• Aucun résultat trouvé

ANGSIZ: A general and practical method for calculating cosmological distances

N/A
N/A
Protected

Academic year: 2021

Partager "ANGSIZ: A general and practical method for calculating cosmological distances"

Copied!
13
0
0

Texte intégral

(1)

Phillip Helbig

February 1996

Note: Formoreinformation, seethearticle `Ageneral and

practi-cal methodfor calculatingcosmological distances'by RainerKayser,

Phillip Helbig and Thomas Schramm in Astronomy and Astrophysics,

1996.

a. General description

The ANGSIZ routine calculates the angular size distance b etween two objects

as a function of their redshifts. (In world models which have no big bang,

but contract from in nity to a nite size b efore expanding, there are two or

four indep endent distances. In these cases, the rst distance is returned by

ANGSIZ and the rest by the routine BNGSIZ .) The distance also dep ends on

thecosmological parameters 

0 ,

0

and (z). Thesearenotpassedto ANGSIZ

but rather to anauxiliary routine,INICOS ,whichcalculates allz-indep endent

informationfora givenworldmodel.

The result is in units of cH 01

0

. Multiply the result by 3 210 3

(actually

2 : 99792458210 3

)togetthedistanceinMp cforH

0 =100km1s 01 1Mp c 01 . One cande nehtob eH 0 inunitsofH 0 =100km1s 01 Mp c 01 . Thus,m ultiplyingby 3210 9

corresponds toanhof1. Forothervaluesofh,simplydivide theresult

byh,forexampleby0.5forH

0

=50km1s 01

Mp c 01

. (Beawarethathcanb e

and sometimes is de ned as 1 for other values of H

0

, usually 50. Sometimes

thisisindicatedbyasubscript, i.e. h

50 ,h

100

andso on.)

Thecallingsequenceisdescribedbelowin section b.

Allroutines areinabsolutelystandard FORTRAN77andhaveb een testedon

a num b erofdi erentcom binationsofcompiler/hardw are/OSsoessentiallythe

same numericalresultsshouldb eobtained everywhere.

i. INICOS

The routine INICOS takes the cosmological parameters and `user wishes' as

inputandcalculatesquantitiesneededbyANGSIZ |whicharerelayedinternally

to ANGSIZ |and also returns these to the calling routine. In addition, as in

ANGSIZitself, anerrormessage isreturned. INICOScanb e usedindep endently

ofANGSIZ ofcourse,butnottheotherwayaround.

INICOSreturnstheINTEGERvariableWMTYPE ,worldmodeltyp e,whichgives

aqualitativ eclassi cationofthecosmologicalmodel. Thetableshowsthe

corre-sp ondenceb etweenthevalueofWMTYPEandsome standardclassi cationsfrom

theliterature,andalsogivessomebriefinformationonthetemporalandspatial

prop erties ofthecorresponding worldmodel. The gureshows thelocationof

thevariousworldmodeltyp esin the

0

-0 -plane.

(2)

max 0 0 0 0 1 no yes no no <0 01 0 0 >0 O (0) 1(iii) 2 no yes no no <0 01 >0 >0 >0 O (1) 1(iii) 3 no yes no no <0 0 >0 >0 > 1 2 O (2) 1(ii) 4 no no no no <0 +1 >0 >0 > 1 2 O (3) 3(iv) 5 no no no no MTW 0 +1 >1 >0 > 1 2 O (4) 3(iv) 6 no no no no >0 +1 > 0 ; c > 0 ; c > 1 2 O (5) 3(iii)(a)

7 yes yes no no Milne 0 01 0 0 0 M

1 (1) 1(ii) 8 yes yes no no `LCDM' 0 01 >0 >0 0<q 0 < 1 2 M 1 (2) 1(ii)

9 (yes) yes no no Einstein-deSitter 0 0 1

1 2 1 2 M 1 (3) 2(ii) 10 yes yes no no >0 01 0 0 01<q 0 <0 M 1 (0) 1(i) 11 yes yes no no >0 01 >0 >0 01<q 0 < 1 2 M 1 (4) 1(i)

12 yes yes no no deSitter 1 0 0 0 -1 S 2(i)

13 yes yes no no `3CDM' >0 0 >0 >0 01<q 0 < 1 2 M 1 (5) 2(i)

14 yes no no no Lema^tre >0 +1 note note note M

1 (6) 3(1) 15 (yes) no no no >0 +1 0 ; c  0 ; c > 1 2 A 1 3(ii)(b)

16 (yes) no (yes) (no) Einstein >0 +1

0 ; c

=1

0 ; c

=1 1 E 3(ii)(a)

17 yes no yes no Eddington >0 +1

0 ; c  0 ; c <01 A 2 3(ii)(c)

18 yes no yes yes b ounce >0 +1 0<

0 < 0 ; c 0< 0 < 0 ; c <01 M 2 (1) 3(iii)(b)

19 yes no yes yes Lanczos >0 +1 0 0 <01 M

2

(0) 3(iii)(b)

Table 1. Classi cation of cosmological models as done by INICOS . Further information is provided in the text, particularly

concerningparen theticalexpressions and when `note' appears insteadof the expressionin question.

(3)

l

W

-4

-3

-2

-1

0

1

2

3

4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1

2

3

4

9

5

6

12

19

17

18

14

8

7

15

10

11

13

Figure1. Locationofvariouscosmologicalmodelsin the

0

-0

-plane.

A given worldmo del is eitheron aline orcurve segment(b ounded by at

leastonevertex), onavertexorinthespacebetweenthevariouslinesand

curves. The diagonal linecorresp onds to k=0,the verticalline to 0 =0,

the curve immediatelyto the right of this line divides mo dels whic hwill

eventually collapse(to the left) tothose whic hwill not(to the right)and

the curveatlowerrightdividesworldmo dels withabig bang(tothe left)

fromthosewithnobig bang(to the right).

WMTYPE referstotheclassi cation returnedbyINICOSas thevalueofthe

vari-ableWMTYPE .Thefollo wingcosmologicalmodelsarede nitively ruledout

byobservations: 1,7,10,12,16,17,18,19. 16isruledoutb ecause ithas

no expansion; the rest which aren't ruled out by the fact that they are

empty areruled outbythefact that a z

max

which isat leastas large as

the largestobserved redshiftimpliesa valuefor

0

which isso low as to

b e de nitivelyruledout.

t=1 answersthequestion whethertheuniverse willexpandforever or, more

precisely, is theopp osite of theanswer to thequestion `will the universe

collapse to R =0 in the future'. The subtletyarises b ecause of thefact

(4)

theymigh t`exist forever'. In theEinstein-de SittermodelWMTYPE 9 ,the

expansion rate asym totically approaches 0; the valueof the scale factor

R at t = 1 is, however, R = 1 . Thus, the universe expands forever,

although at t=1thevalueof _

R is0. TheEddington universe,WMTYPE

15 , expandsforever, as well, but at t =1 not only isthe valueof _

R 0

but R reachesa nite maxim umas well. TheEinstein universe, WMTYPE

16 , isstatic. It existsforever, but do esn'treally expandforever, sinceit

do esn't expandat all. R is xedata nite valueand _

R is0atalltimes.

R=1 answersthequestion whetherthe3-dimensionalspaceisin nitein

ex-tent. Itis in nitefor k=01 ork=0 and nitefork=+1(assuminga

simpletop ology).

9z

max If a z

max

exists, then there was no big bang. (In the de Sitter model

the big bang o ccurs at t = 01 .) Rather, the universe expands from

a minimum value of R . The static Einstein universe (WMTYPE 16 ) has

a redshift of 0 for allobjects, thus distance cannot b e determined from

redshiftinthis case.

bounce Iftherehasb eenab ounce,theuniverseisexpandingaftercontracting

from R =1 to R=R

min

. This means thatthere arefour indep endent

distancesforagivenredshift,unlessthedep endenceof onzisthesame

during thecollapsingandexpandingphases,inwhichcasethereareonly

two indep endent distances. (In theEinstein static universe,WMTYPE 16,

there areanin nitenum b erof distancesfortheonlyp ossible redshiftof

0.)

name referstoacommonlyusedtermforthegivenworldmodel. MTWrefers

to the fact that this world modelis discussed in Gravitation by Misner

et al. [ 1973]in x27.10and Box27.4as anexampleofthe typ eof

cosmo-logical model preferredby Einstein ( =0 b ecause Einstein preferred a

`simpler'universewithoutthecosmological constantafteritb ecameclear

thata)hisstaticmodelcannotdescribetherealuniverse,notevenasa0 th

approximation and b) non-static solutions with a cosmological constant

exist; k=+1 in orderto havenoproblemswith b oundary conditionsat

1 ). Thisworldmodelisnotedashavingb een`investigatedbyEinstein'in

Stab ell &Refsdal[ 1966]; thename`Einsteinuniverse',althoughp erhaps

more appropriate for this cosmological model, is historically irrevo cably

asso ciated with the static universe (WMTYPE 16 ). Milne's cosmological

model is not really our WMTYPE 7 , although it is equivalent; Milne had

G=0in hiskinematicrelativity,andeitherG=0 or=0hasthee ect

ofmakingtheexpansionindep endentofgravitation. `LCDM'referstothe

factthatthesecosmologicalparametersareusedinthetypical` l owdensity

standardcosmologicalmodel';hereCDMisanabbreviationfor` colddark

m atter',whichincludesdetailsonscalessmallenoughwherehomogeneit y

cannot b e used as an approximation and do esn't concern us here.

Nat-urally, global prop erties of cosmological modelsare indep endent of such

localstructure. Ofcourse, theparametersare thesame forLHDM(h ot)

and LHCDM (or LMDM: m ixed). `3CDM' refers to the fact that these

cosmologicalparameters areusedinthetypical`lo wdensity atstandard

cosmological model with a cosmological constant'. Note: our

`Edding-ton model' (WMTYPE 17) is referred to as the Lema^tre model in Stab ell

& Refsdal [ 1966] and as theEddington-Lema^tre model in Bondi[ 1961].

Harrison [ 1981] also usesour termEddington modelfor thiscase.

(5)

modelforthiscase.  0 therangeof 0 . k thesignof k. 0 the range of 0 . 0 ; c = 2  0 ; c . In WMTYPE 14, 0 ,  0 and q 0 can take on

allp ossible values,but notallcom binationsare p ossible. Sp eci cally,for

01 < q 0 < 1 2 ,  0 ; c ( 0 ; c

) has no meaning, and the range 0 < 

0 ; c is

allo wed. Otherwise, we m ust have

0 > 0 ; c ( 0 >  0 ; c ). (Of course, 0 =2  0 .)  0 therangeof  0 ;=0 : 52 0 .  0 ; c is de nedas  0 ; c = 1 6 ( q 0 +1 ) q 0 +16 s (q 0 +1 )  1 0 0 1 3  ! (SREq:12) In WMTYPE 14, 0 ,  0 and q 0

can takeon all p ossible values,but notall

com binationsare p ossible. Sp eci cally, for01<q

0 < 1 2 ,  0 ; c ( 0 ; c )has

no meaning,andtherange0<

0 ; c

is allo wed. Otherwise,wem usthave

 0 > 0 ; c ( 0 > 0 ; c ). q 0 the sign of q 0 ; q 0 =  0 0 0 . In WMTYPE 14, 0 ,  0 and q 0 can take on

allp ossible values,but notallcom binationsare p ossible. Sp eci cally,for

01 < q 0 < 1 2 ,  0 ; c ( 0 ; c

) has no meaning, and the range 0 < 

0 ; c is

allo wed. Otherwise,wem usthave

0 > 0 ; c ( 0 > 0 ; c ).

SR referstothedescriptionofcosmologicalmodelsinStab ell&Refsdal[ 1966,

p. 383]wheremodelsare classi edwitha schemesimilartothat usedby

INICOS .

HB Refers to the classi cation in chapter IX of Bondi [ 1961]. Since Bondi

implicitly assumes

0

>0,thisis notentirely correct inthecaseswhere

there is a qualitativ edi erence for

0

= 0, as in WMTYPE s 7, 10 and 12.

Inthiscase,q

0

isnever p ositive,so thequalitativ ecurvesgivenbyBondi

shouldb eextrap olatedbacktoR=0withoutthenegativecurvaturepart

at theb eginning.

ii. ANGSIZ

Thisroutinecalculatestheangularsizedistanceb etweentworedshifts(justone

ofthep ossibledistances intheb ouncemodels). This isdonebythenumerical

integrationofasecondorderdi erentialequation. (FordetailsseeKayser,

Hel-big&Schramm[ 1996].) Asfarasweknow,noanalyticsolutionforthegeneral

caseexists. AnadvantageofusingANGSIZevenwhenananalyticsolutionfora

sp ecial caseexistsis thatANGSIZ always givesa validresult, i.e. ,theequation

holdsforall cosmologicalmodelsand nocasesm ustb e distinguished. (ANGSIZ

is notrecommended for use in the Eddington model, WMTYPE 17. If the user

sp eci cally wantsto usetheroutines forthiscosmological model,itisp ossible

to allo wthis bydeclaringtheCOMMONblockARTHUR inthecallingroutine,

con-tainingalogicalvariable,whichshouldb eset to.TRUE.b eforecallingANGSIZ .

(6)

Thevariablegivesthefractionofhomogeneouslydistributedmatterinthe

cos-mological model. Onlargescales,homogeneit yisassumed,in accordance with

theRobertson-Walkermetric,theCosmologicalPrinciple, andso on. However,

onsmallerscales,mattercanofcourseb eclumped. Thefraction10ofmatter

isintheseclumps,whichmeansthattheyareoutside(andsucientlyfarfrom)

theconeoflightraysb etweensourceandobserver. (Ifaclumpofmatterisnear

orintheb eamitself,onem usttakeaccountofthisexplicitlyasa gravitational

lense ect.)

Itisimportanttoremem b erthatthevalueof|fora xedrealsituation|

dep endsontheangularscaleinvolved.Forexample,ahaloofcompactMACHO

typ eobjectsarounda galaxy ina distantclusterwould b ecountedamongthe

homogeneouslydistributedmatterifone wereconcernedwith theangular size

distancetobackgroundgalaxiesfurtheraway,butwouldb econsideredclumped

onscalessuchasthoseimportantwhenconsideringmicrolensingbythecompact

objects themselves. Thus, the clumps m ust have a scale comparable to the

separation oflightraysfromanextragalacticobjectorlarger.

Sincewedon'tknowexactlyhowdarkmatterisdistributed,di erentvalues

can b eexamined togetanideas as tohowthis uncertaintya ects whatever it

isoneis interestedin.

Ofcourse,canb eafunctionofz. Iftheuserwishes tob econstantforall

z,then thevariable VARETAshould b e setto .FALSE.when callingINICOS .In

thiscase,thevalueofETApassedtoINICOSdetermines. IfVARETAist.TRUE. ,

thenthevalueof ETAisirrelevantandisgivenbytheREAL FUNCTION ETA(Z) ,

whichtheusercanmodifyas needed. IfaconstantvalueofETAisdesired,this

canofcourseb eachievedthroughde ningtheFUNCTION ETA(Z)appropriately,

but this willtypicallymak ethe computingtime2{3 timeslongerthan setting

VARETAto .FALSE.andusing ETAtodeterminethevalueof.

iv. BNGSIZ

ThisSUBROUTINEBNGSIZisessentiallythesameasANGSIZexceptthatit

calcu-latestheotherthreedistancesinb ouncemodels. Aslong asETAZdo esn'tmak e

thevalueofdep endonwhethertheuniverseisexpandingorcontracting,there

is only one additional indep endent distance, D14 ; D34is the same as D12 and

D32isthesameisD14 . D12isthedistancereturnedbyANGSIZ ,whereb oththe

startingp ointand theend p ointoftheintegrationarein theexpansion phase.

D14hasitsstartingp ointZ1intheexpansionphaseanditsendp ointZ2inthe

contraction phase,thusthe angular size distance is foundby integratingfrom

Z1to ZMAXandbackto Z2 . D34hasb oth b oundariesin thecontractionphase,

and D32 its starting p oint in the contractionphase and its end p oint in the

expansionphase.

Ifoneisnotinterestedintheb ouncemodels,thisroutineisn'tneeded. Ifone

is only interestedin the `primary' distance in b ounce models,this is returned

byANGSIZ ,soalso inthiscaseBNGSIZisn'tneeded.

BNGSIZm ustb ecalled after callingANGSIZ :therearenoinputparameters;

(7)

know

Inthedescriptionsof theinputvariablesin theparameterliststotheroutines

calledbytheuserwealsoindicatearangeofsuggestedvaluesinsquarebrackets.

Ofcourse,othersarep ossible,buttheoneswesuggestcorrespondto

cosmolog-icalmodelswhicharenot rmlyruledoutbyotherarguments(andsomewhich

are) and have b een tested. Physically meaningless values should result in an

errormessage. Wedidn'tthinkitmeaningfultocheck theroutines for

correct-nessfor values outsidethese ranges. For output variables, therangeindicates

p ossible values. The mathematical and physical meaning of the variablescan

b efoundin Kayseretal.[ 1996].

i. INICOS

Theinterfaceto INICOSis

SUBROUTINE INICOS(LAMBDA,OMEGA,ETA,VARETA,DEBUG, C ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ C in C $ WMTYPE,MAXZ,ZMAX,BOUNCE,ERROR) C ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ C out

Theinputvariablesare:

REAL LAMBDA isthenormalisedcosmological constant. [ 010, :::,+10]

REAL OMEGA isthedensityparameter. [0, :::,10]

REAL ETA isthehomogeneit yparameter. [0, :::,1]

LOGICAL VARETA if.TRUE. meansthat isnotgivenbyETAbut bythevalue

returnedbytheREAL FUNCTION ETAZ .

LOGICAL DEBUG if.TRUE.meansthaterrormessagesshouldb ewrittento

stan-dardoutput.

Theoutputvariablesare:

INTEGER WMTYPE givessomeinformationab outthecosmologicalmodel(seethe

table). [1, :::,19]

LOGICAL MAXZ if.TRUE.indicatesthatamaxim umredshiftexists;onlyin this

caseisthevariableZMAXcorrectlyde nedandonlyinthiscaseshouldthe

variableZMAXb eused.

REAL ZMAX givesthemaxim um redshiftinthe cosmologicalmodel, ifLOGICAL

MAXZ is.TRUE. ;otherwise,themaxim umredshiftisin nite,andfor

con-veniencesetto zero.

LOGICAL BOUNCE if .TRUE. indicates that we have a `bounce' model (see the

table); onlyinthiscasecantheotherdistancesb e computedbyBNGSIZ .

INTEGER ERROR indicatesifanerrorhaso ccurredandwhatthismeans(see

(8)

Theinterfaceto ANGSIZis:

SUBROUTINE ANGSIZ(Z1,Z2, D12,ERROR)

C ^^^^^ ^^^^^^^^^

C in out

Theinputvariablesare:

REAL Z1 isa redshift;setZ1to 0 forthecommoncaseofthe`distance froma

normalobserver'. [0, :::,5]

REAL Z2 is a redshift; set Z2 to the redshift of the objectif one is interested

in the angular size distance from a `normal observer' to the object and

correspondingly Z1hasb eenset to0. [0, :::,5]

Theoutputvariablesare:

REAL D12 Is theangular size distance b etween Z1 and Z2 . In b ounce models

(and ofcoursein bigbangmodels)this corresponds tothedistance such

that the universe has always b een in a state of expansion b etween the

timesof lightemissionandreception.

INTEGER ERROR indicatesifanerrorhaso ccurredandwhatthismeans(see

sec-tionvi.). [0, :::,13]

ANGSIZisnotrecommendedforWMTYPE17,sincedistancescanb ecome

arbitrar-ily large, and thenecessary overhead would complicatethe routines to such a

degreethat `normal'p erformancewouldb e signi cantlyhampered. Iftheuser

sp eci cally wantsto usetheroutines forthiscosmological model,itisp ossible

toallo wthisbydeclaringtheCOMMONblockARTHURwithalogicalvariable,which

should b e set to .TRUE. in the calling routine. This will override the default

b ehaviour.

iii. BNGSIZ

Theinterfaceto BNGSIZis:

SUBROUTINE BNGSIZ(D14,D34,D32,ERROR)

C ^^^^^^^^^^^^^^^^^

C out

REAL D14 istheangularsize distanceb etweenZ1and Z2 . Thiscorresponds to

the distancesuch that theuniverse isnot in a stateofcontraction at Z1

and not in stateofexpansion atZ2 .

REAL D34 istheangularsize distanceb etweenZ1and Z2 . Thiscorresponds to

thedistancesuchthattheuniverseisinastateofexpansionneitheratZ1

nor atZ2 .

REAL D32 istheangularsize distanceb etweenZ1and Z2 . Thiscorresponds to

the distance such that theuniverse is not in a state of expansion at Z1

and not in astateofcontraction at Z2 .

INTEGER ERROR indicatesifanerrorhaso ccurredandwhatthismeans(see

(9)

Theinterfaceto ETAZis:

REAL FUNCTION ETAZ(Z)

which,b eing a functionwithno sidee ects, hasnooutput variables. Theone

inputvariableis:

REAL Z this is the redshift;  is a function of z and is given by this function

andnot bythevalueofETAsuppliedtoINICOSifVARETAis.TRUE. ;only

in thiscasewillETAZb eused.

TheCOMMONblockWHICHcontainstheINTEGERvariableCHOICE .If thisCOMMON

blockisalsointhecallingroutine,thenadecisioncanb emadethereastowhich

dep endencyof onz istob e used;seetheuseofCHOICEin ourexampleETAZ .

This is initialised in our BLOCK DATA COSANG and so should notb e initialised

bytheuser.

For b ounce models, it isof course p ossible that the dep endence of  on z

dep ends on whether the universe is expanding or contracting. Since VALUE2

is set to.TRUE. during thephaseof contraction and otherwiseto .FALSE.by

ANGSIZandBNGSIZ ,whichcanaccessVALUE2throughtheCOMMONblockCNTRCT ,

thisvariablecanb eusedinETAZordertohavetwodi erentdep endencies,asin

ourexample. Additionally,inthiscase, asinourexample,the valueof CHOICE

must benegative andotherwise mustbe positive. This distinctionisneededby

BNGSIZ inorder to avoidcalculatingD34andD32ifthese arenotindep endent

oftheotherdistances.

v. Calling sequence

Thus, one should call INICOS anew for each cosmological model tested,

indi-cating the cosmological model, whether or not  is to b e a constant or is to

b e calculatedby ETAZ andwhether or not errormessages are tob e displayed.

(ERRORisofcoursealwaysappropriatelyset.) Ifonewantstocalculatedistances,

thenANGSIZshouldb ecalledwithtworedshifts,andtheangularsizedistanceis

returned. OneshouldusetheoutputvariablesofINICOStodeterminewhether

or nottocall ANGSIZ .Ifdesired, ETAZ canb e used; it canalso b emodi edby

the user. The calling routinecan alsomak euseof theCOMMON block WHICH to

enabledi erentz dep endenciesof to b ecalculatedwithouthavingtochange

theco de,recompile andrelink foreach case. BNGSIZcanb e calledaftercalling

ANGSIZifone isinterestedintheadditionaldistancesinthecaseoftheb ounce

models.

vi. Error messages

There are fourteen p ossible `error states', namely the values [0, :::,13] of the

INTEGERvariableERROR .Errors1{3cano ccurinINICOS ,4{12inANGSIZ ,12{13

inBNGSIZ .(Thus,onlyoneerrorvariableisneededinthecallingroutine.) ERROR

isalways appropriatelyset; thevariable DEBUGmerelycontrols whether ornot

messages are written to standard output. Withthe exception of ERROR .EQ.

12 ,themessageisjusttheinformation containedin thefollo wingoverview.

0 Noerrorwasdetected.

(10)

whichcasethevalueofETAis irrelevant.) ETAZ ,however,checksto seeif

ETAiswithintheallo wedrange.

3 The world model is so close to the A2 curve that the calculation of ZMAX

is numericallyunstable. Thisusually happ ens|whenitdo es|very near

the de Sitter model. However, it should b e rare in practice, as noted

b elow. Even if one were able to calculate a goo d value for ZMAX , this

wouldprobablyleadto anerrorin ANGSIZifZ1orZ2isnearZMAX .

4 TheworldmodelisWMTYPE17. Inthisworldmodel,theuniverseisin nitely

old, and there is a nite ZMAX .This meansthat distances (especially for

 =0) can b ecome arbitrarilylarge. The routinesare notrecommended

forcalculationinthiscosmological model,sinceenablingthedetectionof

over owwould unnecessarilycomplicatetheroutines. Also,thepractical

value of ZMAX , used internally, would have to b e appreciable less than

the real ZMAX . If the usersp eci cally wants to use the routines for this

cosmological model, it is p ossible to allo w this by declaring the COMMON

blockARTHURwithalogicalvariable,whichshouldb esetto.TRUE.inthe

calling routine. Thiswilloverridethedefaultb ehaviour.

5 (Z1 .LT. 0.0)

6 (Z2 .LT. 0.0)

7 (Z1 .GT. ZMAX)

8 The valueof ZMAX returned byINICOS is thecalculated value; however,

in-ternally a somewhat smaller ZMAX is sometimes necessary for numerical

stability. ThisinternalvalueiscloseenoughtotherealZMAXforall

prac-tical purp oses (at worst it has an error of ab out 10 03

). This message

meansthatZ1isto olargefornumericalstability,b eingverynearthereal

ZMAX butslightlysmaller.

9 (Z2 .GT. ZMAX)

10 Thevalueof ZMAXreturnedbyINICOSisthecalculatedvalue;however,

in-ternally a somewhat smaller ZMAX is sometimes necessary for numerical

stability. ThisinternalvalueiscloseenoughtotherealZMAXforall

prac-tical purp oses (at worst it has an error of ab out 10 03

). This message

meansthatZ2isto olargefornumericalstability,b eingverynearthereal

ZMAX butslightlysmaller.

11 Over ow error is p ossible. Calculation can b e continued but the result

migh tnot b e as exact as usual or subsequent calculation with thesame

cosmological parametersmigh tleadtoan`unhandledexception'.

12 Very rare. This means an error haso ccurred deep down in the numerical

integration. IfDEBUGis.TRUE.thenamessagewillb eprintedidentifying

where.

13 ThismeansthatBNGSIZwas calledfora non-b ounceworldmodel.

When an error is returned, with the exception of 11, then none of the other

(11)

tines

Here isa shortdescriptionofalloftheSUBROUTINEsandFUNCTIONs:

BLOCK DATA COSANG initialisesCOMMONblockvariables.

SUBROUTINE INICOS isdescribedab ove.

REAL FUNCTION QQ calculatesQ 2

(z).

SUBROUTINE ANGSIZ isdescribedab ove.

SUBROUTINE BNGSIZ isdescribedab ove.

SUBROUTINE LOWLEV Performsthelow-levelintegration,mainlycallingODEINT .

SUBROUTINE ASDRHS calculatestherighthandsidesofthedi erentialequation

forthea ngulars izedistance

SUBROUTINE ODEINT isa`driver'routineforthenumericalintegration.

SUBROUTINE MMM isfor themodi edmidpointmethodused byODEINT .

SUBROUTINE POLEX p erforms p olynomialextrap olationusedbyODEINT .

SUBROUTINE BSSTEP p erformsone Bulirsch-Sto erintegrationstep.

REAL FUNCTION ETAZ isdescribedab ove.

i. Call tree [COSANG] [INICOS] | [QQ] [ANGSIZ] | [LOWLEV] | | [ODEINT] | | | [ASDRHS] | | | | [ETAZ] | | | [BSSTEP] | | | | [MMM] | | | | | [ASDRHS] | | | | | | [ETAZ] | | | | [POLEX] | [QQ] [BNGSIZ] | [LOWLEV] | | [ODEINT] | | | [ASDRHS] | | | | [ETAZ] | | | [BSSTEP] | | | | [MMM] | | | | | [ASDRHS] | | | | | | [ETAZ] | | | | [POLEX] | [QQ]

(12)

Thefollo wingCOMMONblocknames areusedand, sincetheseare globalnames,

should notb eused inacon ictingwayinanyotherroutines: COSMOL ,ANGINI ,

WHICH ,BNCSIZ ,LOWSIZ ,CNTRCT ,ARTHUR ,MERRORandPATH .Withtheexception

of the optional WHICH , all of these are used internally and need not further

concern the user. The same is true of the SUBROUTINE and FUNCTION names

listedab ove(exceptforINICOS ,ANGSIZ ,BNGSIZ andETAZ ,ofcourse.)

Therestofthissectionshouldb eofabsolutelynoconcerntoalmostallusers,

since `incorrect' resultsdue to the reasons discussed b elow should only o ccur

duetoroundo errorcorrespondingtoaridiculousaccuracyinthecosmological

parameters; in most of these cases this would onlyb e in world models which

areuninterestingb ecause theyareruledoutconclusively(seethetable).

ThevalueofWMTYPEcandi erfromthe`real'valueascalculatedanalytically

from

0 and

0

butonlyifoneissoclosetotheb oundaryb etweentworegionsof

parameterspace thatthis happ ensdue to ordinaryinexactnessin the internal

representation of `real' num b ers. The same goes for the values of MAXZ and

BOUNCE ,sincetheseare triviallyrelatedtoWMTYPE .TheA1andA2curves(see

Stab ell&Refsdal[ 1966]),correspondingtoWMTYPE s15and17,haveb een`drawn

with anumerically thick p encil'but thisshould onlyb e noticeablefor LAMBDA

and OMEGA values precise to 10 05

. This is also true of the endp oints of the

curves,WMTYPE s9 and12. WMTYPE16cannotb ereturnedbyINICOS ,sincethis

corresponds to thestaticEinstein cosmological model,in which

0 and

0 are

b oth =1 . The valueof ZMAX is probably exact in the third gure after the

decimalp oint forworldmodelsextremelynear the A1orA2curve; otherwise,

itisas goo dasanynumericallycalculatedquantity.

ThevaluesofD12andD34returnedshouldb ecorrectinthethirddigitafter

the decimal p oint and shouldn'tb e o by more than one digit in the fourth.

The values of D14and D32 areprobably somewhatless precise, correct in the

second decimaldigit.

e. Development and tests

ThedevelopmentandmosttestingoftheroutineswasdoneonaDigitalVAXStation

3100 Mo del 76 running VMS 5.5-2and with DEC FORTRAN. To mak esure

that numericalaccuracyis monitored ina robustway,comparisonsweremade

tothefollo wingsystems:

 DEC ALPHA4000/710,VMS, DECFORTRAN(FORTRAN 77 )

 DEC ALPHA4000/710,VMS, DECFORTRAN90

 CrayC916,UNICOS8,nativeFORTRAN 77compiler

 ConvexC3840andC220, ConvexOS11.0,nativeFORTRAN 77

 DSM In nity8000,SCO-UNIX,GreenHillsFortranVersion1.8.5

 Fujitsu/SiemensS100,UXP/M,UXP/MFortran77EX/VP(V12)

 Hewlett-Packard9000/735,HPUX,nativeFORTRAN 77andFortran90

com-pilers

 IBMRS/6000,AIX,xlf90

(13)

 IBMRS/6000,AIX,xlf90,optimisation-qarch=pwr2

 `genericInTelPC', Linux,f2c+gcc

 IntelPentium,MS-DOS, LaheyFortran90

 Apple PowerMac 6100/60, MacintoshOSD 7.5, LanguageSystems

For-tran PPC

 IBM9121-440,MVS,VSFORTRAN

f. Updates

Corrections, up dates andso onwill b e p ostedunder thesubject`ANGSIZ' in

the newsgroup sci.astro.research. Commen ts, bug rep orts, etc. should b e sent

byemailtophelbig@hs.uni-hamburg.de .Pleaseput`ANGSIZ'inthesubject

line.

g. Disclaimer

We'vetested the routines to a greater degree than usual for serious scienti c

work,thoughofcoursenotasextensively asfor(serious)commercialsoftware.

To the b est of our knowledge, they work as described, but of course we can

takenoresponsibilit yfortheconsequences ofanyerrorsin theco de. Asfar as

p ossiblewewillcorrectanyerrors;inanycasewewillmak ethemknowninthe

newsgroupp osting.

References

[1986] Berry, M.V.: CosmologyandGravitation

Bristol: AdamHilger,1986

[1961] Bondi,H.: Cosmology

Cam bridge: Cam bridgeUniversityPress,1961

[1981] Harrison,E. R.: Cosmology,the science ofthe universe

Cam bridge: Cam bridgeUniversityPress,1981

[1996] Kayser, R., P. Helbig, T. Schramm: `A general and practical

methodfor calculatingcosmologicaldistances'

A&A(accepted)

[1973] Misner,C.W.,K.S. Thorne,J.A.Wheeler: Gravitation

NewYork: Freeman,1973

[1966] Stab ell,R., S.Refsdal: `Classi cationofgeneralrelativisticworld

models'

Figure

Figure 1. Location of various cosmological models in the

Références

Documents relatifs

First the human operator have to describe the problem (see function 1) giving the cardinality of Θ, the list of the focal elements and the corresponding bba for each experts,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

To overcome this modeling uncertainty, we combine SZ obser- vations of both the number counts and the angular correlation function with constraints arising from the local abundance

There are two cases when removing constraints is unavoidable: a) the number of active variables is already N + I. Any further active constraint is linearly dependent on the

Traversal time (lower graph) and transmission coefficient (upper graph) versus the size of the wavepacket for three different values ofthe central wavenumber, k = 81r/80 (dashed

Anatomie Anesthésie Réanimation Anesthésie Réanimation Biochimie Cardiologie Chimie Thérapeutique Chirurgie Cardio-vasculaire Chirurgie Cardio-vasculaire Chirurgie Générale

&#34;Green's relation&#34; results in a larger variance of the average energy so convergence is not as rapid but the method permits the use of a scaling rela- tion so that

The absolute magnitude M and apparent magnitude m of a Cepheid star can be also related by the distance modulus equation (1), and its distance d can be