• Aucun résultat trouvé

Dynamic expression of MMP28 during cranial morphogenesis

N/A
N/A
Protected

Academic year: 2021

Partager "Dynamic expression of MMP28 during cranial morphogenesis"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: hal-03031069

https://hal.archives-ouvertes.fr/hal-03031069

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dynamic expression of MMP28 during cranial

morphogenesis

Nadege Gouignard, Eric Théveneau, Jean-Pierre Saint-Jeannet

To cite this version:

Nadege Gouignard, Eric Théveneau, Jean-Pierre Saint-Jeannet. Dynamic expression of MMP28 during cranial morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, Royal Society, The, 2020, 375, �10.1098/rstb.2019.0559�. �hal-03031069�

(2)

Dynamic expression of MMP28 during cranial morphogenesis

Nadege Gouignard1,2, Eric Theveneau*1, Jean-Pierre Saint-Jeannet*2

3  4 

1 Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université

de Toulouse, CNRS, UPS, France 6 

2 Department of Basic Science and Craniofacial Biology, New York University College of

Dentistry, New York NY 10010, USA 8 

* Corresponding authors: jsj4@nyu.edu and eric.theveneau@univ-tlse3.fr

9  10  11 

Abstract

12 

Matrix metalloproteinases (MMP) are a large family of proteases comprising 24 members in 13 

vertebrates. They are well known for their extracellular matrix remodelling activity. MMP28 is 14 

the latest member of the family to be discovered. It is a secreted MMP involved in wound 15 

healing, immune system maturation, cell survival and migration. MMP28 is also expressed 16 

during embryogenesis in human and mouse. Here we describe the detailed expression profile of 17 

MMP28 in Xenopus laevis embryos. We show that MMP28 is expressed maternally and 18 

accumulates at neurula and tailbud stages specifically in the cranial placode territories adjacent 19 

to migrating neural crest cells. As a secreted MMP, MMP28 may be required in neural crest-20 

placode interactions. 21 

22 

Keywords: MMP, embryogenesis, cranial placodes, neural crest, Xenopus 23 

(3)

Background

25 

Matrix metalloproteinases form a large family of proteases regrouping 23 members in 26 

human and 24 in Xenopus laevis (1). MMPs are translated as zymogens, or pro-enzymes, where 27 

the N-terminal part of the protein, called domain, blocks the catalytic domain. This pro-28 

domain can either change conformation (a process known as allosteric activation) or be removed 29 

by proteolytic cleavage to ensure the activity of the protein (2). MMPs are Zn2+-dependent

30 

proteases mostly known for their extracellular matrix remodelling activity but they are also 31 

capable of cleaving a wide range of substrates including growth factors and their cognate 32 

receptors, adhesion molecules and chemokines (3). For decades, MMPs have been studied in the 33 

context of cardiovascular diseases, rheumatoid arthritis and neurological disorders. MMPs are 34 

also of prime interest in cancer since MMPs are present in virtually all human cancers and most 35 

members of the MMP family have been found to be dysregulated in human cancers (4). 36 

MMPs are essential for key cellular processes from extracellular matrix regulation to cell 37 

migration and invasion to cell proliferation and apoptosis. Therefore, they are important in adults 38 

for wound healing, angiogenesis, tissues homeostasis and immunity. In addition, MMPs are 39 

expressed during embryogenesis and are involved throughout development (5). Indeed, about 40 

half of all MMP family members are expressed during Xenopus laevis embryogenesis (see Table 41 

1). 42 

MMP28 was first identified in human and is the latest member of the family to be 43 

discovered (6, 7). MMP28 is a soluble MMP with endopeptidase activity and the ability to 44 

degrade casein, N-CAM and Nogo-A proteins (8). MMP28 is involved in nerve repair and 45 

wound healing, immune system maturation, cell migration and invasion (9, 10). MMP28 was 46 

detected by PCR in human foetal tissues including skeletal muscle, lung, kidney and brain, and 47 

(4)

by in situ hybridization in mouse heart, central nervous system and peripheral nervous system 48 

from stage E.10 onward (7, 8, 11). In early Xenopus embryogenesis, MMP28 was first identified 49 

in a comparative microarray screen performed on dissected neural border explants to identify 50 

neural crest (NC)-specific transcripts (12). NC cells arise from the neural plate border alongside 51 

the cranial placodes. They give rise to a wide variety of derivatives including smooth muscles, 52 

melanocytes, craniofacial bones and cartilages, and together with placode cells, all the peripheral 53 

nervous system of the head (13). So far MMP2, 11, 13, 14 and 16 were described as being 54 

expressed by the NC or by tissues surrounding the NC (see Table1). However, a detailed 55 

expression profile of MMP28 during Xenopus development is still lacking. 56 

In this study, we used qPCR analyses, single and double in situ hybridization to assess 57 

the expression of MMP28 during Xenopus laevis embryogenesis. We found that MMP28 has a 58 

well-defined expression domain in the pre-placodal region at early neurula stage. During NC cell 59 

migration, MMP28 is then detected in some placodes and NC subpopulations. Given that NC and 60 

placodes interact to form the cephalic peripheral nervous system (13) and that MMP28 is 61 

secreted, we propose that MMP28 may play a role in mediating these interactions to direct 62 

cranial morphogenesis. 63 

64 

Materials and Methods

65 

Xenopus manipulation and in vitro fertilization 66 

All experiments were performed in accordance with the guidelines of the Guide for the 67 

Care and Use of Laboratory Animals of the National Institutes of Health, and were approved by 68 

the Institutional Animal Care and Use Committee of New York University (animal protocol 69 

#IA16-00052). Female Xenopus laevis were injected with 500 to 1000 Units of chorionic 70 

(5)

gonadotrophin and kept overnight at 18°C. For fertilization, a suspension of minced testis was 71 

added to the oocytes collected in a petri dish in 0.1X Normal Amphibian Medium (NAM): NaCl 72 

(110mM), KCl (2mM), Ca(CO3)2 (1mM), MgSO4 (1mM), EDTA (0.1mM), NaHCO3 (1mM),

73 

Sodium Phosphate (2mM). Embryos were staged according to Nieuwkoop and Faber, 1967. 74 

  75 

qPCR

76 

Embryos were collected by quick-freeze into liquid nitrogen. Total RNAs from batches 77 

of 3 to 5 embryos were extracted with the RNeasy Micro Kit (Qiagen, Valencia CA). Relative 78 

quantitative PCR was performed on a QuantStudio 3 Real-Time PCR System (Applied 79 

Biosystems, Foster City, CA) using Power SYBR™ Green RNA-to-CT 1-Step Kit according to

80 

manufacturer instructions and the following primers: Twist1qPCR_fdw: 5’-81 

CGACTTTCTCTGCCAGGTCT-3’, Twist1qPCR_rev: 5’-TCCACACGGAGAAGGCATAG-3’, 82 

MMP28-E7_fdw: 5’-TGCAGTGGTATCGGGTTTAG-3’, MMP28-E8_rev: 5’-83 

AAAGTGCAGTGTCAGGACGA-3’, Sox10_fdw: 5’-CTGTGAACACAGCATGCAAA-3’ Sox10_rev: 84 

5’-TGGCCAACTGACCATGTAAA-3’, Six1_fdw: 5’-CTGGAGAGCCACCAGTTCTC-3’, Six1_rev: 85 

5’-AGTGGTCTCCCCCTCAGTTT-3’ ODC_fdw: 5’-ACATGGCATTCTCCCTGAAG-3’, ODC_rev: 86 

5’-TGGTCCCAAGGCTAAAGTTG-3’. All primer pairs were validated using the standard curve 87 

method. Data from embryos collected from three different females were normalized to ODC 88 

using the ΔCt method(14) and expressed as mean with standard deviation error bars. 89 

   90 

In situ hybridization and histology 91 

Embryos were fixed for 1h at room temperature in MEMFA (0.1 M MOPS pH 7.42 mM 92 

EGTA pH 7.0, 1 mM MgSO4, 3.7 % (wt:vol) Formaldehyde) and stored in 100% methanol.

(6)

Embryos were then rehydrated in methanol solutions of decreasing concentrations, and processed 94 

for single or double in situ hybridization as previously described(15). The following probes were 95 

used: Snai2 (16), MMP28 (this study), Sox10 (17), Six1 (18), Foxi4.1 (19), Xl-96 

Sox2 (20) and Xl-Dmrta1 (21). Each staining was performed at least three times on batches of 97 

embryos collected from different females. For histology, stained embryos were embedded in 98 

Paraplast+, sectioned (12 µm) on an Olympus rotary microtome, counter stained with Eosin and 99  mounted in Permount. 100    101  Results 102 

Xenopus has two homologous copies (22) of MMP28 gene on chromosome 2L 103 

(MMP28.L) and 2S (MMP28.S), which are composed of 8 exons each and encode a 1977 bp and 104 

1916 bp mRNAs, respectively. Both mRNA sequences share 84.71% identity, and 92.9% 105 

identity for the open reading frame. MMP28.L and MMP28.S code for proteins of 496 and 497 106 

amino acids, respectively, with a predicted molecular weight of 57 kDa. Both protein sequences 107 

share 91.15% identity and 97.58% similarity. As the sequences share high identity, we designed 108 

primers and probes for in situ hybridization that detect both MMP28.L and MMP28.S. 109 

We assessed the temporal expression of MMP28 by relative qPCR at different stages of 110 

Xenopus development from stage 4 (8-cell stage) to tail bud stage (Figure 1, blue bars), and 111 

compared its expression profile to that of Twist (Figure 1, light grey bars), and Sox10 (Figure 1, 112 

white bars), two markers of cephalic NC (17, 23) and Six1, a marker for cranial placodes (24) 113 

(Figure 1, black bars). MMP28 is maternally expressed (stage 4) although at relatively low 114 

levels, similar to Six1, while Twist and Sox10 do not appear to have a maternal contribution. 115 

After the mid-blastula transition the expression of embryonic genes is initiated. MMP28 116 

(7)

expression levels remain relatively low at stage 11 and stage 12.5 similar to Sox10, while both 117 

Twist and Six1 expression increase significantly during that period until stage 15 when they both 118 

transiently reach a plateau of expression. MMP28 shows a marked increased expression at stage 119 

14, which is maintained until stage 18. Later in development, MMP28 expression progressively 120 

increases up to stage 27, the last stage examined in this study. Sox10 expression increases 121 

strongly between stages 15 and 23 before declining at stage 27. Twist reaches its higher 122 

expression level at stage 18 without any further increase later in development. Six1 expression 123 

decreases significantly at stage 18 and at later stage progressively increases in a similar manner 124 

as MMP28. These data indicate that MMP28 expression is strongly upregulated at the neurula 125 

stage (stage 14) and the escalation of Twist and Six1 expressions precedes that of MMP28 and 126 

Sox10. 127 

128 

We next performed in situ hybridization to characterize the spatial expression of MMP28 129 

during Xenopus development. MMP28 is not detected at gastrula stage (Figure 2B, C). MMP28 130 

transcripts first accumulate at detectable levels at the end of gastrulation (NF stage 12.5), in the 131 

form of a thin horseshoe shape domain at the anterior part of the embryo, which represents the 132 

neural plate border (Figure 2 E), the region that gives rise to both cranial placodes and NC cells. 133 

A control sense probe confirmed the specificity of this expression (Figure 2D). At stage 14/15, 134 

MMP28 expression is more defined into two bilateral domains on either side of the neural plate 135 

(Figure 2F-H). This staining strongly suggests a placodal expression since the neural fold is 136 

devoid of staining. At this stage, MMP28 is also detected in a more discrete domain along the 137 

border of the neural plate (Figure 2H and I’, arrowhead). To substantiate these observations, 138 

stage 15 embryos were sectioned to visualize MMP28 expression in more detail (Figure 2H, H’, 139 

(8)

H’’ and H’’’). MMP28 expression is localized in the deep ectoderm layers consistent with 140 

cranial placodes expression (Figure 2H’’’ and I’, arrow). By contrast, the thin line of expression 141 

along the neural plate is localized in the most superficial ectoderm layer (Figure 2I’ and H’’’, 142 

arrowhead), which presumably correspond to the medial NC (25, 26). At stage 17, the expression 143 

is broader and outlines the prospective eyes (Figure 2J, arrowhead). At stage 23, during NC cells 144 

migration, MMP28 expression seems to be restricted to discrete domains around the eyes and in 145 

territories posterior to that region, likely to correspond to the epibranchial placodes (Figure 2L, 146 

L’). At stage 25, strong MMP28 expression is detected in the first stream of NC as well as what 147 

appears to be the third and fourth NC streams (Figure 2N, arrows). The specificity of MMP28 148 

expression was confirmed using a control sense probe (Figure 2M). 149 

150 

In order to identify more precisely which tissues express MMP28, we performed in situ 151 

hybridization at stage 15 and 25 for MMP28 and genes expressed in similar regions of the 152 

ectoderm, including Sox2 (neural plate and cranial placodes), Snai2/Slug (NC), Dmrt1a 153 

(olfactory placodes), Foxi4.1 (epibranchial placodes) and Sox10 (migrating NC). The probes 154 

were used alone or in combination as indicated (Figure 3). Spatially, there is no overlap between 155 

MMP28 and Snai2, as Snai2 expression domain (Figure 3A, A’) is medial to that of MMP28 156 

(Figure 3G, G’ and B, B’). Sox2 is expressed in two regions, the neural plate (Figure 3C, arrow) 157 

and lateral placodes (Figure 3C and C’, arrowhead). MMP28-positive territory overlaps 158 

exclusively with Sox2 placodal expression domain (Figure 3 D, D’). Since cranial placodes are a 159 

broad area giving rise to different derivatives, we also compared MMP28 to Dmrta1, a gene 160 

restricted to the most anterior placodal region, the prospective olfactory placodes (Figure 3E, E’). 161 

We found that MMP28 and Dmrta1 are expressed in adjacent but non-overlapping domains 162 

(9)

(Figure 3F, F’). At stage 25, Foxi4.1 is strongly expressed in the epibranchial placodes and 163 

sensory layer of the ectoderm (Figure 3J, arrowheads) but not in the NC streams (Figure 3J, 164 

arrows). In contrast, Sox10 is expressed strongly in all NC streams (Figure 3, arrows) and 165 

excluded from the branchial ectoderm. This histological analysis indicates that MMP28 is not 166 

expressed in the posterior NC streams (Figure 3L, arrows) but shows clear expression in the 167 

epibranchial placodes and sensory layer of the ectoderm (Figure 3L, arrowheads). 168 

Our results indicate that, at neurula stage, MMP28 is not expressed in the NC but is 169 

confined to the cranial placodes territory overlapping with Sox2 (Figure 3 H) and that its 170 

expression is maintained in the epibranchial placodes and sensory layer of the ectoderm at tail 171 

bud stage (Figure 3L). 172 

173 

Discussion

174 

Here we report the developmental expression of MMP28, a member of the matrix 175 

metalloproteinases family, in Xenopus. Our results showed that MMP28 is expressed maternally 176 

even though faintly and is upregulated at the end of gastrulation (St. 12.5) at which point it 177 

becomes detectable by in situ hybridization. We observed that MMP28 is a secreted MMP 178 

uniquely expressed at the neurula stage in the pre-placodal region adjacent to the prospective NC 179 

territory. 180 

We showed that MMP28 expression is limited to the neural plate border at early neurula 181 

stage, then to the lateral placodes. This placodal expression is sustained in the epibranchial 182 

placodes at tail bud stage. In addition, MMP28 expression is detected along the migratory 183 

pathway of the first NC stream. As indicated earlier, MMP28 was first isolated in a screen for 184 

genes activated in the NC tissue at neurula stage (12). However, as discussed by the authors of 185 

(10)

this study, because the microarray-based approach was performed on manually dissected 186 

embryonic tissues at different stages, potential contamination by surrounding tissues could not be 187 

excluded. In fact, the authors reported that MMP28 transcripts were detected at the edge of the

188 

NC domain, not the NC per se (12). At neurula stage, our double in situ hybridization show that 189 

MMP28-positive signal does not overlap with the NC marker Snai2/Slug, but co-localizes with 190 

the lateral placodal domain of Sox2. While we have detected expression in the medial NC, 191 

overall MMP28 expression is primarily confined to the cranial placodes at early neurula stages. 192 

The fact that MMP28 is strongly expressed in placodes is very interesting and unique. 193 

MMP1, 2, 3, 7, 9, 11, 13, 14, 15, 18, 20 and 24 are expressed during Xenopus embryogenesis 194 

(Table 1). Almost half of them are expressed by the NC or surrounding tissues and their 195 

derivatives, but none of them has been described in placode cells at the stages studied here. 196 

MMP28 expression profile over time is comparable to that of Six1. However, the MMP28-197 

positive territory only represents a subdomain of Six1 (24). Notably, MMP28 was not detected in 198 

the most anterior placodal domain giving rise to olfactory placodes. By contrast, MMP28 199 

expression is maintained in the epibranchial placodes that originate from the lateral placodes 200 

(Sox2-positive territory) and later is detected in between migratory NC streams. 201 

NC cells and cranial placodes cooperate to form the cephalic peripheral nervous system. 202 

NC cells give rise to glial cells while neurons have a dual origin coming from either NC, 203 

placodes or both depending on the cranial ganglion of interest (27). Interestingly, NC and 204 

placode interaction involved in peripheral nervous system patterning starts during NC migration. 205 

In Xenopus, placodal cells are the source of Stromal cell-derived factor 1 (Sdf1/Cxcl12) a key 206 

regulator of NC cell migration (28). Sdf1 promotes NC cell motility, which in the context of the 207 

constraints of the developing head leads to migration of NC cells towards the placodes (29). 208 

(11)

However, physical interactions between the two cell types leads to a repulsion. This short range 209 

repulsion mid-range attraction system, coined “chase-and-run”, leads to a sustained directional 210 

migration of both NC and placode cells towards the ventral regions of the face (30). Placodal 211 

cells are less motile than NC cells and are progressively pushed aside while NC cells migrate 212 

ventrally. This leads to a pattern of accumulation of placode cells in between NC streams (30, 213 

31). Therefore interfering with NC migration leads to defects in placode patterning and this 214 

relationship is conserved in vertebrates (30, 32-34). The expression of MMP28, a secreted MMP, 215 

in the placodes prior to the onset for NC migration raises the possibility that this enzyme might 216 

be required in proper NC-placode interactions. 217 

218 

Conclusion

219 

Overall our data indicate that the onset of MMP28 expression in placodes occurs after the 220 

NC and pre-placodal domains have been specified at the neural plate border. MMP28 expression 221 

is excluded from the anterior-most placodes and persists in epibranchial placodes strongly 222 

suggesting a role for this molecule in NC-placode interactions at early stages of the cranial 223 

peripheral nervous system formation. 224 

225 

Acknowledgment: The authors would like to thank Ms. Allison Williams for excellent technical 226 

assistance. 227 

228 

Funding: This work was supported by a grant from the National Institutes of Health to J-P.S-J. 229 

(R01-DE25806), a pilot grant from the NYU CSCB which was established by NIH to N.G. 230 

(12)

(1P30DE020754) and funding from the Fondation pour la Recherche Medicale 231 

(FRMAJE201224), the Midi-Pyrenees regional council (grant 13053025) and the CNRS to E.T. 232 

233 

References 

234 

1.  Woessner  JF.  MMPs  and  TIMPs‐An  Historical  Perspective.  Molecular  biotechnology.  235  2002;22(1):033‐50.  236  2.  Ra H‐J, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biology.  237  2007;26(8):587‐96.  238  3.  Rodríguez D, Morrison CJ, Overall CM. Matrix metalloproteinases: What do they not do?  239  New substrates and biological roles identified by murine models and proteomics. Biochimica et  240  Biophysica Acta (BBA) ‐ Molecular Cell Research. 2010;1803(1):39‐54.  241 

4.  Cathcart  J,  Pulkoski‐Gross  A,  Cao  J.  Targeting  matrix  metalloproteinases  in  cancer:  242 

Bringing new life to old ideas. Genes & Diseases. 2015;2(1):26‐34.  243 

5.  Cui  N,  Hu  M,  Khalil  RA.  Biochemical  and  Biological  Attributes  of  Matrix  244 

Metalloproteinases. Elsevier; 2017. p. 1‐73.  245 

6.  Lohi J, Wilson CL, Roby JD, Parks WC. Epilysin, a novel human matrix metalloproteinase  246 

(MMP‐28)  expressed  in  testis  and  keratinocytes  and  in  response  to  injury.  J  Biol  Chem.  247  2001;276(13):10134‐44.  248  7.  Marchenko GN, Strongin AY. MMP‐28, a new human matrix metalloproteinase with an  249  unusual cysteine‐switch sequence is widely expressed in tumors. Gene. 2001;265(1‐2):87‐93.  250  8.  Werner SR, Mescher AL, Neff AW, King MW, Chaturvedi S, Duffin KL, et al. Neural MMP‐ 251 

28  expression  precedes  myelination  during  development  and  peripheral  nerve  repair.  252 

Developmental  dynamics  :  an  official  publication  of  the  American  Association  of  Anatomists.  253 

2007;236(10):2852‐64.  254 

9.  Saarialho‐Kere U, Kerkela E, Jahkola T, Suomela S, Keski‐Oja J, Lohi J. Epilysin (MMP‐28)  255 

expression  is  associated  with  cell  proliferation  during  epithelial  repair.  J  Invest  Dermatol.  256 

2002;119(1):14‐21.  257 

10.  Reno  F,  Sabbatini  M,  Stella  M,  Magliacani  G,  Cannas  M.  Effect  of  in  vitro  mechanical  258 

compression  on  Epilysin  (matrix  metalloproteinase‐28)  expression  in  hypertrophic  scars.  259 

2005;13(3):255‐61.  260 

11.  Illman  SA,  Keski‐Oja  J,  Lohi  J.  Promoter  characterization  of  the  human  and  mouse  261 

epilysin (MMP‐28) genes. 2001;275(1):185‐94.  262 

12.  Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, et al. Pax3  263 

and  Zic1  trigger  the  early  neural  crest  gene  regulatory  network  by  the  direct  activation  of  264 

multiple key neural crest specifiers. Developmental biology. 2014;386(2):461‐72.  265 

13.  Steventon B, Araya C, Linker C, Kuriyama S, Mayor R. Differential requirements of BMP  266 

and  Wnt  signalling  during  gastrulation  and  neurulation  define  two  steps  in  neural  crest  267 

induction. Development. 2009;136(5):771‐9.  268 

14.  Livak  KJ,  Schmittgen  TD.  Analysis  of  Relative  Gene  Expression  Data  Using  Real‐Time  269 

Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25(4):402‐8.  270 

(13)

15.  Saint‐Jeannet J‐P. Whole‐Mount In Situ Hybridization of Xenopus Embryos. Cold Spring  271  Harbor protocols. 2017;2017(12):pdb.prot097287.  272  16.  Mayor R, Morgan R, Sargent MG. Induction of the prospective neural crest of Xenopus.  273  Development. 1995;121(3):767‐77.  274 

17.  Aoki  Y,  Saint‐Germain  N,  Gyda  M,  Magner‐Fink  E,  Lee  Y‐H,  Credidio  C,  et  al.  Sox10  275 

regulates  the  development  of  neural  crest‐derived  melanocytes  in  Xenopus.  Developmental  276  biology. 2003;259(1):19‐33.  277  18.  Ghanbari H, Seo H‐C, Fjose A, Brändli AW. Molecular cloning and embryonic expression  278  of Xenopus Six homeobox genes. 2001;101(1‐2):271‐7.  279 

19.  Schlosser  G,  Ahrens  K.  Molecular  anatomy  of  placode  development  in  Xenopus  laevis.  280 

2004;271(2):439‐66.  281 

20.  Mizuseki  K,  Kishi  M,  Matsui  M,  Nakanishi  S,  Sasai  Y.  Xenopus  Zic‐related‐1  and  Sox‐2,  282 

two  factors  induced  by  chordin,  have  distinct  activities  in  the  initiation  of  neural  induction.  283  Development. 1998;125(4):579.  284  21.  Huang X, Hong CS, O'Donnell M, Saint‐Jeannet JP. The doublesex‐related gene, XDmrt4,  285  is required for neurogenesis in the olfactory system. 2005;102(32):11349‐54.  286 

22.  Session  AM,  Uno  Y,  Kwon  T,  Chapman  JA,  Toyoda  A,  Takahashi  S,  et  al.  Genome  287 

evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538(7625):336‐43.  288 

23.  Hopwood  ND,  Pluck  A,  Gurdon  JB.  A  Xenopus  mRNA  related  to  Drosophila  twist  is  289 

expressed in response to induction in the mesoderm and the neural crest. 1989;59(5):893‐903.  290 

24.  Pandur  PD,  Moody  SA.  Xenopus  Six1  gene  is  expressed  in  neurogenic  cranial  placodes  291 

and maintained in the differentiating lateral lines. 2000;96(2):253‐7.  292 

25.  Spokony  RF,  Aoki  Y,  Saint‐Germain  N,  Magner‐Fink  E,  Saint‐Jeannet  J‐P.  The  293 

transcription  factor  Sox9  is  required  for  cranial  neural  crest  development  in  294 

<em>Xenopus</em&gt. Development. 2002;129(2):421.  295 

26.  Sadaghiani  B,  Thiébaud  CH.  Neural  crest  development  in  the  Xenopus  laevis  embryo,  296 

studied  by  interspecific  transplantation  and  scanning  electron  microscopy.  Developmental  297  biology. 1987;124(1):91‐110.  298  27.  Theveneau E, Mayor R. Collective cell migration of the cephalic neural crest: The art of  299  integrating information. 2011;49(4):164‐76.  300 

28.  Theveneau  E,  Marchant  L,  Kuriyama  S,  Gull  M,  Moepps  B,  Parsons  M,  et  al.  Collective  301 

chemotaxis requires contact‐dependent cell polarity. Developmental cell. 2010;19(1):39‐53.  302 

29.  Bajanca  F,  Gouignard  N,  Colle  C,  Parsons  M,  Mayor  R,  Theveneau  E.  In  vivo  topology  303 

converts  competition  for  cell‐matrix  adhesion  into  directional  migration.  Nature  304 

communications. 2019;10(1):1518.  305 

30.  Theveneau  E,  Steventon  B,  Scarpa  E,  Garcia  S,  Trepat  X,  Streit  A,  et  al.  Chase‐and‐run  306 

between  adjacent  cell  populations  promotes  directional  collective  migration.  Nature  Cell  307 

Biology. 2013;15(7):763‐72.  308 

31.  Szabó  A,  Theveneau  E,  Turan  M,  Mayor  R.  Neural  crest  streaming  as  an  emergent  309 

property  of  tissue  interactions  during  morphogenesis.  PLoS  computational  biology.  310 

2019;15(4):e1007002.  311 

32.  Culbertson MD, Lewis ZR, Nechiporuk AV. Chondrogenic and Gliogenic Subpopulations  312 

of  Neural  Crest  Play  Distinct  Roles  during  the  Assembly  of  Epibranchial  Ganglia.  PLoS  ONE.  313 

2011;6(9):e24443.  314 

(14)

33.  Freter S, Fleenor  SJ, Freter  R,  Liu  KJ,  Begbie  J.  Cranial  neural  crest  cells  form  corridors  315  prefiguring sensory neuroblast migration. 2013;140(17):3595‐600.  316  34.  Golding JP, Trainor P, Krumlauf R, Gassmann M. Defects in pathfinding by cranial neural  317  crest cells in mice lacking the neuregulin receptor ErbB4. 2000;2(2):103‐9.  318    319    320  321  Figure Legends 322  323  324 

Figure 1: Expression of MMP28 assessed by qPCR.

325 

Relative expression of Six1 (black), Twist (light grey), Sox10 (white), MMP28 (blue) during 326 

Xenopus embryogenesis from stage 4 to stage 27. Results were generated using Ct method with 327 

the house-keeping gene ODC as reference and expressed as mean of at least three independent 328 

biological samples, error bars correspond to standard deviation. For representation purposes, 329 

relative expression values results were multiplied by 1000. 330 

(15)

  331 

Figure 2: Developmental expression of MMP28 by in situ hybridization.

332 

ISH for MMP28 in lateral view (B, C, I, I’, L, M, N), anterior view (D-E, J, L’), dorsal view (F-333 

H) and transversally sectioned embryos (H’ and H’’). A and K: schematic representation of 334 

placodes (dark grey), neural crest (light grey) and neural plate (grey). (B-C) At St 11 MMP28 is 335 

not detected. (D-E) MMP28 is first detected at the anterior neural plate border at St 12.5. (F-J) 336 

Neurula stage embryos show expression in the lateral placodes (arrow) and medial NC (arrow-337 

head). (H’-H’’’) Transversal sections as indicated in H, placodes (arrow), medial NC 338 

(arrowhead). (L-L’) Expression in the epibranchial placodes (arrow heads). (M-N) At tail bud 339 

stage MMP28 expression is strongly detected in the first NC stream (arrows) and epibranchial 340 

(16)

placodes (arrow head). The embryonic stage is indicated in the lower right corner of each panel. 341 

When MMP28 sense probe is used (Sense) it is indicated in the upper right corner of the panel. 342 

Scale bar: 0.25mm. Number of embryos per experiment >20. 343 

  344 

  345 

Figure 3: Comparative analysis of MMP28, Snai2, Sox2, Dmrta1, Foxi4.1 and Sox10

346 

expression by single and double in situ hybridization.

347 

A-H: Xenopus embryos at stage 15 (lateral view, anterior to right, dorsal to top) after single in 348 

situ hybridization for Snai2 (A-A’), Sox2 (C-C’), Dmrta1 (E-E') and MMP28 (G-G’), or double 349 

in situ hybridization for MMP28/Snai2 (B-B’), MMP28/Sox2 (D-D’) and MMP28/Dmrta1 (F-350 

F’). Summary of the expression domains of these genes (H). Doted lines represent expression 351 

(17)

territories of MMP28 (blue), Snai2 (orange), Sox2 (black, neural plate; green, placodes) and 352 

Dmrta1 (red). MMP28 (blue) overlaps with the placodal domain of Sox2 (green). I-L: Xenopus 353 

embryos at stage 25 (anterior to the right, posterior to the left). Diagram illustrating the plane of 354 

section (green line; I). Single in situ hybridization for Foxi4.1 (J), Sox10 (K) and MMP28 (L). 355 

Arrows show neural crest streams, arrowheads show epibranchial placodes, b: brain. Scale bar 356 

0.25 mm. Number of embryos per experiment >20. 357 

358    359 

Table1: Developmental expression and putative substrates of matrix metalloproteinases

360 

identified in Xenopus laevis

361    362 

Figure

Figure 1: Expression of MMP28 assessed by qPCR.
Figure 2: Developmental expression of MMP28 by in situ hybridization.
Figure  3:  Comparative  analysis  of  MMP28,  Snai2,  Sox2,  Dmrta1,  Foxi4.1  and  Sox10  346 

Références

Documents relatifs

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Regulated and controlled direct current electrical supply for

Quantitative assessment of myocardial viscoelastic properties using shear wave imaging. Mathieu Pernot, Mathieu Couade, Wei-Ning Lee, Mathias Fink,

Inactivation of Dlx5 in mouse results in a frequent exencephalic phenotype suggesting defects of anterior neural tube closure [16], however the mice do not present obvious

phenotypic plasticity: (1) do different environmental gradients show similar effects on a given

Pour prendre la mesure de la révision à laquelle conduisent les fouilles récentes, qu’il suffi se de rapprocher le plan dressé par nos devanciers au terme de leurs recherches (fi

Consistent with the proposal that ERNI is part of a mechanism to prevent premature expression of Sox2, we have observed that transfection of BERT into the prospective neural

The interactions inferred from unperturbed data (12 slices; the net- work restricted to 9 genes): (a) by our exact algorithm with self-loops forbidden (the edges occurring in

«Quand je demande aux femmes pourquoi elles font exciser leurs filles, elles me répondent qu’il en a toujours été ainsi, que nos mères sont passées par là et qu’il ne peut en