• Aucun résultat trouvé

The NEMO Analysis Pipeline: EEG Pattern Extraction and Ontology-based Classification

N/A
N/A
Protected

Academic year: 2022

Partager "The NEMO Analysis Pipeline: EEG Pattern Extraction and Ontology-based Classification"

Copied!
2
0
0

Texte intégral

(1)

1

The NEMO Analysis Pipeline:

EEG Pattern Extraction and Ontology-based Classification

Gwen A. Frishkoff1,2 and Robert M. Frank2

1 Department  of  Psychology  &  Neuroscience  Institute,  Georgia  State  University,  Atlanta,  Georgia,  U.S.A.  

2  NeuroInformatics  Center,  University  of  Oregon,  Eugene,  Oregon,  U.S.A.  

 

*ABSTRACT

In  this  software  demonstration,  we  will  show   how  formal  ontologies  can  be  used  to  label  in-­‐

stances   of   neural   (ERP)   patterns   that   have   been   extracted   from   multiple   datasets   using   a   novel   pipeline   for   pattern   and   metric   extrac-­‐

tion  (see  Figure  1,  next  page).  The  entire  dem-­‐

onstration  will  last  ~15  minutes.  We  will  begin   with  a  5-­‐minute  introduction  to  ERP  data  from   several   cross-­‐laboratory   studies   of   word   com-­‐

prehension.   This   overview   will   motivate   our   demonstration   by   showing   that   ERP   data   are   complex   and   heterogeneous,   which   explains   the  radical  challenge  of  making  valid  compari-­‐

sons   across   different   studies   within   our   do-­‐

main.  We  will  then  give  a  2-­‐minute  description   of  the  pipeline  for  analysis,  which  has  two  main   components:   (1)   a   set   of   pattern   extraction   (signal  decomposition,  temporal  segmentation)   methods;   and   (2)   code   to   extract   a   variety   of   simple  metrics  (e.g.,  min  and  max  intensity  at  a   particular   electrode)   and   to   express   these   summary  features  as  N-­‐triples,  which  are  sub-­‐

sequently   stored   in   RDF.   Finally,   we   demon-­‐

strate  how  the  NEMO  ontology  can  be  used  to   reason   over   these   data.   We   highlight   both   ex-­‐

pected  and  novel  findings  for  the  test  datasets   and   note   that   large-­‐scale   application   of   this   method   could   lead   to   major   breakthroughs   in   understanding   neurological   patterns   that   are   linked   to   sensory,   motor,   and   cognitive   pro-­‐

cesses   in   neurologically   healthy   and   brain-­‐

injured  children  and  adults.  

* To whom correspondence should be addressed: gfrishkoff@gsu.edu

REFERENCES

Liu, H., Frishkoff, G., Frank, R. M., & Dou, D.

(2012, in press). Integration of Cognitive Neu- roscience Data: Metric and Pattern Matching across Heterogeneous ERP Datasets. Journal of Neurocomputing.

Frishkoff, G., Frank, R., & LePendu, P. (2011).

Ontology-based Analysis of Event-Related Po- tentials. Proceedings of the International Con- ference on Biomedical Ontology (ICBO'11).

July 26-30, 2011. Buffalo, NY.

Frishkoff, G., Frank, R., Sydes, J., Mueller, K., &

Malony, A. (2011). Minimal Information for Neural Electromagnetic Ontologies (MI- NEMO): A standards-compliant workflow for analysis and integration of human EEG. Stan- dards in Genomic Sciences (SIGS), 5(2).

Liu, H., Frishkoff, G.A., Frank, R., and Dou, D (2010). Ontology-based mining of brainwaves:

sequence similarity technique for mapping al- ternative descriptions of patterns in event- related potentials (ERP) data. Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'10), 12 pages.

Frishkoff, G.A., Dou, D., Frank, R., LePendu, P., and Liu, H. (2009). Development of Neural Electromagnetic Ontologies (NEMO): Repre- sentation and integration of event-related brain potentials. Proceedings of the International Con- ference on Biomedical Ontologies (ICBO09).

July 24-26, 2009. Buffalo, NY.

(2)

2

Figure 1. [1] ERP pattern extraction. [2] Extraction of summary metrics. [3] Formatting of metrics in N-triples, with arguments defined by NEMO on- tology classes and relations. [4] Capture of metadata about the experiment context (e.g., participants, measurement methods, experiment paradigm). [5]

Interchange between NEMO ontology an NEMO ERP database.

Références

Documents relatifs

[r]

In the ontology the agents find the types of knowledge they need for IE (see Table 1): concepts, propositions, proposition syntax records, unifiers, paraphrases, scenarios, and

Whenever we query a model element in SINT AGMA, the Model Manager.. basially provides the following two kinds of information to

We showed a particular use of PWO for describing the first steps of a real publishing workflow concerning the publication of an article of the Semantic Web Journal, i.e., [3], in

This proposed method can be used to translate the motor imagery signals, relaxation activity signals and mathematical activity signals into control signal using a four state to

Product Part Information Object Pattern The Product Part Informa- tion Object Pattern (Figure 7) illustrates the relevant information objects of the CO-PLM

The growth of biological resources and information led to the storage of large data, such as: physiological processes, gene patterns, disease-gene associations, clinical trials; in

(ii) Ontology Pattern Languages, as systems of representation that take onto- logical patterns as higher-granularity modeling primitives, (iii) Ontological An- ti-Patterns as