• Aucun résultat trouvé

SP.O6. Introduction au monde quantique.

N/A
N/A
Protected

Academic year: 2022

Partager "SP.O6. Introduction au monde quantique."

Copied!
3
0
0

Texte intégral

(1)

¤ PCSI ¤

SP.O6. Introduction au monde quantique.

SP.O6.1. Expériences de Young avec des électrons.

SP.O6.2. Effet photoélectrique en mécanique classique.

SP.O6.3. Effet Compton.

1.D'après le principe d'incertitude de Heisenberg,

    

h p x d’où h p

   

x x

mc mc

    

   

    . La quantité h

mc

est bien homogène à une longueur. On calcule h 2, 4.10 12 m mc

2.  ' est typiquement de l'ordre du pm vu l'ordre de grandeur de h

mc, donc la variation relative de longueur d'onde n'est pas trop faible pour des rayons X. Elle peut être plus facilement mise en évidence.

3.La longueur d'onde du photon augmente, donc son énergie diminue. Elle est communiquée à une autre particule. Vu que la masse de l'électron intervient dans la formule, on peut donc imaginer qu'un électron récupère le reliquat d'énergie.

4.On déduit '7,32.1011 m.

www.kholaweb.com

(2)

5.La variation d'énergie pour un photon diffusé est ' 9, 2.10 17 J 6, 0.10 eV2 '

hc hc hh

 

   

Un électron recevant une telle énergie est arraché à son atome (ionisation).

SP.O6.4.Comparaison de deux figures de diffraction.

1.La relation de Planck-Einstein nous donne E hhc

   soit :E 2,8.1015 J = 1,8.10 eV.4

2.Pour obtenir la même figure de diffraction, les électrons doivent avoir une longueur d'onde de de Broglie

B

h

  p égale à la longueur d'onde X des rayons X. Ceci impose la valeur de leur quantité de mouvement :

B X

h h

p ce qui permet de calculer leur énergie et leur vitesse ; la mécanique classique donne :

7 1

2 2

2 17 2

2

1, 0.10 m.s

1 4,8.10 J = 3,0.10 eV

2 2 2

X

c

X

p h

v m m

p h

E mv

m m

   



    



La vitesse obtenue est de l'ordre dec/30, ce qui semble suffisamment faible pour appliquer les lois de la mécanique classique.

3.Il faut donc appliquer de l'ordre de 300 V entre les électrodes accélératrices pour obtenir ces électrons, ce qui est tout à fait réalisable.

4.La tension accélératrice permet de calculer la valeur de l'énergie cinétique des électrons en électronvolt, que l'on peut ensuite convertir en joule pour en déduire la vitesse, puis la longueur d'onde :

18 10

3 3 15 12

54 V soit 54 eV = 8,6.10 J puis = 1, 7.10 m 2

50.10 V soit 50.10 eV = 8,6.10 J puis = 5, 5.10 m 2

c

c

c

c

h h

U E

p mE

h h

U E

p mE

    



    



Dans l'expérience historique de Davisson et Germer, la valeur de la longueur d'onde de de Broglie était de l'ordre de grandeur des dimensions atomiques, ce qui est la condition pour observer une diffraction sur des cristaux. Dans celle de Tonomura, la longueur d'onde était plus faible de quasiment 2 ordres de grandeur;

toutefois il ne s'agit pas d'une expérience de diffraction mais d'interférences : c'est alors la valeur de

l'interfrange, et non pas directement la valeur de la longueur d'onde, qui conditionne la possibilité d'observer correctement le phénomène.

SP.O6.5. Validité de la description classique de différents systèmes gazeux.

1.a.Une mole de gaz occupant un volumeVm= 25 L et étant constituée deN, molécules, chaque molécule occupe l'équivalent d'un volume 1 m

A

V V

N ; en visualisant ces volumes comme des cubes, la distance inter- particulaire peut être évaluée à :

1/3

3, 5.10 9 m

m A

a V N

 

  

 

L'ordre de grandeur de la vitesse s'obtient en écrivant :

2 3

1 3

2 2

B

c B

E mv k T v k T

    m

mest la masse d'une molécule; pour le dihydrogèneH2, c'est donc deux fois la masse du proton (m= 2mp), ce qui donne numériquement, à la température ambiante deT= 300 K : v1,9.10 m.s3 1.

1.b.Pour savoir si le traitement doit être classique ou quantique, il faut comparer la distance interparticulaire à la longueur d'onde de de Broglie  des molécules (cf. documents cours SP.O6) ; or, nous avons :

www.kholaweb.com

(3)

1, 0.10 10 m.

2 p 3 2 p B

h h h

p m v m k T

   

 étant inférieure de plus d'un facteur 10 par rapport à la distance interparticulaire, le traitement classique convient.

1.c.Pour tout autre gaz moléculaire le traitement classique conviendra également car :

 La distance interparticulaire sera la même que dans le gaz de dihydrogène ; en effet, l'énoncé nous précise que le volume molaire est approximativement le même pour tous les gaz dans les conditions usuelles de température et de pression.

 La longueur d'onde de de Broglie sera plus faible que pourH2car elle décroit quand la massem augmente etH2, est la molécule de plus petite masse envisageable.

Ainsi, la condition <<asera également vérifiée pour tous les autres gaz moléculaires.

2.Le principe est le même, il faut évaluer la distance inter-électrons et la comparer à leur longueur d'onde de de Broglie :

 La distance interparticulaireaest la même que celle entre deux atomes de cuivre du réseau car chaque atome de cuivre libère exactement un électron. Elle peut donc se calculer à partir de la masse molaireMet la masse volumique  du cuivre. Sachant qu'une mole de cuivre correspond à une masseM, donc à un volume M

V   nous pouvons ensuite raisonner comme pour le gaz de la

question I, nous aboutissons à :

1/3 1/3

2, 3.10 10 m.

A A

V M

a NN

   

    

   

Cet ordre de grandeur correspond bien aux tailles interatomiques dans les solides. Il est bien entendu nettement inférieur à la valeur dans un gaz, obtenue à la question 1.

 Puisque l'énoncé nous dit que le gaz d'électrons est à l'équilibre thermique avec le réseau, leur vitesse s'évalue de la même façon que pour les molécules de dihydrogène de la question I (ou les neutrons thermiques) ; la longueur d'onde de de Broglie a donc également la même expression :

6, 2.10 9 m.

3 e B h m k T

 

Cet ordre de grandeur beaucoup plus élevé que celui obtenu à la question 1 n’est pas étonnant puisque les électrons ont une masse 1836 fois plus faible que le proton.

Ainsi, la situation est opposée à celle d'un gaz moléculaire : la longueur d'onde de de Broglie est largement supérieure à la distance interparticulaire et un traitement quantique est nécessaire.

Si le traitement classique est erroné, l’expression de l’énergie cinétique moyenne des électrons n’est plus rigoureusement égale 3k TB / 2. Toutefois, la conclusion tient toujours : nous l’avons en quelque sorte démontré par l’absurde en supposant le traitement classique et la formule Ec 3k TB / 2valables, et en aboutissant àa, ce qui constitue une contradiction.

3.Conformément au critère annoncé dans le cours, le traitement classique du rayonnement convient tant que le quantum d'énergie h hc/ est très inférieur à la plus petite quantité d'énergie Emin mise en jeu lors des échanges entre la matière et le rayonnement.

L'énoncé nous précise que ces échanges ne dépendent que de la température et nous pouvons en déduire que leur ordre de grandeur correspond à l'énergie cinétique moyenne des particules matérielles à la température Tdu corps, soit : Emin 3k TB / 2. Ainsi, seul le rayonnement de longueur d'onde  telle que

/ 3 B / 2

hc   k T peut être traité classiquement et rendre correctement compte du spectre lumineux observé.

Le traitement est donc à coup sûr problématique pour :   ohc k T/ B

Le facteur 3/2 n'a pas d'importance dans ce type d’évaluation d’une frontière entre comportement.

www.kholaweb.com

Références

Documents relatifs

Mais le lecteur pourra aussi suivre les physiciens qui ont accepté de penser l’étrangeté de la réalité quantique, même si « ce qu’elle dit du monde qui nous entoure diffère

Introduction Dualité onde-particule pour la lumière et la matière Interprétation probabiliste associée à la fonction d’onde Quantification de l’énergie d’une particule

On peut reprendre le même raisonnement que précédemment en le gé- néralisant : lorsqu'au couple {a n , b p } correspond un seul vecteur, celui-ci est forcément un vecteur propre de C

Bien entendu, quand nous allons vouloir décrire la trajectoire d’une balle de tennis ou le comportement d’un train d’engrenage, bref toute la technique usuelle, nous n’allons

Les électrons sont donc traités comme des particules quantiques de masse

• Si Bob posséde la clé et le message codé il peut alors obtenir le message.. • Bob reçoit la particule et fait une mesure selon

Du fait de leur nature indiscernable, deux électrons appartenant au même atome ne peuvent avoir le même état quantique, donc ils ne peuvent pas être décrits

Nous allons juste remarquer qu’un photon semblerait avoir deux états de po- larisation que nous appellerons |xi et |yi. Nous ne l’avons pas dit, mais cet état est représenté par