• Aucun résultat trouvé

Estimation of the conditional tail index using a smoothed local Hill estimator

N/A
N/A
Protected

Academic year: 2021

Partager "Estimation of the conditional tail index using a smoothed local Hill estimator"

Copied!
31
0
0

Texte intégral

(1)

HAL Id: hal-00739454

https://hal.archives-ouvertes.fr/hal-00739454v2

Submitted on 1 Mar 2013

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

Estimation of the conditional tail index using a

smoothed local Hill estimator

Laurent Gardes, Gilles Stupfler

To cite this version:

Laurent Gardes, Gilles Stupfler. Estimation of the conditional tail index using a smoothed local Hill

estimator. Extremes, Springer Verlag (Germany), 2014, 17 (1), pp.45-75. �hal-00739454v2�

(2)

lo al Hill estimator

Laurent Gardes

(1)

&GillesStuper

(2)

(1)

UniversitédeStrasbourg&CNRS,IRMA,UMR7501,7rueRenéDes artes,

67084StrasbourgCedex,Fran e

(2)

Universitéd'Aix-Marseille,CERGAM,15-19alléeClaudeForbin,

13628 Aix-en-Proven eCedex1,Fran e

Abstra t. Forheavy-taileddistributions,theso- alledtailindexisanimportantparameterthat

on-trolsthebehaviorofthetaildistributionandisthusofprimaryinteresttoestimateextremequantiles.

In this paper, the estimation of the tail index is onsidered in the presen e of a nite-dimensional

random ovariate. Uniformweak onsisten yandasymptoti normalityoftheproposedestimatorare

establishedandsomeillustrationsonsimulationsareprovided.

AMSSubje t Classi ations: 62G05,62G20,62G30,62G32.

Keywords: Heavy-tailed distribution, random ovariate,uniform onsisten y, pointwise

asymp-toti normality.

1 Introdu tion

Extreme value analysis has attra ted onsiderable attention in many elds of appli ation, su h as

hydrology, biology and nan e, for instan e. It fo uses on the study of random variables having

survivalfun tion

F

of theform

F (x) = x

−1/γ

L(x)

, where

γ > 0

shall bereferredto asthetailindex

and

L

isaslowlyvarying fun tionat innity: namely,

L

satises, forall

λ > 0

,

L(λx)/L(x) → 1

as

x

goestoinnity. Clearly,

γ

drivesthetailbehaviorof

F

anditsknowledgeisne essaryif,forinstan e,

weareinterestedintheestimationofextremequantiles. Theestimationofthetailindexisthusoneof

the entraltopi sinextremevaluetheory: thisproblemhasbeenextensivelystudiedintheliterature.

Re ent overviewson univariate tailindex estimation an be found in the monographs ofBeirlant et

al. [2℄ and deHaanandFerreira[12℄. Themost popularsemi-parametri estimatorwasproposed by

Hill[15℄. Let

k

n

∈ {2, . . . , n}

and

Y

1,n

≤ . . . ≤ Y

n,n

betheordered statisti sasso iatedto thesample

(3)

H(k

n

) =

1

k

n

− 1

k

X

n

−1

i=1

log

Y

n−i+1,n

Y

n−k

n

+1,n

.

(1)

In pra ti e, it is often useful to link the variable of interest

Y

to a ovariate

X

. In this situation,

the tail index depends on the observed value

x

of the ovariate

X

and shall be referred to, in the

following,asthe onditional tailindex. Itsestimationhasbeenaddressedinthere entextremevalue

literaturemostlyinthexeddesign ase,thatis,whenthe ovariatesarenonrandom. Smith[17℄and

DavisonandSmith[8℄ onsideredaregressionmodelwhileHallandTajvidi[13℄usedasemi-parametri

approa hto estimatethe onditional tailindex. Fully nonparametri methods havebeen onsidered

usingsplines(seeChavez-DemoulinandDavison[4℄),lo alpolynomials(seeDavisonandRamesh[7℄),

amovingwindowapproa h (seeGardes andGirard[9℄),oranearestneighborapproa h(see Gardes

andGirard[10℄),amongothers.

Despite the great interest in pra ti e, less attention has been paid to the random ovariate ase.

One an ite the works of Wang and Tsai [18℄, based on a maximum likelihood approa h, Daouia

et al. [5℄ who use a xed numberof non parametri onditional quantile estimators to estimate the

onditional tail index, later generalized in Daouia et al. [6℄ to a regression ontext with response

distributions belonging tothegeneralmax-domainofattra tionandGoegebeuretal.[11℄ whostudy

anonparametri regressionestimator.

TheaimofthispaperistoadaptHill'sestimatortothepresen eofarandom ovariate. Notethatthe

uniformweak onsisten yoftheproposedestimatorisestablishedwhile,inmostoftheaforementioned

studies,theauthorsonly onsideredpointwise onvergen e.

Therestofthepaperisorganisedasfollows. InSe tion2,wedeneour onditionaltailindexestimator.

Thetwomainresults(uniformweak onsisten yandasymptoti normality)arestatedinSe tion3and

asimulationstudy isprovidedinSe tion 4. TheproofsaregiveninSe tion5andintheAppendix.

2 Estimation of the onditional tail index

Let

(X

1

, Y

1

), . . . , (X

n

, Y

n

)

be

n

independent opies of a random pair

(X, Y ) ∈ S × R

where

S

is a

subsetof

R

d

,

d ≥ 1

,havingnonemptyinterior. Forall

x ∈ S

,weassumethat the onditionalsurvival

fun tion of

Y

given

X = x

is heavy-tailed with tail index

γ(x) > 0

. Equivalently (see Bingham et

al.[3℄),we onsiderthemodel:

(

M

)

X

hasaprobabilitydensityfun tion

f

on

R

d

withsupport

S

andforall

x ∈ S

,the onditional

survivalfun tion

F (.|x)

is ontinuous and de reasing. Moreover,the onditional quantile of

Y

given

X = x

issu hthat

(4)

where

F

−1

(.|x)

is theinversefun tion ofthe onditional survivalfun tion and

ℓ(.|x)

isaslowly

varyingfun tionat innity.

For

i = 1, . . . , n

,denotingby

X

i

the ovariateasso iatedwiththeorderedstatisti

Y

n−i+1,n

,a

straight-forwardadaptationtotherandom ovariate aseofHill'sestimator(1) is:

H(x, k, h) =

1

M

k

(x, h) − 1

k−1

X

i=1

log

Y

n−i+1,n

Y

n−k+1,n

I

{kX

i

− xk ∨ kX

k

− xk ≤ h},

(3)

if

M

k

(x, h) > 1

and

H(x, k, h) = 0

otherwise. In(3),

I

{.}

is theindi ator fun tion,

k.k

isanorm on

R

d

,

k = k

n

∈ {2, . . . , n}

,

h = h

n

isanonrandompositivesequen etendingto0atinnityand

M

i

(x, h) =

i

X

j=1

I

{kX

j

− xk ≤ h}, i = 1, . . . , n,

isthenumberof ovariatesamong

X

1

, . . . , X

i

whi hlieintheball

B(x, h)

with enter

x

andradius

h

.

Clearly,the hoi eofthenumber

k

in (3)is ru ialsin e,formostvaluesof

k

,thestatisti

H(x, k, h)

is equalto 0. The behavior of

H(x, k, h)

as a fun tion of

k

is thus veryerrati . To over omethis

drawba k,weproposetoestimatethe onditionaltailindexbyanaverageon

k

ofthestatisti sdened

in (3):

a

(x, k

x

, h) =

1

k

x

− ⌊(1 − a)k

x

⌋ + 1

n

X

l=2

H(x, l, h)I{⌊(1 − a)k

x

⌋ ≤ M

l

(x, h) ≤ k

x

}, a ∈ [0, 1),

(4)

where

⌊z⌋ = max{j ∈ N|z ≥ j}

is theintegerpartof

z

and

k

x

isa positive integerbelonging to the

interval

[2/(1 − a), n]

. Clearlyforall

a ∈ [0, 1)

,if

M

n

(x, h) > ⌊(1 − a)k

x

,then

a

(x, k

x

, h) > 0

. The

parameter

a

ontrolsthenumberofstatisti s(3)takenintoa ountintheestimator(4). Forinstan e,

if

a = 0

andif

M

n

(x, h) > k

x

,onlyonestatisti havingtheform

H(x, l, h)

isusedto ompute(4).

We point out that in pra ti e,

k

x

is restri ted to the interval

[2/(1 − a), M

n

(x, h)]

, sin e

k

x

is the

number of statisti s

Y

n−i+1,n

, whose asso iated ovariates

X

i

belong to the ball with enter

x

and

radius

h

,whi hareusedto ompute

a

(x, k

x

, h)

: seealsoSe tion4.

3 Main results

InthisSe tion,westatethetwomainresultsofthepaper: theuniformweak onsisten yandpointwise

asymptoti normality of

a

(x, k

x

, h)

on a ompa t subset

of the interior of

S

. To this aim, we

introdu e some assumptions. The following ondition spe ies the regularityof the onditional tail

index

γ

andoftheprobabilitydensityfun tion

f

ofthe ovariates.

(A1) Thefun tion

γ

ispositiveand ontinuouson

S

andtheprobabilitydensityfun tion

f

isapositive

Hölder ontinuousfun tionon

S

withexponent

β

f

∈ (0, 1]

.

Notethatthis onditionespe iallyimpliesthat,onthe ompa tset

,thefun tion

γ

andtheprobability

densityfun tion

f

areboundedfrom belowandabovebynitepositive onstants:

0 < γ := inf

x∈Ω

γ(x) ≤ sup

x∈Ω

γ(x) =: γ < ∞

and

0 < f := inf

(5)

se ondvariable. Forall

u < v ∈ (0, 1)

,let

ω(u, v, x, h) = sup

α∈[u,v]

sup

kx

−xk≤h

|log q(α|x) − log q(α|x

)| .

Weassumethat

(A2) Thereexists

δ > 0

su hthat

lim

n→∞

sup

x∈Ω

ω(n

−(1+δ)

, 1 − n

−(1+δ)

, x, h) = 0.

Now,in ordertodealwiththeslowlyvarying fun tionin (2),weassumethat

(A3) Forall

x ∈ S

and

t ≥ 1

,

ℓ(t|x) = c(x) exp

Z

t

1

∆(u|x)

u

du



,

where

c(x) > 0

and

∆(.|x)

isanultimatelymonotoni fun tion onvergingto0atinnity.

Note that(A3)impliesinparti ular thatforall

x ∈ S

,

ℓ(.|x)

isanormalisedslowlyvaryingfun tion

(seeBinghametal.[3℄). Wealsointrodu ethenotation

x

(z) :=

sup

u∈[z

−1

,∞)

|∆(u|x)|.

We annowstatetheuniformweak onsisten yofourestimator.

Theorem1. Under model (

M

),assume that(A1), (A2) and(A3)hold. If

nh

d

/ log n → ∞

,

inf

x∈Ω

min



k

x

log n

,

nh

d

k

x

log(nh

d

)



→ ∞, lim

t→0

sup

x∈Ω

x

(t) = 0,

andif thereexistsanite positive onstant

K

1

su hthat

sup

x∈Ω

sup

kx

−xk≤h

|k

x

− k

x

| ≤ K

1

,

then, if

a ∈ (0, 1)

,itholdsthat,as

n

goes toinnity,

sup

x∈Ω

|bγ

a

(x, k

x

, h) − γ(x)|

−→ 0.

P

It is straightforwardthat under ondition(A1), thenumber

M

n

(x, h)

of ovariateslyingin the ball

B(x, h)

issu h that

1

n

M

n

(x, h) =

1

n

n

X

i=1

I

{kX

i

− xk ≤ h} = P(kX − xk ≤ h)(1 + o

P

(1)) = Vh

d

f (x)(1 + o

P

(1)),

(5)

where

V

is the volume of the unit ball of

R

d

(see Lemma 3for auniform result). Thus, sin e

f

is

boundedfrombelowandabovebynitepositive onstants, ondition

nh

d

/ log n → ∞

impliesthatfor

all

x ∈ Ω

,

M

n

(x, h)

goestoinnityin probability. Furthermore, ondition

inf

x∈Ω

min



k

x

log n

,

nh

d

k

x

log(nh

d

)



→ ∞

(6)

implies that for all

x ∈ Ω

,

⌊(1 − a)k

x

⌋ = (1 − a)k

x

(1 + o(1)) → ∞

and that, with arbitrary large

probability,wehave

k

x

< M

n

(x, h)

for

n

su ientlylarge. Hen e,for

n

largeenough,

a

(x, k

x

, h) > 0

forall

a ∈ [0, 1)

and

x ∈ Ω

.

Wenowwishto statethepointwiseasymptoti normalityof theestimatorat apoint

x ∈ S

. Tothis

aim,thefollowingassumptionisrequired:

(A4) Forall

x ∈ S

,thefun tion

|∆(.|x)|

isregularlyvarying withindex

ρ(x) < 0

i.e., forall

λ > 0

,

lim

t→∞

|∆(λt|x)|

|∆(t|x)|

= λ

ρ(x)

.

Notethat onditions(A3)and(A4)entailthat

lim

t→∞

log ℓ(λt|x) − log ℓ(t|x)

∆(t|x)

=

λ

ρ(x)

− 1

ρ(x)

,

(6)

whi histhestandardse ond-order ondition lassi allyusedtoprovetheasymptoti normalityoftail

index estimators. The asymptoti normality of our estimatoris obtained onditionally to the event

{M

n

(x, h) = m

x

}

. Note that forinstan e, under (A1)and from(5), atypi al sequen e

(m

x

)

inthis aseis

m

x

= Vf (x)nh

d

.

Theorem 2. Under model (

M

), assumethat (A1), (A3) and (A4) hold. If, as

n

goes toinnity,

k

x

→ ∞

,

k

x

/m

x

→ 0

,

k

1/2

x

ω(m

−1−δ

x

, 1 − m

−1−δ

x

, x, h) → 0

and

k

1/2

x

∆(m

x

/k

x

|x) → ξ(x) ∈ R

,thenfor

a ∈ [0, 1)

and onditionally tothe event

{M

n

(x, h) = m

x

}

onehas

k

x

1/2



a

(x, k

x

, h) − γ(x) −

∆(m

x

/k

x

|x)

1 − ρ(x)

AB(a, x)



d

−→ N (0, γ

2

(x)AV(a)),

whereif

a ∈ (0, 1)

,

AB(a, x) =

1 − (1 − a)

1−ρ(x)

a(1 − ρ(x))

and

AV(a) =

2(a + (1 − a) log(1 − a))

a

2

,

andif

a = 0

,

AB(0, x) = 1

and

AV(0) = 1

.

Asexpe ted,theasymptoti biasisade reasingfun tionof

a

whiletheasymptoti varian eis

in reas-ing. For

a = 0

,wendba ktheasymptoti biasandvarian eofHill'sestimator.

4 Simulation study

Toassessthenite-sampleperforman eoftheproposed onditionaltail-indexestimator,some

simula-tionexperimentswere arried outusingthefollowingmodel: the onditional distribution fun tion of

Y

given

X = x

isgivenby

∀ y > 0, F (y|x) =



1 + y

−ρ/γ(x)



−1/ρ

,

where

X

isuniformly distributed on

S = [0, 1]

. The negativese ond-orderparameter

ρ

is hosento

(7)

onditionaltail-index

γ

is on erned,twosituationsare onsidered:

γ

1

(x)

=

1

3

+

1

8

sin(2πx)

and

γ

2

(x)

=

1

4



1 + exp(−60(x − 1/4)

2

)I{3x ∈ [0, 1]} + exp(−5/12)I{3x ∈ (1, 2]}

+ (5 − 6x) (exp(−5/12)I{3x ∈ (2, 5/2]} − I{3x ∈ (5/2, 3]})



.

Notethat

γ

1

isinnitelydierentiableand

γ

2

is ontinuousbutnotdierentiableat

x ∈ {1/3, 2/3, 5/6}

.

Theaimofthissimulationstudyistoestimatethe onditionaltail-indexonagridofpoints

{x

1

, . . . , x

M

}

of

[0, 1]

. Asmall preliminary pra ti alinvestigation leadsto take

a = 3/7

whi h provides reasonable

performan esin alargerangeofsituations. This leavestwoparameterstobe hosen: thebandwidth

h

and thenumberofupperorderstatisti s

k

x

. Oursele tionpro edure forthese parametersgoesas

follows.

1) We hoose a grid

{h

1

, . . . , h

P

}

of possible values of

h

. In what follows, we let

i,j

(k) :=

3/7

(x

i

, k, h

j

)

. For ea h

i ∈ {1, . . . , M }

,

j ∈ {1, . . . , P }

and

k ∈ {q

i,j

+ 4, . . . , M

n

(x

i

, h

j

) − q

i,j

}

,

where

q

i,j

∈ N \ {0}

,weintrodu etheset

E

i,j,k

= {bγ

i,j

(l), l ∈ {k − q

i,j

, . . . , k + q

i,j

}}

. Fortwo

xedindi es

i

and

j

, ouraimisto sele tthenumberofupperorderstatisti s

k

i,j

inaregionof

stabilityfor

i,j

. Todothat, we omputethevarian eof theset

E

i,j,k

foreverypossiblevalue

of

k

. Wethenre ordthenumber

K

i,j

forwhi h thisvarian eisminimal. Morepre isely,

K

i,j

= arg min

k

1

2q

i,j

+ 1

k+q

X

i,j

l=k−q

i,j



i,j

(l) − bγ

i,j

(k)



2

with

i,j

(k) =

1

2q

i,j

+ 1

k+q

X

i,j

l=k−q

i,j

i,j

(l).

Hen e,foragivenpoint

x

i

andagivenbandwidth

h

j

,thesele tednumberofupperorderstatisti s

k

i,j

is pi kedin theset

{K

i,j

− q

i,j

, . . . , K

i,j

+ q

i,j

}

. We propose to re ord the value

k

i,j

su h

that

i,j

(k

i,j

)

isthemedianoftheset

E

i,j,K

i,j

. Forthesakeofsimpli ity,theestimate

i,j

(k

i,j

)

willbedenoted by

i,j

.

2) We now want to sele t a bandwidth that does not depend on

x

and whi h is su h that the

estimation arriedout for bandwidthsin its neighborhood doesnot show alargevarian e. To

a hieve that, we let

q

be a positive integer su h that

2q

+ 1 < P

and we ompute for ea h

j ∈ {q

+ 1, . . . , P − q

}

thestability riterion

σ(j) =

1

M

M

X

i=1

σ

i

(j),

where,for

i ∈ {1, . . . , M }

,

σ

i

(j) =

1

2q

+ 1

j+q

X

l=j−q

(eγ

i,l

− eγ

i,.

(j))

2

1/2

with

i,.

(j) =

1

2q

+ 1

j+q

X

l=j−q

i,l

.

(8)

Wenextre ordtheinteger

J

su hthat

σ(J)

istherstlo alminimumoftheappli ation

j 7→ σ(j)

whi h is lessthan the average of the

σ(j)

, see Figure 1. In other words,

J = q

+ 1

if

σ(.)

is in reasing,

J = P − q

if

σ(.)

isde reasingand

J = min

j

su hthat

σ(j) ≤ σ(j − 1) ∧ σ(j + 1)

and

σ(j) ≤

1

P − 2q

P −q

X

l=q

+1

σ(l)

(7)

otherwise, where for onvenien e we extend

σ

by setting

σ(q

) := σ(q

+ 1)

and

σ(P − q

) :=

σ(P − q

+ 1)

. Thesele tedbandwidthisthen

h

= h

J

.

Tosummarize,thebandwidthandthenumberofupperorderstatisti saresele tedinordertosatisfy

astability riterion. Thesele tedbandwidthis independentof

x

andis givenby

h

= h

J

where

J

is

dened in(7). Thesele tednumberofupperorderstatisti sisgiven,for

x = x

i

,by

k

x

i

= k

i,J

.

This estimation pro edure is arried out on

N = 100

independent samples of size

n = 1000

. The

onditional tail-indexis estimatedon agridof

M = 35

evenlyspa ed points in

[0, 1]

. Regardingthe

sele tionpro edure,

P = 100

valuesof

h

rangingfrom 0.025to0.25aretested. Theparameter

q

i,j

is

hosensothat

2q

i,j

+ 1

isapproximatelyequalto

5%

of

M

n

(x

i

, h

j

)

and

q

isset to3.

Tohaveanideaofhowourestimatorbehaves omparedtootherestimatorsinthe onditionaltail-index

estimationliterature,itis omparedto:

Theestimator

D

(x) := bγ

H

n

(x)

ofDaouiaetal.[5℄:

D

(x) =

P

9

j=1

[log b

q

n

n

/j|x) − log b

q

n

n

|x)]

P

9

j=1

log j

where

q

b

n

(α|x) = inf{t ∈ R, b

F

n

(t|x) ≤ α}

isthegeneralizedinverseofthekernelestimatorofthe

onditionalsurvivalfun tion

b

F

n

(y|x) =

n

X

i=1

K

h

(x − X

i

)I{Y

i

> y}

n

X

i=1

K

h

(x − X

i

)

.

Here

K

h

(x) = h

−1

K(x/h)

where

K(x) =

15

16

(1 − x

2

)

2

I

[−1, 1](x)

is thebi-quadrati kernel fun tion,

h := h

n

is apositive sequen etending to 0and

α

n

= 0.3

.

Thisestimatoris omputedusingthedata-drivenpro eduredes ribedin Daouiaetal.[5℄.

The estimator

G

(x) := bγ

(2)

n

(x, 0, K, K)

of Goegebeur et al. [11℄:

G

(x) := T

(1,1)

(9)

with

∀ s ≥ 1, ∀ t ≥ 0, T

(s,t)

n

(x) =

n

X

i=1

K

h

s

(x − X

i

)(log Y

i

− log ω

n,x

)

t

+

I

{Y

i

> ω

n,x

}

n

X

i=1

K

h

s

(x − X

i

)I{Y

i

> ω

n,x

}

.

Here

K

h

(u) = h

−1

K(u/h)

where

K

is on e again thebi-quadrati kernel fun tion,

h := h

n

is

apositivesequen etending to 0and forall

x

,

n,x

)

is apositivesequen e tendingto innity.

Notethatthisestimatorisakernelversionofthe ase

a = 0

ofourestimator;to ompute

,we

shallusethedata-drivenmethoddes ribedin [11℄.

Thebias- orre tedversion

G,BC

(x) := bγ

(2)

n

(x, α

(2)

BC

(b

ρ

n

(x; K, K, 0.5)))

of

G

(x)

,alsopresentedin

Goegebeuretal.[11℄:

G,BC

(x) =

(2)

n

(x, 0, K, K)

b

ρ

n

(x; K, K, 0.5)

+



1 −

1

b

ρ

n

(x; K, K, 0.5)



n

(2)

(x, 1, K, K)

where

n

(2)

(x, 1, K, K) =

T

n

(1,2)

(x)

2T

n

(1,1)

(x)

and

b

ρ

n

(x; K, K, 0.5) =

3(R

n

(x; K, K, 0.5) − 1)

R

n

(x; K, K, 0.5) − 3

provided

1 ≤ R

n

(x; K, K, 0.5) < 3

with

R

n

(x; K, K, 0.5) =



T

n

(1,1)

(x)

T

n

(1,0)

(x)



τ



T

n

(1,2)

(x)

2T

n

(1,0)

(x)



τ /2



T

n

(1,2)

(x)

2T

n

(1,0)

(x)



τ /2



T

n

(1,3)

(x)

6T

n

(1,0)

(x)



τ /3

.

Forthis estimator,thedata-drivenmethoddes ribedin [11℄isalsoused.

Foreveryestimator,we omputetheempiri alMSEs,averagedoverthe

M = 35

evenlyspa edpointsin

[0, 1]

. Numeri alresultsaregiveninTable1. This hartshowsthatourestimatoryieldsperforman es

whi haresimilarto theestimator

D

ofDaouiaetal.[5℄. Besides,itoutperformstheestimator

G

of

Goegebeuret al.[11℄in termsofMSEsby a2:1ratioin every ase,whilebeingoutperformedbythe

bias- orre tedversion

G,BC

ofthis estimator. This wasexpe ted, sin ethebias- orre tedestimator

G,BC

wasshowntodisplayfarbetterperforman esthanthesimpleestimator

G

andthatourmethod

wasnotoriginallytargetedat orre tinganyspe i biasthattheHillstatisti s

H(x, l, h)

usedforits

omputationmaypossess.

Wedisplay someresultsin Figures 24: theestimations orrespondingto the median,

10%

and

90%

quantilesof theMSE are represented. Besides, we representin Figure 5boxplotsof thebandwidths

and in Figure 6 boxplots of the ratios

k

x

/M

n

(x, h

)

at

x = 1/2

used to omputeour estimator. It

anbeseen that theestimator

a

generallyuses asmall bandwidth, whi h anbeinterpreted asan

(10)

Forthesakeofsimpli ity,weintrodu ethenotation

k

x,a

:= ⌊(1 − a)k

x

.

5.1 Proof of the uniform weak onsisten y

Weshallprovethat forall

ε > 0

,theprobability

p

n

:= P



sup

x∈Ω

|bγ

a

(x, k

x

, h) − γ(x)| > ε



,

onverges to 0 as

n

goes to innity. The proof is based on [14, Lemma 1℄: the basi idea is that

insteadofshowingtheuniform onsisten yonthewholeset

,one anshowuniform onsisten yon

asequen eofsu ientlylarge subsets

n

of

anddealwiththeos illationoftheestimator.

Firstnote that,sin e

is a ompa tsubset of

R

d

,foraxed

η > 1/β

f

andevery

n ∈ N \ {0}

,there

exists anite subset

n

of

with

card(Ω

n

) = O(n

c

)

,

c > 0

su h that for all

x ∈ Ω

, one an nd

χ(x) ∈ Ω

n

satisfying

kx − χ(x)k < n

−η

. Thetriangularinequalityyields:

p

n

≤ I



sup

x∈Ω

|γ(x) − γ(χ(x))| > ε/3



+ P



sup

ω∈Ω

n

|bγ

a

(ω, k

ω

, h) − γ(ω)| > ε/3



+ P



sup

x∈Ω

a

(x, k

x

, h) − bγ

a

(χ(x), k

χ(x)

, h)

> ε/3



.

(8)

Theproofoftheuniformweak onsisten yofourestimator onsistsinshowingthatthethreetermsin

theaboveinequality onvergeto0as

n

goestoinnity. Thisis arriedoutinPropositions1,2and3.

Theorem 1is thus adire t onsequen eof these results. Westart by fo using onthe onvergen e of

therstterm.

Proposition1. Under model(

M

) and(A1), for

n

largeenough,

sup

x∈Ω

|γ(x) − γ(χ(x))| ≤ ε/3.

Proof of Proposition 1

Re all that forall

x ∈ Ω

,

kx − χ(x)k < n

−η

→ 0

. Sin e

is ompa t,

(A1)entailsthat thefun tion

γ

isuniformly ontinuous,whi hshowstheresult.

We are now interested in the se ond term, namely in the uniform onvergen e of our estimator on

thenitesubsets

n

of

. Somepreliminarylemmasarerequired,whoseproofsare postponedtothe

Appendix. Therstoneis ausefulresultofrealanalysis.

Lemma 1. Let

(a

1

, . . . , a

n

)

and

(b

1

, . . . , b

n

)

be two

n−

tuples of pairwise distin t real numbers su h

thatfor all

i ∈ {1, . . . , n}

,

a

i

≤ b

i

. Letfurther

a

1,n

≤ . . . ≤ a

n,n

and

b

1,n

≤ . . . ≤ b

n,n

betheasso iated

ordered

n

tuples. Then for all

i ∈ {1, . . . , n}

,

a

i,n

≤ b

i,n

.

Lemma 2isatopologi alresultwhi hshallbeneededin severalproofs: itessentiallyimpliesthat for

n

largeenough,theball

B(x, h)

is ontainedin

S

forall

x ∈ Ω

.

(11)

Lemma 3belowgivesan asymptoti uniform estimation of the total numberof ovariates

M

n

(ω, h)

ontainedintheballswith enter

ω ∈ Ω

n

andradius

h

.

Lemma 3. Under model (

M

), assume that

(A1)

holds together with

nh

d

/ log n → ∞

. Then, as

n

goestoinnity,

1

nh

d

sup

ω∈Ω

n

M

n

(ω, h) − Vnh

d

f (ω)

−→ 0.

P

Given

M

n

(x, h) ≥ 1

, for

i = 1, . . . , M

n

(x, h)

, let

Z

(x)

i

be the response variable whose asso iated

ovariate

W

(x)

i

belongs totheball

B(x, h)

. Letusalsointrodu ethenotations

U

(x)

i

:= F (Z

(x)

i

|W

(x)

i

)

for

i = 1, . . . , M

n

(x, h)

and

V

i

= F (Y

i

|X

i

)

for

i = 1, . . . , n

. Inthefollowing,

e

denotesanite subset

of

,

m := (m

ω

)

ω∈e

isalistof positiveintegersand

B

e

(m)

istheBorelmeasurable set

B

e

(m) :=

\

ω∈e

{M

n

(ω, h) = m

ω

}.

Thedistributionsof

U

(x)

i

and

V

i

aregiveninthefollowingresult.

Lemma 4. Under model (

M

), the random variables

V

1

, . . . , V

n

are independent standard uniform

randomvariableswhi hareindependentfrom

X

1

, . . . , X

n

. Furthermore,forall

ω ∈ e

and onditionally

to

B

e

(m)

,the random variables

U

(ω)

1

, . . . , U

(ω)

m

ω

areindependent standard uniformrandom variables.

The next lemma provides arepresentation of ourestimator in terms of independent standard

expo-nentialrandomvariables, whi histhekeyargumenttoshowProposition 2.

Lemma 5. Under model (

M

) and (A3), for all

ω ∈ e

and onditionally to

B

e

(m)

, there exist

independentstandardexponentialrandomvariables

E

(ω)

1

, . . . , E

(ω)

m

ω

su hthatforeverysequen eof

real-valued fun tions

(a

n

)

denedon

su h that

a

n

(x) → a ∈ (0, 1)

uniformly in

x ∈ Ω

, one has for

n

largeenough, uniformlyin

ω ∈ e

,

a

n

(ω)

(ω, k

ω

, h) − γ(ω)E

(ω)

n

≤ 2ω(U

1,m

(ω)

ω

, U

(ω)

m

ω

,m

ω

, ω, h) + E

(ω)

n

ω

(U

k

(ω)

ω

,m

ω

)

≤ 2ω(V

1,n

, V

n,n

, ω, h) + E

(ω)

n

ω

(U

k

(ω)

ω

,m

ω

)

where

E

(ω)

n

:=

1

k

ω

− k

ω,a

n

(ω)

+ 1

k

ω

X

l=k

ω,an (ω)

1

l − 1

l−1

X

i=1

E

i

(ω)

.

Wearenowin positionto provetheuniform onsisten yofourestimatoronthenitesubsets

n

.

Proposition2. Under model(

M

),assume that(A1), (A2) and(A3)hold. If

nh

d

/ log n → ∞

,

inf

x∈Ω

min



k

x

log n

,

nh

d

k

x

log(nh

d

)



→ ∞

and

lim

t→0

sup

x∈Ω

x

(t) = 0,

then, for every sequen e of real-valued fun tions

(a

n

)

dened on

su h that

a

n

(x) → a ∈ (0, 1)

uniformlyin

x ∈ Ω

as

n

goestoinnity,

sup

ω∈Ω

n

|bγ

a

n

(ω)

(ω, k

ω

, h) − γ(ω)|

P

−→ 0.

(12)

Proposition 2with the onstantsequen e

a

n

= a

for all

n ≥ 1

. Proposition 2 also handlesthe ase

when

(a

n

)

isanarbitrarysequen eofreal-valuedfun tionson

uniformly onvergingto

a

,whi hshall

beusefulto establishProposition3.

Proof ofProposition2

Let

m = (m

ω

)

ω∈Ω

n

bealistofpositiveintegerssu hthat

∀ω ∈ Ω

n

,

m

ω

f (ω)nh

d



V

2

,

3V

2



,

(9)

andlet

L

n

bethesetofallpossiblelistssatisfying(9). FromLemma3,itis learthat

P

(A

n

) → 1

as

n

goestoinnity,where

A

n

:=

[

m∈L

n

B

n

(m)

isthedisjointunionofthe

B

n

(m)

for

m ∈ L

n

. Let

ε > 0

. Remarkingthat

P



sup

ω∈Ω

n

|bγ

a

n

(ω)

(ω, k

ω

, h) − γ(ω)| > ε



≤ P(A

C

n

) +

X

m∈L

n

P



sup

ω∈Ω

n

|bγ

a

n

(ω)

(ω, k

ω

, h) − γ(ω)| > ε; B

n

(m)



≤ P(A

C

n

) + sup

m∈L

n

P



sup

ω∈Ω

n

|bγ

a

n

(ω)

(ω, k

ω

, h) − γ(ω)| > ε

B

n

(m)



,

where

A

C

n

is the omplementof

A

n

,itissu ienttoprovethatas

n

goestoinnity,

sup

m∈L

n

T (m) := sup

m∈L

n

P



sup

ω∈Ω

n

|bγ

a

n

(ω)

(ω, k

ω

, h) − γ(ω)| > ε

B

n

(m)



→ 0.

(10)

Let

m ∈ L

n

. Remarking that

T (m) ≤ P



sup

ω∈Ω

n

|bγ

a

n

(ω)

(ω, k

ω

, h) − γ(ω)E

(ω)

n

| >

ε

2

B

n

(m)



+P



sup

ω∈Ω

n

|γ(ω)(E

(ω)

n

− 1)| >

ε

2

B

n

(m)



,

wehavefromLemmas4and5that

T (m) ≤ P



sup

ω∈Ω

n

ω(V

1,n

, V

n,n

, ω, h) >

ε

8



+ P



sup

ω∈Ω

n

E

(ω)

n

ω

(U

k

(ω)

ω

,m

ω

) >

ε

4

B

n

(m)



+ P



sup

ω∈Ω

n

|γ(ω)(E

(ω)

n

− 1)| >

ε

2

B

n

(m)



≤ P



sup

ω∈Ω

n

ω(V

1,n

, V

n,n

, ω, h) >

ε

8



+ card(Ω

n

)



sup

ω∈Ω

n

P



|γ(ω)(E

(ω)

n

− 1)| >

ε

2

B

n

(m)



+

sup

ω∈Ω

n

P



E

(ω)

n

ω

(U

k

(ω)

ω

,m

ω

) >

ε

4

B

n

(m)



=: T

1

(m) + card(Ω

n

)(T

2

(m) + T

3

(m)).

First,letus onsidertheterm

T

1

(m)

. Under ondition(A2),for

n

largeenoughanduniformlyin

m

,

T

1

(m) ≤ P(V

1,n

< n

−(1+δ)

) + P(V

n,n

> 1 − n

−(1+δ)

) = 2(1 − (1 − n

−(1+δ)

)

n

) → 0.

(11)

Regarding

T

2

(m)

,itiseasytoseethat for

n

largeenough

T

2

(m) ≤ sup

ω∈Ω

n

k

ω

X

l=k

ω,an (ω)

P

1

l − 1

l−1

X

i=1

γ(ω)(E

i

(ω)

− 1)

>

ε

2

B

n

(m)

!

.

(13)

ablestogetherwith(A1),thereexistsapositive onstant

C

ε

su hthat,for

n

largeenough,

T

2

(m) ≤ 2 sup

ω∈Ω

n

k

ω

X

l=k

ω,an(ω)

exp (−C

ε

(l − 1)) ≤ 2 exp



C

ε

2

ω∈Ω

inf

n

(k

ω,a

n

(ω)

− 1)



.

Finally,using thefa tthat

card(Ω

n

) = O(n

c

)

,

k

x,a

n

(x)

/k

x

→ 1 − a

and

k

x

/ log(n) → ∞

uniformlyin

x ∈ Ω

,onehas,for

n

su ientlylarge,uniformly in

m

,

card(Ω

n

)T

2

(m) ≤ 2 exp



C

ε

4

ω∈Ω

inf

n

(k

ω,a

n

(ω)

− 1)



→ 0.

(12)

Wenowfo uson

T

3

(m)

. Letusdene

ε

2

n

= sup

x∈Ω

k

x

log(nh

d

)

nh

d

.

Clearly,

ε

n

→ 0

as

n

goestoinnityand

T

3

(m) ≤ sup

ω∈Ω

n

P



U

(ω)

k

ω

,m

ω

> ε

n

B

n

(m)



+ sup

ω∈Ω

n

P



E

(ω)

n

sup

x∈Ω

x

n

) >

ε

4

B

n

(m)



.

UsingLemma 4,wehave:

P



U

(ω)

k

ω

,m

ω

> ε

n

B

n

(m)



=

m

ω

!

(k

ω

− 1)!(m

ω

− k

ω

)!

Z

1

ε

n

x

k

ω

−1

(1 − x)

m

ω

−k

ω

dx

≤ m

k

ω

ω

(1 − ε

n

)

m

ω

−k

ω

.

Remarking that

log(1 − ε

n

) < −ε

n

/2

for

n

largeenough,onehas,forall

m

and

ω

,

P



U

k

(ω)

ω

,m

ω

> ε

n

B

n

(m)



≤ exp



−m

ω

ε

n



m

ω

− k

ω

2m

ω

k

ω

log m

ω

m

ω

ε

n



.

Furthermore,under(A1),sin e

m

satises(9),wehave:

k

ω

m

ω

2

f V

ε

2

n

log(nh

d

)

and

log(m

ω

) ≤ log



3f

V

2

nh

d



3

2

log(nh

d

),

forall

m

and

ω

. Thus, for

n

su ientlylarge,uniformlyin

m

and

ω

,

P



U

(ω)

k

ω

,m

ω

> ε

n

B

n

(m)



≤ exp



1

4

ω∈Ω

inf

n

m

ω

ε

n



≤ exp



f V

8

nh

d

ε

n



.

Furthermore,sin e

log n/(nh

d

ε

n

) → 0

and

card(Ω

n

) = O(n

c

)

, it is straightforward that for

n

su- ientlylarge,uniformlyin

m

,

card(Ω

n

) sup

ω∈Ω

n

P



U

(ω)

k

ω

,m

ω

> ε

n

B

n

(m)



≤ exp



f V

16

nh

d

ε

n



.

(13)

Next,sin e

ε

n

→ 0

andthat,byassumption,for

n

largeenough,

sup

x∈Ω

x

n

) ≤

ε

8

,

onehas,under(A1):

sup

ω∈Ω

n

P



E

(ω)

n

sup

x∈Ω

x

n

) >

ε

4

B

n

(m)



sup

ω∈Ω

n

P



sup

x∈Ω

x

n

)|E

(ω)

n

− 1| >

ε

8

B

n

(m)



sup

ω∈Ω

n

P



γ(ω)|E

(ω)

n

− 1| > γ

B

n

(m)



.

(14)

Therighthand-sideoftheaboveinequalityissimilarto

T

2

(m)

andthus(12)and(13)leadto

card(Ω

n

)T

3

(m) ≤ exp



f V

16

nh

d

ε

n



+ 2 exp



C

ε

4

ω∈Ω

inf

n

(k

ω,a

n

(ω)

− 1)



→ 0,

(14)

for

n

large enough, uniformly in

m

, where

C

ε

is a positive onstant. We then easily obtain (10)

using(11),(12)and(14)andtheproofis omplete.

The os illationof the fun tion

x 7→ bγ

a

(x, k

x

, h)

isstudied in Proposition 3. Theproofof this result

requires to ontroltherandomvariable

C

h

(x, r) =

n

X

i=1

I

{h − r ≤ kX

i

− xk ≤ h + r},

whi histhetotalnumberof ovariatesintheannuluswith enter

x

,innerradius

h− r

andouterradius

h + r

. Lemma 6belowessentiallystatesthat this numberisasymptoti allyboundedwith arbitrarily

largeprobability.

Lemma 6. Under model (

M

), assume that (A1) holds together with

nh

d

→ ∞

. Then, for every

arbitrary integer

K

2

> c/(ηβ

f

− 1)

,

P

(A

n,K

2

) → 0

as

n

goes toinnity,where

A

n,K

2

=



sup

ω∈Ω

n

C

h

(ω, n

−η

) ≥ K

2



.

We annowstateandproveProposition3: theos illationofthefun tion

x 7→ bγ

a

(x, k

x

, h)

onverges

uniformlyto 0inprobability.

Proposition3. Under model(

M

),assume that(A1), (A2) and(A3)hold. If

nh

d

/ log n → ∞

,

inf

x∈Ω

min



k

x

log n

,

nh

d

k

x

log(nh

d

)



→ ∞, lim

t→0

sup

x∈Ω

x

(t) = 0,

andif thereexistsanite positive onstant

K

1

su hthat

sup

x∈Ω

sup

kx

−xk≤h

|k

x

− k

x

| ≤ K

1

,

then, as

n

goestoinnity, if

a ∈ (0, 1)

,

sup

x∈Ω

a

(x, k

x

, h) − bγ

a

(χ(x), k

χ(x)

, h)

−→ 0.

P

Proof of Proposition 3

FromLemma 6, itis enough toshowthat for all

ε > 0

and foraxed

integer

K

2

> c/(ηβ

f

− 1)

,

P



sup

x∈Ω

a

(x, k

x

, h) − bγ

a

(χ(x), k

χ(x)

, h)

> ε

A

C

n,K

2



→ 0.

For

(k, l) ∈ {2, . . . , n}

2

and

i ∈ {1, . . . , n − 1}

,let

r

i,l

(x, k, h) =

I

{kX

i

− xk ≤ h; M

l

(x, h) ≥ k}

M

l

(x, h) − 1

,

if

M

l

(x, h) > 1

and0elsewhere,and,for

a ∈ (0, 1)

and

k

a

= ⌊(1 − a)k⌋

,

s

l,a

(x, k, h) =

I

{kX

l

− xk ≤ h; M

l

(x, h) ≤ k}

k − k

a

+ 1

(15)

a

(x, k

x

, h) =

n

X

l=2

l−1

X

i=1

log

Y

n−i+1,n

Y

n−l+1,n

r

i,l

(x, k

x,a

, h)s

l,a

(x, k

x

, h),

andthus

a

(x, k

x

, h) − bγ

a

(χ(x), k

χ(x)

, h)

≤ S

n,1

(x) + S

n,2

(x)

,where

S

n,1

(x)

:=

n

X

l=2

l−1

X

i=1

log

Y

n−i+1,n

Y

n−l+1,n

|r

i,l

(x, k

x,a

, h) − r

i,l

(χ(x), k

χ(x),a

, h)|s

l,a

(x, k

x

, h),

and

S

n,2

(x)

:=

n

X

l=2

l−1

X

i=1

log

Y

n−i+1,n

Y

n−l+1,n

|s

l,a

(x, k

x

, h) − s

l,a

(χ(x), k

χ(x)

, h)|r

i,l

(χ(x), k

χ(x),a

, h).

Theideaoftherestoftheproofisquitesimple. Wewillshowthatontheevent

A

C

n,K

2

,thereexisttwo

sequen esof real-valuedfun tions

(a

n

)

and

(a

+

n

)

on

uniformly tendingto

a

, four sequen es

1,n

)

,

+

1,n

)

,

2,n

)

and

+

2,n

)

tendingto1and apositive onstant

K

3

su h that,forall

x ∈ Ω

S

n,1

(x) ≤ 2



α

+

1,n

a

+

n

(χ(x))

χ(x), k

χ(x)

+ K

3

, h

+



− α

1,n

a

n

(χ(x))

χ(x), k

χ(x)

− K

3

, h

 

,

(15) and

S

n,2

(x) ≤ 2



α

+

2,n

a

+

n

(χ(x))

χ(x), k

χ(x)

+ K

3

, h

+



− α

2,n

a

n

(χ(x))

χ(x), k

χ(x)

− K

3

, h

 

(16) where

h

±

:= h ± n

−η

. Sin e

inf

x∈Ω

k

x

→ ∞

,

h

±

= h(1 + o(1))

and thefun tion

γ

is bounded from

belowandabovebypositive onstants,adire tuseofProposition2shallthenleadto

sup

x∈Ω

S

n,1

(x)

P

−→ 0

and

sup

x∈Ω

S

n,2

(x)

P

−→ 0,

whi hwillthen on ludetheproofofProposition3. Toobtain(15)and(16),thefollowing

straightfor-wardresultswillbeuseful. Forall

(x, x

) ∈ Ω

2

su hthat

kx − x

k ≤ n

−η

andforall

i ∈ {1, . . . , n − 1}

,

|I{kX

i

− xk ≤ h} − I{kX

i

− x

k ≤ h}| ≤ I{h

≤ kX

i

− x

k ≤ h

+

}.

(17)

Furthermore,fromtheinequalities

|M

l

(x, h) − M

l

(x

, h)| ≤ C

h

(x

, n

−η

)

and

|M

l

(x

, h) − M

l

(x

, h

±

)| ≤ C

h

(x

, n

−η

),

thetriangularinequalityyields,forall

l ∈ {2, . . . , n}

,on

A

C

n,K

2

,

M

l

(x, h) − M

l

(x

, h

±

)

≤ 2C

h

(x

, n

−η

) ≤ 2K

2

.

(18) Espe ially,if

M

l

(x, h) > 1

andon

A

C

n,K

2

,

M

l

(x

, h

+

) − 1

M

l

(x, h) − 1

≤ 1 +

2K

2

M

l

(x, h) − 1

and

M

l

(x

, h

) − 1

M

l

(x, h) − 1

≥ 1 −

2K

2

M

l

(x, h) − 1

.

(19)

Letusrstfo usontheterm

S

n,1

(x)

. Itiseasyto seethat

D

i,l

(r)

(x, a, h) := |r

i,l

(x, k

x,a

, h) − r

i,l

(χ(x), k

χ(x),a

, h)| ≤ T

(r)

n,1

(x) + T

(r)

n,2

(x) + T

(r)

n,3

(x),

(16)

T

n,1

(r)

(x) =

|I{kX

i

− xk ≤ h} − I{kX

i

− χ(x)k ≤ h}|I{M

l

(χ(x), h) ≥ k

χ(x),a

}

M

l

(x, h) − 1

,

if

M

l

(χ(x), h) ≥ k

χ(x),a

and 0otherwise,

T

n,2

(r)

(x) =

|I{M

l

(x, h) ≥ k

x,a

} − I{M

l

(χ(x), h) ≥ k

χ(x),a

}|I{kX

i

− xk ≤ h}

M

l

(x, h) − 1

,

if

M

l

(x, h) ≥ k

x,a

or

M

l

(χ(x), h) ≥ k

χ(x),a

and0otherwiseand

T

n,3

(r)

(x) =

|M

l

(χ(x), h) − M

l

(x, h)|I{kX

i

− χ(x)k ≤ h}I{M

l

(χ(x), h) ≥ k

χ(x),a

}

(M

l

(x, h) − 1)(M

l

(χ(x), h) − 1)

,

if

M

l

(χ(x), h) ≥ k

χ(x),a

and 0 otherwise. Note that for

n

large enough, sin e

inf

x∈Ω

k

x,a

→ ∞

and (18)holds, if

M

l

(χ(x), h) ≥ k

χ(x),a

then

M

l

(x, h) > 1

andthusthe terms

T

(r)

n,i

(x)

,

i = 1, 2, 3

are

asymptoti allywelldened. Wenowstudyseparately thesethree terms. For

u ∈ R

, letusintrodu e

thequantities

ξ

+

(u) = sup

x∈Ω



1 +

2K

2

k

x,a

− u − 1



, ξ

(u) = inf

x∈Ω



1 −

2K

2

k

x,a

− u − 1



,

ζ

+

(u) = sup

x∈Ω

k

χ(x)

− k

χ(x),a

+ 1 + u

k

x

− k

x,a

+ 1

and

ζ

(u) = inf

x∈Ω

k

χ(x)

− k

χ(x),a

+ 1 − u

k

x

− k

x,a

+ 1

.

Clearly,forall

u ∈ R

,

ξ

±

(u)

and

ζ

±

(u)

onvergetooneas

n

goestoinnity. From(17),(18)and(19),

sin eforall

l ∈ {2, . . . , n}

,

i ∈ {1, . . . , n − 1}

and

x ∈ Ω

,

r

i,l

(x, ., h)

isade reasingfun tion,onehas

T

n,1

(r)

(x)

M

l

(χ(x), h

+

) − 1

M

l

(x, h) − 1

r

i,l

(χ(x), k

χ(x),a

, h

+

) −

M

l

(χ(x), h

) − 1

M

l

(x, h) − 1

r

i,l

(χ(x), k

χ(x),a

, h

)

≤ ξ

+

(2K

2

)r

i,l

(χ(x), k

χ(x),a

+ K

4

, h

+

) − ξ

(2K

2

)r

i,l

(χ(x), k

χ(x),a

− K

4

, h

),

(20)

where

K

4

= (a − 1)K

1

− 2K

2

− 1

. Similarly,sin e

|k

x,a

− k

χ(x),a

| ≤ (1 − a)K

1

+ 1

uniformlyin

x ∈ Ω

,

notingthat

|I{M

l

(x, h) ≥ k

x,a

} − I{M

l

(χ(x), h) ≥ k

χ(x),a

}| ≤ I{k

χ(x),a

+ K

4

≤ M

l

(χ(x), h) < k

χ(x),a

− K

4

}

yields

T

n,2

(r)

(x)

M

l

(χ(x), h

+

) − 1

M

l

(x, h) − 1

r

i,l

(χ(x), k

χ(x),a

+ K

4

, h

+

) −

M

l

(χ(x), h

) − 1

M

l

(x, h) − 1

r

i,l

(χ(x), k

χ(x),a

− K

4

, h

)

≤ ξ

+

(2K

2

− K

4

)r

i,l

(χ(x), k

χ(x),a

+ K

4

, h

+

) − ξ

(2K

2

+ K

4

)r

i,l

(χ(x), k

χ(x),a

− K

4

, h

).

(21)

Clearly

T

n,3

(r)

(x) ≤

K

2

ξ

+

(2K

2

)

k

χ(x),a

− 1

r

i,l

(χ(x), k

χ(x),a

+ K

4

, h

+

),

(22) and

K

2

ξ

+

(2K

2

)/(k

χ(x),a

− 1) → 0

uniformly in

x ∈ Ω

. Furthermore, using on e again (17), (18)

and(19),letting

K

3

= K

1

+ 2K

2

and

K

5

= K

3

− K

4

,onehas

ζ

(K

5

)s

l,a

n

(χ(x))

(χ(x), k

χ(x)

−K

3

, h

) ≤ s

l,a

(x, k

x

, h) ≤ ζ

+

(K

5

)s

l,a

+

n

(χ(x))

(χ(x), k

χ(x)

+K

3

, h

+

),

(23)

(17)

wherethesequen esoffun tions

(a

+

n

)

and

(a

n

)

aregivenby

∀ x ∈ Ω, a

±

n

(x) = 1 −

k

x,a

± K

4

k

x

± K

3

.

Colle ting(20)to (23)itiseasyto onstru ttwosequen es

1,n

)

and

+

1,n

)

tendingto1su hthat

D

(r)

i,l

(x, a, h)s

l,a

(x, k

x

, h) ≤ 2



α

+

1,n

r

i,l

(χ(x), k

χ(x),a

+ K

4

, h

+

)s

l,a

+

n

(χ(x))

(χ(x), k

χ(x)

+ K

3

, h

+

)

− α

1,n

r

i,l

(χ(x), k

χ(x),a

− K

4

, h

)s

l,a

n

(χ(x))

(χ(x), k

χ(x)

− K

3

, h

)



,

whi h on ludestheproofof(15). Wenowturn to

S

n,2

(x)

. Werststartfromthede omposition

D

l,a

(s)

(x, k

x

, h) := |s

l,a

(x, k

x

, h) − s

l,a

(χ(x), k

χ(x)

, h)| ≤ T

n,1

(s)

(x) + T

(s)

n,2

(x) + T

(s)

n,3

(x),

where

T

n,1

(s)

(x) =

|I{M

l

(x, h) ≤ k

x

} − I{M

l

(χ(x), h) ≤ k

χ(x)

}|I{kX

l

− χ(x)k ≤ h}

k

χ(x)

− k

χ(x),a

+ 1

,

T

n,2

(s)

(x) =

|I{kX

l

− xk ≤ h} − I{kX

l

− χ(x)k ≤ h}|I{M

l

(x, h) ≤ k

x

}

k

χ(x)

− k

χ(x),a

+ 1

,

and

T

n,3

(s)

(x) =

1

k

x

− k

x,a

+ 1

1

k

χ(x)

− k

χ(x),a

+ 1

I

{kX

l

− xk ≤ h}I{M

l

(x, h) ≤ k

x

}.

A onjointuseof(17),(18)and(19)leadsto

T

n,1

(s)

(x) ≤

I

{kX

l

− χ(x)k ≤ h

+

}I{M

l

(χ(x), h

+

) ≤ k

χ(x)

+ K

3

}

k

χ(x)

− k

χ(x),a

+ 1

I

{kX

l

− χ(x)k ≤ h

}I{M

l

(χ(x), h

) ≤ k

χ(x)

− K

3

}

k

χ(x)

− k

χ(x),a

+ 1

ζ

+

(K

5

)

ζ

(0)

s

l,a

+

n

(χ(x))

(χ(x), k

χ(x)

+ K

3

, h

+

) −

ζ

(K

5

)

ζ

+

(0)

s

l,a

n

(χ(x))

(χ(x), k

χ(x)

− K

3

, h

).

(24) Similarly,

T

n,2

(s)

(x) ≤

I

{h

≤ kX

l

− χ(x)k ≤ h

+

}

k

χ(x)

− k

χ(x),a

+ 1

I

{M

l

(x, h) ≤ k

x

}

ζ

+

(K

5

)

ζ

(0)

s

l,a

+

n

(χ(x))

(χ(x), k

χ(x)

+ K

3

, h

+

) −

ζ

(K

5

)

ζ

+

(0)

s

l,a

n

(χ(x))

(χ(x), k

χ(x)

− K

3

, h

).

(25) Next,(23)yields

T

n,3

(s)

(x)



+

(0) − 1) ∨ (1 − ζ

(0))



k

x

− k

x,a

+ 1

k

χ(x)

− k

χ(x),a

+ 1

s

l,a

(x, k

x

, h)



+

(0) − 1) ∨ (1 − ζ

(0))

 ζ

+

(K

5

)

ζ

(0)

s

l,a

+

n

(χ(x))

(χ(x), k

χ(x)

+ K

3

, h

+

).

(26) Remarking that

ξ

(0)r

i,l

(χ(x), k

χ(x),a

− K

4

, h

) ≤ r

i,l

(χ(x), k

χ(x),a

, h) ≤ ξ

+

(0)r

i,l

(χ(x), k

χ(x),a

+ K

4

, h

+

),

(27)

and olle ting(24)to(27),one anndsequen es

2,n

)

and

+

2,n

)

tendingto 1su h that

D

(s)

l,a

(x, k

x

, h)r

i,l

(χ(x), k

χ(x),a

, h) ≤ 2



α

+

2,n

r

i,l

(χ(x), k

χ(x),a

+ K

4

, h

+

)s

l,a

+

n

(χ(x))

(χ(x), k

χ(x)

+ K

3

, h

+

)

− α

2,n

r

i,l

(χ(x), k

χ(x),a

− K

4

, h

)s

l,a

n

(χ(x))

(χ(x), k

χ(x)

− K

3

, h

)



,

Figure

Figure 1: Choie of h J on a given sample: x− axis: bandwidth h , blue line: moving average σ , blak
Figure 2: Case ρ = −1 : the true funtion γ (solid line) and its smoothed Hill estimator b γ a (dashed
Figure 4: Case ρ = −1 : the true funtion γ (solid line) and its smoothed Hill estimator b γ a (dashed
Figure 6: Case ρ = −1 : boxplots of the ratios k ∗ x /M n (x, h ∗ ) for the smoothed Hill estimator b γ a .

Références

Documents relatifs

A main concern in extreme value theory (EVT) is the estimation of the tail index of RV functions that are tails of distribution functions.. Many estimators of this index have

As an alternative to these summary measures, one can work with functions that give a complete characterisation of the extremal dependence, like the spectral distribution

Estimating the conditional tail index with an integrated conditional log-quantile estimator in the random..

Maximum a posteriori and mean posterior estimators are constructed for various prior distributions of the tail index and their consistency and asymptotic normality are

From the Table 2, the moment and UH estimators of the conditional extreme quantile appear to be biased, even when the sample size is large, and much less robust to censoring than

The proposed estimator is compared to existing minimum density power divergence estimators of the tail index based on fitting an extended Pareto distribution and exponential

(4) As a consequence, in the bivariate case, the tail copula and the Pickands dependence function both fully characterize the extreme dependence structure of Y.. In [25], it is