e r i m e t e r , W = w i d t h , L = l e n g t h , and s u b s c r i p t s E , M, and no s u b s c r i p t r e f e r t o end s e c t i o n s , middle s e c t i o n , and e n t i r e f o u n d a t i o n , r e s p e c t i v e l y . T h e r e f o r e ,

(12)

F u l l basement w i t h i n s u l a t i o n p a r t i a l l y c o v e r t n g t h e w a l l

-

F u l l basement w i t h i n s u l a t i o n c o v e r i n g t h e e n t i r e w a l l

-

Shallow basement

S l a b on g r a d e

S t e p 3. Determine BHLFs Sn and Vn:

For t h e p a r t i c u l a r t y p e of f o u n d a t i o n , t h e R-value of f o u n d a t i o n i n s u l a t i o n and s o i l t h e r m a l c o n d u c t i v i t i e s from T a b l e 1, o b t a i n t h e f a c t o r s Sn(R), Vn(R), Cn, an and At,. The h i g h v a l u e of s o i l t h e r m a l c o n d u c t i v i t y would p r o b a b l y be a p p r o p r i a t e f o r r o c k s and wet s a n d ; t h e lower v a l u e c o u l d be u s e d f o r w e l l - d r a i n e d c l a y .

S t e p 4. Using t h e s e l e c t e d c o r n e r a l l o w a n c e f a c t o r s , Cn, c a l c u l a t e t h e a c t u a l c o r n e r a l l o w a n c e , Xn:

1) For t h e two upper w a l l segments, A1 and A2, t h e i n c r e a s e d h e a t l o s s due t o c o r n e r s c a n b e n e g l e c t e d , i.e.,

X 1

=

X p

= 0.

2) For t h e bottom segment of t h e w a l l , A 3 ,

Xj

= 0 f o r s h a l l o w basement and s l a b on g r a d e and

X 3

= i C j f o r f u l l basement, where i = number of c o r n e r s b e i n g c o n s i d e r e d . 3) For t h e

1

m s t r i p of f l o o r , X4 = i C4.

4)

For t h e c e n t r a l a r e a of f l o o r ,

X5

= C5

V5.

S t e p 5. C a l c u l a t e t h e e f f e c t i v e a r e a s of t h e segments c o n s t i t u t i n g t h e f l o o r and w a l l s of t h e e n t i r e basement, i n c l u d i n g t h e c o r n e r a l l o w a n c e . (Because of t h e d i f f e r e n c e i n c o r n e r a l l o w a n c e f o r s t e a d y - s t a t e and v a r i a b l e f l o o r h e a t l o s s components and because t h e c o r n e r a l l o w a n c e i s i n terms of a r e a , t h e e f f e c t i v e f l o o r a r e a v a l u e s f o r t h e s t e a d y - s t a t e and v a r i a b l e component c a l c u l a t i o n s a r e d i f f e r e n t . )

(13)

where

---

s u b s c r i p t "s" i n d i c a t e s s u r f a c e a r e a t o b e u s e d i n c a l c u l a t i n g t h e s t e a d y - s t a t e component, s u b s c r i p t "v" i n d i c a t e s s u r f a c e a r e a v a l u e t o be u s e d i n c a l c u l a t i n g t h e v a r i a b l e basement h e a t - l o s s component. S t e p 6. C a l c u l a t e t h e monthly a v e r a g e h e a t - l o s s r a t e (power) t h r o u g h t h e i n t e r i o r s u r f a c e s of f o u n d a t i o n : For s l a b on g r a d e ,

and f o r s h a l l o w basement A2 = 0 .-.q2,, = 0. For o t h e r c a s e s ,

where "30" h a s u n i t s i n deglmonth. S t e p 7. C a l c u l a t e t h e a n n u a l below-grade f o u n d a t i o n h e a t l o s s ( e n e r g y ) , QT: where 2.63 x l o 6 = number of s e c o n d s p e r a v e r a g e month. S t e p 8. C a l c u l a t e t h e below-grade basement h e a t l o s s o v e r t h e w i n t e r p e r i o d , Qw:

-

w i n t e r months 5 Qw = (2.63)

C

qn,m

(MJ)

A l t e r n a t i v e l y , t h e above e q u a t i o n c a n b e r e a r r a n g e d a s f o l l o w s :

5

Qw = ( ( o B

-

QG)

C

An Sn (Number of w i n t e r months ) n= 2 w i n t e r

5

months

+

0,

C

An V n

an

C

s i n w ( 1 n + 8 + ~ t ~ ) ) (2.63) ( M J ) n= 2 S t e p 9. C a l c u l a t e t h e h e a t l o s s f r o m e n t i r e f o u n d a t i o n .

The whole basement h e a t l o s s i s s i m p l y t h e sum of t h e below-grade and above-grade f o u n d a t i o n h e a t l o s s e s . A sample c a l c u l a t i o n of basement h e a t l o s s i s g i v e n i n Appendix

B.

I n a p p l y i n g t h i s c a l c u l a t i n g p r o c e d u r e , t h e f i r s t problem e n c o u n t e r e d w i l l b e t h a t t h e f o u n d a t i o n u n d e r c o n s i d e r a t i o n d o e s n o t c o r r e s p o n d e x a c t l y t o any of t h e " s t a n d a r d "

f o u n d a t i o n s and i n s u l a t i o n s y s t e m s (e.g., t h e d e p t h of t h e f o u n d a t i o n f l o o r below g r a d e , t h e e x t e n t of i n s u l a t i o n c o v e r , o r s o i l t h e r m a l c o n d u c t i v i t y may b e d i f f e r e n t ) t h a n t h e o n e s l i s t e d i n T a b l e 1. To c o p e w i t h t h i s problem two a p p r o a c h e s c a n be used:

1. S e l e c t t h e " s t a n d a r d " f o u n d a t i o n c o n f i g u r a t i o n and i n s u l a t i o n s y s t e m t h a t b e s t match t h e f o u n d a t i o n u n d e r c o n s i d e r a t i o n , f r o m T a b l e 1. Using t h e

BHLF

s e t f o r t h i s f o u n d a t i o n and

(14)

a c t u a l dimensions of t h e basement under c o n s i d e r a t i o n , d e t e r m i n e below-grade h e a t l o s s of t h e f o u n d a t i o n i n q u e s t i o n .

2. Use an i n t e r p o l a t i o n ( o r e x t r a p o l a t i o n ) procedure t o e s t i m a t e below-grade h e a t l o s s of t h e f o u n d a t i o n i n q u e s t i o n : a ) S e l e c t a t l e a s t two " s t a n d a r d " f o u n d a t i o n c o n f i g u r a t i o n s t h a t b r a c k e t t h e f o u n d a t i o n under c o n s i d e r a t i o n . b ) C a l c u l a t e t h e below-grade h e a t l o s s f o r t h e s e " s t a n d a r d " c a s e s . c ) C a l c u l a t e t h e below-grade h e a t l o s s of t h e f o u n d a t i o n i n q u e s t i o n by i n t e r p o l a t i o n of t h e h e a t l o s s v a l u e s of t h e two " s t a n d a r d " c a s e s u s i n g a p p r o p r i a t e parameters f o r i n t e r p o l a t i o n , i . e . , d i f f e r e n c e i n d e p t h , i n s u l a t i o n c o v e r , e t c .

The e x t r a p o l a t i o n approach t o t h i s problem c a n be used i n a s i m i l a r way. It should be n o t e d , however, t h a t t h e e x t r a p o l a t i o n procedure s h o u l d be used only t o a l i m i t e d e x t e n t , s i n c e i t i s n o t p o s s i b l e t o e s t i m a t e a c c u r a t e l y t h e e r r o r of t h e h e a t l o s s determined by t h i s procedure.

APPENDIX B

Sample C a l c u l a t i o n of Deep Basement Heat Loss

The f o l l o w i n g sample c a l c u l a t i o n i s f o r t h e h e a t l o s s from one of t h e t e s t basements, which had i n s u l a t i o n o v e r t h e f u l l h e i g h t on t h e i n s i d e s u r f a c e of t h e basement w a l l and no i n s u l a t i o n on t h e f l o o r . S t e p 1. The g i v e n i n p u t d a t a a r e : Basement dimensions

-

l e n g t h , L = 9.2 m, w i d t h , W = 8.5 m, t o t a l w a l l h e i g h t , H = 2.13 m, h e i g h t of w a l l above g r a d e , D = 0.38 m. I n s u l a t i o n

-

above g r a d e , l / R T = U = 0.53 w/(m2

K),

i n s u l a t i o n r e s i s t a n c e , R = 1.55 m2 K / W , h e i g h t of i n s u l a t i o n c o v e r , M = 2.13 m ( f u l l h e i g h t ) , f l o o r i s u n i n s u l a t e d . Temperature

-

basement s p a c e t e m p e r a t u r e ,

BB

= 21°C,

ground s u r f a c e t e m p e r a t u r e (from Table 2 ) ,

OG

+

%,

= 8.9

+

11.4 s i n (30(m

+

8 ) )

o u t s i d e a i r t e m p e r a t u r e (Environment Canada 1975). (For Ottawa 0 = -11, -9, -3, 6 , 13, 18, 21, 19, 15, 9 , 2, - 7 ' ~ ; where m = J a n . t o Dec.) 0,"'

(15)

S t e p 3. Because t h e s o i l s u r r o u n d i n g t h e basement i s c l a y , t h e l o w e r v a l u e s of t h e r m a l c o n d u c t i v i t y were u s e d t o o b t a i n t h e f o l l o w i n g from T a b l e 1. Because t h e ground i s w e l l d r a i n e d and t h e w a t e r t a b l e i s l e v e l , t h e S, and S5 f a c t o r s a r e n o t augmented. For i n s u l a t i o n s y s t e m No. 3 t h e f a c t o r s a r e : Area Segment: n = 2 n = 3 n = 4 n = 5 S u b s t i t u t i n g R = 1.55 m 2 K/W and A t n , Area Segment: n = 2 n = 3 n = 4 n - 5 S 0.44 0.29 0.58 0.19 w/(m2 K) V 0.43 0.27 0.38 0.07 w/(m2

K)

u

0.9 0.7 0.4 0.3 D i m e n s i o n l e s s ( m + 8 + ~ t ) m + 8 m + 7 m + 6 m

+

4 Month C* 0 0.6 m2 2.4 m2 0.5 *C v a l u e h a s d i f f e r e n t u n i t , a s n o t e d . S t e p 4. Using t h e a l l o w a n c e f a c t o r s f r o m T a b l e 1 , t h e c o r n e r a l l o w a n c e s , X, are: S t e p 5. C a l c u l a t e t h e a r e a s of t h e s e g m e n t s t h a t i n c l u d e c o r n e r a l l o w a n c e f a c t o r s :

S t e p 6. The monthly h e a t l o s s (power) v a l u e s of t h e f i v e basement s e g m e n t s a r e :

q2,, =

A ~ [ s ~

(QB

-

OG)

-

V 2 u2 Ov s i n [30(m

+

8 ) ) ] = 21.2 [0.44(21

-

8.9)

-

0.43(0.9)(11.4) s i n (30(m

+

8 ) ) ] = 112

-

9 3 s i n (30(m

+

8 ) ) q 3 , m = A [ s 3 ( %

-

8

1

-

V

8 s i n (30(m

+

7 ) ) ] = 43.1 [0.29(2F

-

8.3) -%.27(8.7)(11.4) s i n (30(m t 7 ) ) ] = 151

-

9 3 s i n (30(m , -

+

7 ) ) - , Q 4 , m = A S ( 8

-

QG)

-

A4v V 4

a

$

s i n (30(m

+

6 ) ) = (47.7) 40.58 8 2 1

-

8.9)

-

( 4 1 . 0 ) ( 0 . 4 8 ) ( 0 . 4 ) ( l l . 4 ) s i n (30(m

+

6 ) ) = 265

-

71 s i n (30(m

+

6 ) ) 45,m = A S5

( $ -

8,)

- 6

v

o s i n (30(mt4) = (32.6) (0.1 ) ( 2 1

-

8.95"- [6?.9 ( 8 . 0 7 ) ~ 0 . 3 ) ( 1 1 . 4 ) s i n [30(m

+

4 ) ] = 126

-

16.3 s i n ( 3 0 ( m + 4 ) ) .

I n summary, t h e monthly h e a t l o s s e s of t h e f i v e basement s e g m e n t s a r e :

(16)

q3,m = 151

-

9 3 s i n

The a v e r a g e h e a t l o s s v a l u e s Eor t h e f i v e basement segments f o r e a c h month of t h e y e a r , t h e t o t a l basement a v e r a g e v a l u e s , and t h e a n n u a l a v e r a g e v a l u e s f o r e a c h segment a r e l i s t e d i n T a b l e A-1.

The a n n u a l a v e r a g e h e a t l o s s r a t e was 762 W. The a n n u a l h e a t l o s s ( e n e r g y ) from t h e whole basement would b e

(17)

-

a 9 - m u u u o m u u

..

-

- ' N U u u u 0 0 O m

.. .,

m N N m

-

r . OD

-

N N O O D -

-

m N

.,

d u

-

r.- N 4.0 a N O - 9 * a u m w m m m P - P - O D I l l w w w

.

rl 4 ¶ 3 V) ln C

.

C d 4 .4

2

m 4

c21 .+ d d m m u O C Y C d 0 a 4 - I > 4 .4 4 0 0 u m m 0 P ) P ) w z s

Z U U

O ' U W 0 0 0 U h h 0 u U C 4 .4 > > w d .rl u u u m u u 3 - 2 1 2 1 m c c

-

0 0 o u u Z 4 d E m m O E E U L L ,

: 2 ;

O U U i l d u u w w

> 2 g

I

e '+

(18)

h

TABLE

1

House Foundation Heat Loss

4 m 0% F a c t o r s , R , m 2 * K / w

a ,

d i m e n s i o n l e s s AT, month For d e e p basement: U n i t s :

a,

=

0.9

A t g = 0 a3 = 0.7 A t 3 = -1

a,

= 0.4 A t , =

-2

a,

= 0.3 A t 5 =

-4

S

,

W/

( m 2 * ~ ) V ,

W/

(m2*K) C , m* o r d i m e n s i o n l e s s

(At i s t h e t i m e d e l a y of h e a t f l u x s i n e wave r e l a t i v e t o t h e ground s u r f a c e t e m p e r a t u r e s i n e wave.) SECTION A: SOIL THERMAL CONDUCTIVITY: k u p p e r = 0.8 W/(m*K); k lower = 0.9 W/(m*K)

(Systems 1 t o 13, 21 t o 26)

*

Table

1

l i s t s numerical v a l u e s of Cn, 6, and ATn f a c t o r s . The Sn and Vn f a c t o r s a r e g i v e n a s numbers and a s e x p r e s s i o n s i n t h e form of Equations

5

and 6. These l a t t e r e x p r e s s i o n s a r e v a l i d f o r

1(R<5

and f o r uniform i n s u l a t i o n cover o v e r t h e i n s u l a t e d s e c t i o n of t h e basement I n s u l a t i o n System Insulation

--p,

Concrete (n

.:

_

. .

. ,

.

. . 1 F l o o r Segments S n , V n and Cn F a c t o r s 1 m s t r i p a d j a c e n t t o w a l l n= 4 0.42 0.24 2.6 Wall Segments S= . . . C e n t r e n= 5 0.17 0.05 0.5 T o p s t r i p j u s t below g r a d e n= 2 1.9 1.9 0 Bottom s t r i p n= 3 0.74 0.6

5

1 .O

(19)
(20)

SECTION A ( c o n t ' d )

I n s u l a t i o n System

I

I

Wall Segments

I

Floor Segments

Insulation Concrete 0 .. V 1 . S n * v n and Cn F a c t o r s Top s t r i p j u s t below grade n= 2 1 m s t r i p a d j a c e n t t o w a l l n=

4

Bottom s t r i p n= 3 Centre n=

5

(21)

SECTION A ( c o n t ' d )

I n s u l a t i o n S y s t e m Wall Segments

Insulation

T,

,

S n , V n Top s t r i p

Concrete and Cn j u s t below Bottom

$

;:

F a c t o r s g r a d e s t r i p . I . . . n=

2

n=

3

7

. . , . . S=

(0.67+1.12~)'~

( 1.30+1.47~)-I V=

(0.67+1.14~)'1

(1.42+1.58~)-1

C=

0

0.6

._,..;:

6

.

I . ' . S=

(0.69+1.08~)'~

(1.28+1.23~)-1

V=

(0.69+1.11~)'~

(1.41+1.36~)-~

,

+

0

0.6

.

. .

.

. .; .

7

S=

(0.73+1.04~)^1

(1.42+1.03~)-1

V=

(0.72+1.08~)'~

(1.53+1.2 1~)'~

C=

0

0.6

': ..:.:: F l o o r Segments

1

m s t r i p a d j a c e n t t o w a l l n=

4

(1.82+0.055~)-1

(2.79+0.11~)'1

2.4

(3.48+0.64~)'1

(5.43+0.988)'1

2.4

(2.60+0.92~)-1

(4.21+0.58~)-I

2.4

C e n t r e n=

5

0.19

0.07

0.5

(4.44-0.13~)~~

(1

1.13-0.58~)'l

0.5

(4.93+0.71~)'~

(12.9 1+1.25~)'~

0.5

(22)
(23)

SECTION

B:

SOIL THERMAL CONDUCTIVITY:

k

upper

=

1.2 W/(m*K);

k

lower

=

1.35 w/(m*K)

(Systems 14 to 20, 97 to 99)

Insulation

System

I

Wall Segments

Floor Segments

Insulation

S,, V,

Top strip

1

m

strip

.'...

T,

#

.-

Concrete

,

and Cn

just below

Bottom

adjacent

Centre

0 "

Factors

grade

strip

to wall

n=

5

"

.:

. .

n=

2

n=

3

n=

4

.

. .

.: .

3 .

9

9

....

. .

S=

2.12

0.98

0.59

0.26

V

=

2.10

0.88

0.35

0.08

C=

0

1 .O

2.6

0.5

...

.

...

7

14

S=

(0.48+1.37~)-1

(0.85-0.008~)-~

0.59

0.27

V=

(0.48+1.388)-1

(0.93-0.0094~)-~

0.35

0.09

C=

0

1

.O

2.6

0.5

-

_ ' , I . . . .

..

15

.'.'.,..

T,.,

S=

(0.51+1.09~)'~

(0.97+1.38~)'1

(1.36-0.03~)'~

0.29

V=

(0.52+1.11~)'1

(1.06+1.49~)'~

(2.11-0.062R)'l

0.11

C=

0

0.6

2.4

0.5

.

..',

.

.

:

.

:

. . .

1

,

16

.'.':

:

S=

(0.52+1.06~)'~

(0.96+1.2~)'~

(2.76+0.54~)'~

(2.93-0.07~)'~

V=

(0.53+1.08~)-I

(1.

15+1.33R)-l

(4.39+0.88~)-1

(7.25-0.30~)'~

C=

0

0.6

2.4

0.5

.

. .

,.

.'

+ ' .' :

.-

..

-::

,

l7

s=

(0.56+1.02~)-I

(1.08+1.01~)-1

(1.90+0.89~)'~

(3.27+0.76~)'1

V=

(0.55+1.06~)-I

(1.15+1.18~)-I

(3.14+1.58~)-1

(8.46+1.55~)'1

C=

0

0.6

0.5

..

.

.:.:.:-:'

I

I

(24)

SECTION B ( c o n t ' d )

I n s u l a t i o n System

I

Wall Segments

Inw!ation

T,

,

S n , V , and Cn j u s t below T o p s t r i p Bottom

.-

o

:.

Concrete F a c t o r s g r a d e s t r i p '".

. .

, , n=

2

n=

3

. , . .

dl-J0.5

m

,

18

S=

(1.19+0.47~)-I

(

1.37+0.05~)-1

V =

(1.18+0.51~)-I

(1.60+0.077~)-I

C=

0

1

.O

1.1 m .

. .

-

. .

..

1

,

l 9

S=

(1.29+0.29~)-I

(

1.12+0.0027~)-I

V =

(1.31+0.30~)-I

(1.27+0.0033~)-1

C=

0

1

.O

. . .

. . . .

.

.

.:.

3

,

2o

V= S=

(0.61+1.09~)-I

(0.62+1.06~)-1

(1 .58+0.26~)-I

(1 .79+0.35~)-I

C=

0

0.6

.

, _ . . . I .

97

S=

(0.62+1.05~)-I

(1.55+0.23~)-I

V =

(0.62+1.08~)-I

(1.77+0.32~)-I

- .

C=

0

0.6

.I

.

.

..:.

' ..: - S=

(0.65+1.02~)-I

(1.55+0.13~)-1

V-

(0.63+1.07~)'~

(1.79+0.24~)-~

Cm

0

0.6

F l o o r

1

m s t r i p a d j a c e n t t o w a l l n=

4

0.59

0.35

2.6

0.55

0.30

2.6

0.59

0.35

2.6

0.60

0.36

2.4

(2.26+0.09~)-1

(3.72+0.13~)-1

2.4

Segments C e n t r e n=

5

0.26

0.08

0.5

0.26

0.08

0.5

0.27

0.09

0.5

(3

-45-0.04R)-l

(10.03-0.228)~~

0.5

(3.57+1.02~)-1

(10.67+2.71~)-1

0.5

(25)

SECTION C: SOIL THERMAL CONDUCTIVITY: k u p p e r = 1.8 W/(m*K); k l o w e r = 2.0 W/(m*K) ( S y s t e m s 67 t o 7 6 )

I n s u l a t i o n S y s t e m

I

I

Wall Segments

I

F l o o r Segments Insulation

- .

.-. Concrete

0 :

S n , V n T o p s t r i p 1 m s t r i p

and Cn j u s t below Bottom a d j a c e n t C e n t r e F a c t o r s g r a d e s t r i p t o w a l l n= 5

n=

2 n= 3 n= 4

.

..

:;:

-j

,

67

S= 2.36 1.28 0.82 0.39 V= 2.33 1 . 1 4 0.49 0 . 1 3 C= 0 1 .O 2.6 0.5

. .

.

,

. .

. I

(26)

SECTION

C ( c o n t ' d )

I n s u l a t i o n S y s t e m

1

Wall Segments F l o o r Segments

.-:,

-..

l nsulation

T,

-

,

Sn,

and C n V n Top s t r i p j u s t below Bottom a d j a c e n t

1

m s t r i p C e n t r e

._

..

Concrete F a c t o r s

Ln" .;.

g r a d e s t r i p t o w a l l n=

5

.

n=

2

n=

3

n=

4

. . d J I o - 5 m

,

"

S=

(1

.14+0.34R)-l

(1.06+0.03~)'~

(1 .29+0.006~)-1

(2.60+0.004~)-I

V =

(1.15+0.39~)-1

(1.26+0*05~)-1

(2.33+0.02~)'~

(8.31+0.04~)'~

i

...'..'.

C=

0

1 .O

2.6

0 5

1.1 m

. . .

...,,.

I

..

..

.

3

,

73

S=

(1.16+0.20~)-1

(0.84+0.002~)-1

0.84

0.39

V=

(1.19+0.21~)-1

(0.95+0.002~)-I

0.49

0.13

C=

0

1

.O

2.6

0.5

.

. . . , . . .

. .

.

.

. .

. .

-

. I . : . .

--j

,

74

S=

(0.53+1.04~)-I

(

1.34+0.22~)-~

(1.23+0.001~)-I

(2.49-0.008~)-l

V=

(0.53+1.07~)-I

(1.52+0.3 lR)-l

(2.13-0.02~)'~

(7

-28-0.09R)-l

.

.

C=

0

0.6

2.4

0.5

I

..,.''

" ,

...

.-:.

S=

(0.53+1.03~)-1

(1.32+0.20~)-1

(1.76+0.08~)-I

(2.28-0.028)-1

V =

(0.53+1.07~)-1

(1.51+0.28~)'~

(2.9 1+0.12~)'~

3

i 7 5

c=

(6.35-0.1 lR)-l

0

0.6

2.4

0.5

.

. . . .

.

,..: .: ' . . .'

s=

(0.56+1.0~)'~

(1.29+0.11~)'~

(1.60+0.07~)-I

(2.39+0.98~)-I

V =

(0.55+1.05~)-1

(1.53+0.19~)-1

(2.77+0.13~)-~

(6.83+2.56~)-I

C=

0

0*6

I

0.5

.

.

I

I

I

(27)

U m f m C U U U

;

a a a

CJ m m

d

m a 0

8

d d d

4 rl 11 II 11 G m z m m D d D

(28)

1 4 d d l I I M A nn b M 0

*

@A d a rn m & u r n

? 9 ?

0 0 0

9 : ;

c

II 0 0 0 a e a m I I I I m U N h U G

? ?

m

*

9 4

rn N

S

u 4 w 4 V w bO a cn

(29)

4 4 -4 d 4 4 1 I I I nn I I n n nn d d m 4 4 a d d In r.

"

d d m a, m 4 m

9

9 2

o ? m b u n

. . .

l4

. . .

. .

u m 0 0 0 0 0 0 0 0 0 0 4 0

c

I1 I I I I n PI

+

+

al c 0 u .-'a rn U m h .r a U

. .

. .

? 4

c

m PI m ln m \o

I

V w w w w w w w CA rl L, 4 0

3

4 4 d 4 4 4 0 I I nn 1 , nn 1 I I .-I a n- d o l4 U d 4 m d In d d 4 d d 03 r- (U m u .Y r.mIn o q m m m m 'J) u 11

. . .

.

. . .

C

c

0 0 4 00-4 0 0 4 O d d

? 4 ?

E a I I

+

+

+

+

L, u u m a a m 4 Cd - I n m 4 m 4 "l

.

.

. .

. .

w

A A m n 4 m m w w V W w w u 4 4 4 4 4 4 c I I nn nn I I I I

2

nn & d u a ai d d d W E m 0 m u 03 9 w o a 4 o A rn V) u - d m

.

.

.

.

9 :

U & l 1 hl N O A 4 0 ,+-'a

"

C.

d 4 o

4 o u c 4 m V ) 9

+

03

+

corn

+

+

9

+

In

+

(d

2 4

4

4

In m 3

. .

0 0 0 0 W V w w 0 w w 0

-

cn c el4

> U Z

II I! I1 n I1 I1 I1 I1 It I1 I1 II V) > U V) > U m > w m > u - a u c c m V) cab u m \O PI m m n m E w U m 5 C

. .

..... .

. . - .

...

. - .

. . . . .

....

. . .

. . . .

I

.

.

.

.

(30)
(31)

SECTION

C:

SOIL THERMAL CONDUCTIVITY: k u p p e r =

1.8 W/m*K);

k lower =

2.0 W/(m*K)

(Systems

77

t o

83)

I n s u l a t i o n System

I

Wall Segment F l o o r Segments

lnsulstion Sn* vn Bottom

1 m

s t r i p , . . , . Concrete

#

l

-

and F a c t o r s Cn S t r i p

n=3

a d j a c e n t n=4 t o

w a l l

C e n t r e n=

5

U)

.

. , . .. . ., .

4

,

7 7

S =

2.42

1.04

0.42

V=

2.33

0.75

0.17

C=

0

1 5

0.3

. . .

....

...

.

.

.

7 8

S=

(0.42+1.16~)-1

( 0 . 9 0 - 0 . 0 0 7 ~ ) ' ~

(2.24-0.006R)'l

V=

( 0 . 4 3 + 1 . 2 0 ~ ) ' ~

(

1 . 2 5 - 0 . 0 1 ~ ) ' ~

( 5 . 1 5 - 0 . 0 3 ~ ) ' ~

-:.:.

ill(

.-.

. , . . . . ,

. . .

C=

0

1.5

0.3

,

79

S=

(0.42+1.088)'1

(2.0 1 + 0 . 4 6 ~ ) ' ~

(1

- 8 8 - 0 . 0 3 ~ ) - 1

, .

.

V=

( 0 . 4 4 + 1 . 1 3 ~ ) ' ~

( 2 . 7 8 + 0 . 7 0 ~ ) ' ~

(3.91-0.09R)-l

I

C=

0

1.5

0.3

. .

...

, .,..

.

. . . I .

4

*

8

0

S=

(0.49+0.97~)-1

(1.2 1 + 0 . 9 0 ~ ) - ~

( 2 . 0 8 + 0 . 8 1 ~ ) ' ~

.... .

V=

( 0 . 4 9 + 1 . 0 5 ~ ) ' ~

( 1 . 7 0 + 1 . 4 3 ~ ) ' ~

( 4 . 4 7 + 1 . 5 9 ~ ) ' ~

C=

0

1.5

0.3

.

:...:.:.:

.

.:

Figure

TABLE  1  House  Foundation  Heat  Loss

Références

Documents relatifs

Grain protein content and grain yield by plant measured in faba bean plants treated with different doses of vermicompost.. Morphological and reproductive traits

A series of calcium silicate hydrate (C–S–H)-polymer nanocomposite (C–S–HPN) materials were prepared by incorporating poly(acrylic acid) (PAA) into the inorganic layers of

Supporting Information Available: Auxiliary experimental and G3 and CBS computed enthalpic data (Table S1), CBS- QB3 energies for the gas-phase ion cycles (Table S2); Appendix on

private sector profit over human life. The second key assumption is that in order for the CAEB project to result in equitable economic development outcomes for the Afro

2 Iterated predecessor queries This section describes the process by which a range coalescing data structure answers iterated predecessor queries and demonstrates that the

For example, BD&amp;SG-C’s PFK system relies on a hiring process that selects associates who are comfortable with one pay rate for all (after three years of training). This

The National Roofing Contractors Association (NRCA) and the Institute for Research in Construction (IRC) collabo- rated on a study of blistering in hot- applied SBS-modified

Using femtosecond laser technology, we accelerate the rate of rotation from 0 to 6 THz in 50 ps, spinning chlorine molecules from near rest up to angular momentum states J ⬃ 420..