• Aucun résultat trouvé

On two-phase flow solvers in irregular domains with contact line

N/A
N/A
Protected

Academic year: 2021

Partager "On two-phase flow solvers in irregular domains with contact line"

Copied!
36
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID : 16005

To link to this article :

DOI:10.1016/j.jcp.2016.06.013

URL :

http://dx.doi.org/10.1016/j.jcp.2016.06.013

To cite this version :

Lepilliez, Mathieu and Popescu, Elena Roxana and Gibou, Frédéric

and Tanguy, Sébastien On two-phase flow solvers in irregular

domains with contact line. (2016) Journal of Computational Physics,

vol. 321. pp. 1217-1251. ISSN 0021-9991

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

On

two-phase

flow

solvers

in

irregular

domains

with

contact

line

Mathieu Lepilliez

a,b,c

,

Elena

Roxana Popescu

a

,

Frederic Gibou

d,e

,

Sébastien Tanguy

a,∗

aInstitutdeMécaniquedesFluidesdeToulouse,2bisalléeduProfesseurCamilleSoula,31400Toulouse,France bCentreNationald’EtudesSpatiales,18AvenueEdouardBelin,31401ToulouseCedex9,France

cAirbusDéfence& Space,31AvenuedesCosmonautes,31402ToulouseCedex4,France

dDepartmentofMechanicalEngineering,UniversityofCalifornia,SantaBarbara,CA93106-5070,UnitedStates eDepartmentofComputerScience,UniversityofCalifornia,SantaBarbara,CA93106-5110,UnitedStates

Keywords:

Sharpinterfacemethods Irregulardomains Implicitviscosity Contactlines Levelsetmethod Ghost-FluidMethod

Wepresentnumericalmethods thatenablethedirect numericalsimulationoftwo-phase flowsinirregulardomains.Amethodispresentedtoaccountforsurfacetensioneffectsin ameshcellcontainingatriplelinebetweentheliquid,gasandsolidphases.Ournumerical methodis based onthelevel-set method tocapture theliquid–gasinterfaceand onthe single-phaseNavier–Stokessolverinirregulardomainproposedin[35]toimposethesolid boundaryinanEulerianframework.Wealsopresentastrategyfortheimplicittreatment oftheviscoustermandhowtoimposebothaNeumannboundaryconditionandajump conditionwhensolving for thepressure field. Special careisgiven on howto takeinto accountthe contactangle, the no-slipboundary condition for thevelocity fieldand the volumeforces.Finally,we presentnumericalresults intwoandthreespatialdimensions evaluatingoursimulationswithseveralbenchmarks.

1. Introduction

Multiphaseflows areubiquitous inmostmodern processing technologyand arecritical to theunderstandingofawide

range of physical and biological phenomena. Consequently, the design of numerical methods enabling the simulation of

multiphaseflowsisthesubjectofintenseresearch.Whenconsideringsolidboundaries,explicitdescriptionsofthegeometry

have demonstratedresults ofsuperior accuracy inthecaseofone-phaseflows,whencompared toimplicitrepresentations

ofthegeometry.Indeed, body-fittedgridscanbeconstructedtoenabletheaccuratetreatmentofboundaryconditionsand

to capture the rapid variations of the solution near walls, e.g. the turbulent boundary layer in high speed flows. In the

caseofmultiphaseflows, however, body-fittedapproachesareless practicalsinceconformingmeshmustbereconstructed

several time duringthe courseofa simulation.This is,for example, thecase ofthe simulationofbubbly flows or sprays,

where the fluid interface can be strongly deformed and stretched. The automatic meshing necessary in such cases is a

difficulttaskandinturn,theresulting meshcouldlackthequalityneeded toguaranteeaccuratenumericalresults.

Since the pioneer work of Peskin [38], introducing the immersed boundary method, an important research effort has

been devotedtothedevelopment ofEulerianfluidsolversinirregulardomains.Thesemethodshavetheadvantagethatno

(3)

remeshingisnecessaryduringthecourseofasimulationinthecaseofuniformgrids.Ifadaptive gridsareemployed,then

the remeshingisstraightforward sincethe free boundaryis embeddedinthe grid. Twoclasses ofmethodshave emerged

in the Eulerian framework: ‘delta’ formulations, where the Dirac distribution representing surface forces is approximated

by a regularized function [54] (and the references therein) and ‘sharp’ approaches, where jump conditions at the free

boundaryareenforcedatthediscretelevel [15,19,22,32,40,43,52,53,64,66](andthereferencestherein).Formulationsbased

onregularizedDiracdistributionsprovideapathwaytoeasilyextendsingle-phasetomultiphasesolvers[8,49].Ontheother

hand, these methods sufferfromdrawbacks that limittheir useinsome applications due totheinherent smearingofthe

solution near interfaces. Althoughefficient adaptive meshrefinement techniques [2,20] can help reduce the extent ofthe

smearingbyimposingincreasedresolutionwhereneeded, ‘sharp’numericalmethodsarestilldesired insome applications.

Thesemethods,however,aredifficulttodesign duetothedifficultyofimposingboundaryconditionsimplicitly.

While several works have been presented in thelast decade on immersed boundarymethods for incompressible

one-phase flows [4,25,31,33–35,56,57,59,63,65], only afew [29,36,58] have been dedicatedto incompressible two-phase flows,

especially inthecase whereacontact lineoftheliquid–gasinterface isformedon theembedded solidboundary. Insuch

a situation, two different interfaces must bemanaged in a computational cell, and the numerical solver for the pressure

mustimpose botha jumpconditionbetween theliquidandthegasto accountfor surfacetensioneffects and aNeumann

boundarycondition betweenthefluidand thesolidphasetoimposetheno-slip boundarycondition.

An attractive immersed boundary method for one-phase flows, based on a finite volume discretization of the Laplace

operator, has been proposed in [35]. Itenables to impose solid boundary conditions on the pressure and on thevelocity

with a second-order spatial accuracy and to maintain the symmetric definite positiveness of the resulting linear system.

Consequently, standardmethodssuch asthepreconditionedconjugategradient can beused toinvertefficiently thelinear

system.

Inthispaper,we proposeto extendtheworkof[35]to themorecomplex situation oftwo-phaseflows.Indeed, toour

knowledge, only a few methods are dedicated to thenumerical simulation of multiphase flows in irregular domains. As

two-phase flows are involved, surface tension has to be accounted for, even in the case where solid, liquid and gas are

present in thesame computationalcell. To that extent, we have developed a newnumerical scheme to account for both

a pressure jumpcondition due tothesurface tensionand aNeumanncondition on thesoliddomain inthesamecells,as

described in section 3.2. This spatialdiscretization enables thetreatment of volume forces inside themesh cells that are

crossedbythecontactline.Insection3.3,specificdetailsaregivenonhowtoperformanimplicittemporaldiscretizationof

theviscoustermswithacoupledlinearsysteminvolvingallthevelocitycomponents,whileimposingthejumpconditionon

viscosity.Insection3.4,wedescribehowtoenforcetheDirichletboundaryconditiononthevelocityfieldincomputational

cells crossed by the solid boundary, in order to ensure the no-slip boundary condition. To our knowledge, solving such

a coupled system with an immersed boundary condition has never been addressed in the existing literature. Finally, we

discuss insection 3.5howtoimposetheappropriatecontactanglebyextrapolatingtheliquid–gaslevel-setfunctioninside

thesoliddomainwithaniterativePDE.

Severalbenchmarksareproposedinsection4.Inthefirstpartofsection4,one-phaseflow simulationsarepresentedin

order to compare twopossible approachesto compute theviscous terms intwo and threespatial dimensions.Next,

test-cases involvingtwo-phaseflows in acomplex geometry(dropletdeposited on aslanted wall, half-filled rotatingspherical

tank) are presented and compared to theoretical solutions in order to highlight the behavior of the proposed numerical

methods for thecomputation of the surface tensionand the volume forcesin the grid cellsthat areboth crossed bythe

liquid–gas interface and the solid boundary. Orders of accuracy are difficult to determine for such simulations, however

grid sensitivitystudiesarepresentedforallthebenchmarksinordertoascertainthatallthecomputationsconvergetothe

correct solution.

2. Equationsandstandardprojectionmethods

The Navier–Stokes equations describe the motion of fluids at the continuum level. However, their formulations and

approximations depend on how surface forcesare represented. Nevertheless, standard state-of-the-art numerical

approxi-mationsarebasedontheprojectionmethodforsingle-phaseflows,introducedbyChorin[11].

2.1. Single-phaseflows

Consider a domain Ä= Äl∪ Äs with boundary ∂Ä. The regions Äl and Äs represent the fluidand solid regions,

re-spectively. Theboundarybetweenthefluidand thesolidisdenotedbyŴs.Theincompressible Navier–Stokesequationsfor

one-phaseNewtonianflowsarewrittenas:

∇ ·

u

=

0 in

Ä

l

,

ρ

µ ∂

u

t

+ (

u

· ∇)

u

= −∇

p

+

µ

1

u

+

ρ

g in

Ä

l

,

where t theistime,

ρ

thefluiddensity,u= (u,v,w) thevelocity field,

µ

theviscosity assumed constant, p the pressure and g theaccelerationduetogravity.

(4)

Fig. 1. The computational domain in the case of two-phase flows in irregular domains.

Inthecaseofsingle-phaseflows,ChorinusedtheHodgedecompositionofvectorfields,todesignathree-stageprojection method to solvetheNavier–Stokes equations[11]:first, given a velocity un at timetn=n1t,anintermediate velocity u

canbecomputedforatimestep1t withoutconsideringthepressurecomponent:

u

=

un

− 1

t

µ

¡

un

· ∇

¢

un

µ

1

u n

ρ

g

.

Second,thepressurefield pn+1 servesasthescalarfunctionoftheHodgedecomposition, satisfying:

∇ ·

µ ∇

p n+1

ρ

=

∇ ·

u

1

t

,

(1)

withhomogeneousNeumannboundaryconditionson ∂Äandnon-homogeneousNeumannboundaryconditionon Ŵs:

ns

·

p

ρ

¯

¯

¯

¯

Ŵ s

=

ns

·

¡

u

us

¢¯

¯

Ŵs

,

where us is thespecifiedvelocity fieldon thesolid’sboundary. Finally, thefluidvelocity un+1 isdefined at thenewtime

steptn+1 astheprojectionofu∗ ontothedivergence-freespace: un+1

=

u

− 1

t

p

n+1

ρ

.

2.2. Two-phaseflows

Consideracomputationaldomain,Ä,thatcontainssolid,liquidandgasregionsdenotedbyÄsl andÄg,respectively1

(see Fig. 1).We call Ŵ theliquid’s boundary and n its outwardnormal. Likewise, we callŴs thesolid’s boundary and ns

its outward normal. Finally, ∂Ä denotes the boundary of Ä. The incompressible Navier–Stokes equations for Newtonian

two-phase flowscanbedescribed differently, whetherthejump conditionsareconsidered asfunctionsin theentire

com-putational domain,orassharpjumpconditionslocallyappliedtothedensity,viscosityand pressurefield.Inwhatfollows,

we brieflypresentthemainformulationsthat areused, keepinginmindthatanimplicitformulationoftheviscous terms

must be favored to perform computations on irregular domains because an immersed Dirichlet boundary condition has

to beimposed on thevelocity field. Indeed, asasubcell resolution isused to compute thisboundary condition, temporal

stabilityofthecomputationcannotbeachievedbyusinganexplicittemporaldiscretization,see[18]formoredetails.

2.2.1. The“delta”formulation

The“delta”formulation[44,49]writestheNavier–Stokesequationsfortwo-phaseflowsas:

∇ ·

u

=

0

,

ρ

µ ∂

u

t

+ (

u

· ∇)

u

= −∇

p

+

ρ

g

+ ∇ ·

³

2

µ

D

´

+

σ κ

n

δ

Ŵ

,

where

σ

isthesurface tension,

κ

is theinterfacelocalmeancurvature, δŴ amultidimensionalDirac distributionlocalized

attheinterface,and D therate-of-deformationtensordefinedas:

(5)

D

=

u

+ ∇

u

T

2

.

Thedensityand theviscosityarepiecewiseconstantandonlyvaryacross theinterface.Theycanthenbedefinedas:

ρ

=

ρ

l

+

HŴ

(

ρ

g

ρ

l

),

µ

=

µ

l

+

HŴ

(

µ

g

µ

l

),

with HŴ denotingtheHeaviside distribution,equalto 1in theliquidand 0inthegasphase, withthefollowingdefinition

fordensity andviscosityjumpconditions:

[

ρ

] =

ρ

l

ρ

g

,

[

µ

] =

µ

l

µ

g

.

When applying a projection method to the “delta” formulation, one obtains thefollowing explicit discretization: first,

solveforanintermediatevelocity fieldu1 with

u1

=

un

− 1

t

¡

un

· ∇

¢

un

∇ ·

³

2

µ

n+1Dn

´

ρ

n+1

σ κ

n+1

ρ

n+1 n

δ

Ŵ

g

.

In therestof thepaper,we omitthe subscriptson

κ

and

µ

, whichare alwaysestimatedattn+1.Second, solveaPoisson

equationtodetermine theHodgefield:

∇ ·

µ ∇

p n+1

ρ

n+1

=

∇ ·

u ∗ 1

1

t

.

And finallyproject u

1 ontothedivergence-freevelocityfield:

un+1

=

u1

− 1

t

p n+1

ρ

n+1

.

ThisnumericalschemeisusuallyusedintheframeworkoftheContinuumSurfaceForce(CSF)model,whichrequiresthe

definitionofsmoothedfunctionsδǫ and Hǫ toapproximate theDirac andHeavisidedistributions.Theease of

implementa-tionofthismethodcomes withdrawbackofartificiallythickeningtheinterface.UnliketheCSFmodel,the“sharp”interface

approach[24,39,50]buildsasharpdiscretizationofsingularsourceterms,avoidingtheintroductionofafictitiousinterface

thickness.Some detailsonthetheoreticalequivalencebetween thejumpcondition formulationand the“delta”formulation

isdetailedin[26,27].

2.2.2. TheGhost-FluidPrimitiveviscousMethod

Asplittingontheviscous-stresstensorcanbeapplied:

∇ ·

³

2

µ

D

´

=

2

µ

∇ ·

³

D

´

+

2

[

µ

]

un

n

δ

Ŵn

=

µ

1

u

+

2

[

µ

]

³

nT

· ∇

u

·

n

´

δ

Ŵn

.

(2)

Thisleadstoanewpossibledescriptionoftheintermediatevelocity,whereajumpcondition intheviscoustermhastobe

imposed.Thereadermayfindadetaileddemonstrationofequation(2)inAppendix A.

In[24],theauthorsproposedasharpinterfacemethodforincompressibletwo-phaseflowsbasedontheprinciplesofthe

Ghost-FluidMethod[15,28].Thisapproachiswidelyused intheliterature,eventhoughitisfirst-orderaccurateforsolving

the Poisson equation withjump conditions. In [21], asecond-order approachhas been developed, but notyet applied to

Navier–Stokes equations.TheGhost-FluidMethodintroducedin[24]canbedescribedbrieflyasproposedin[26]:first,the

intermediatevelocity u∗ 2 isupdatedwith u2

=

un

− 1

t

µ

¡

un

· ∇

¢

un

µ

1

u

ρ

n+1

g

.

Next, thePoissonequationforthepressureissolvedwiththeappropriatejumpcondition:

∇ ·

µ ∇

p n+1

ρ

n+1

=

∇ ·

u ∗ 2

1

t

+ ∇ ·

Ã

σ κ

+

2

[

µ

]

¡

nT

· ∇

u

·

n

¢

n

ρ

n+1

δ

Ŵn

!

.

(6)

un+1

=

u2

1

t

ρ

n+1

Ã

pn+1

µ

σ κ

+

2

[

µ

]

³

nT

· ∇

u

·

n

´

n

n

δ

Ŵ

!

.

Thismethodhas beendubbedtheGhost-FluidPrimitiveviscous Method(GFPM)in[26].In thisframework,the

compu-tation oftheviscousterms requiresto determineexplicitly thejump conditionon theprojected viscousstresses. As these

jumpconditionsdependonthenumericalsolution,achievingafullyimplicittemporaldiscretizationoftheviscoustermsis

notastraightforwardtaskinthecaseoftheGFPM.Dependingon whethertheCSFformulationortheGFPM formulationis

used, theintermediatevelocity inthepredictionstepisdifferent.Even thoughthesetwo methodsareformallyequivalent,

theyleadtodifferentdefinitionsofthepredictedvelocityfieldintheprojectionstep.

2.2.3. TheGhost-FluidConservativeviscousMethod

In[50],Sussmanetal.introducedanotherformulationfor theintermediatevelocityfield,which refersto asthe Ghost-FluidConservativeviscousMethod(GFCM)in[26].Inthiscase,theintermediatevelocity u

3 isobtainedas: u3

=

un

− 1

t

µ

¡

un

· ∇

¢

un

1

ρ

n+1

∇ ·

³

2

µ

Dn

´

g

.

Next, thePoissonequationissolvedtodeterminethepressure field:

∇ ·

µ ∇

p n+1

ρ

n+1

=

∇ ·

u ∗ 3

1

t

+ ∇ ·

µ

σ κ

n

δ

Ŵ

ρ

n+1

.

Finallyinthecorrectionstep,thephysicalvelocity fieldcanbedeterminedwiththepressurefieldpreviouslycomputed:

un+1

=

u3

1

t

ρ

n+1

(

p

n+1

σ κ

n

δ

Ŵ

).

In order to remove the O¡1x

time step restriction incurred by the viscosity term, the following implicit temporal

discretization isused, referred toin thispaperasthe Ghost-FluidConservativeMethod withan Implicitscheme(GFCMI):

theintermediatevelocityu

4isupdatedas:

ρ

n+1u4

− 1

t

∇ ·

³

2

µ

D

´

=

ρ

n+1

¡

un

− 1

t

¡¡

un

· ∇

¢

un

g

¢¢ ,

(3)

which leadstoalargelinearsystemwherethethreevelocitycomponentsarecoupled.Thesubsequentstepsaresimilarto

theoneusedinGFCM,withthecomputationofthepressurefield:

∇ ·

µ ∇

p n+1

ρ

n+1

=

∇ ·

u ∗ 4

1

t

+ ∇ ·

µ

σ κ

n

δ

Ŵ

ρ

n+1

,

followed bythecorrectionstep:

un+1

=

u4

1

t

ρ

n+1

(

p

n+1

σ κ

n

δ

Ŵ

).

2.2.4. TheGhost-FluidSemi-ConservativeMethod

Finallyin[26]theauthorsproposedasemi-conservativeformulationfordiscretizingtheviscousterm,referredtointhis

paperastheGhost-FluidSemi-Conservative MethodwithanImplicitscheme(GFSCMI).Startingwiththesplitting:

∇ · (

2

µ

D

)

= ∇ · (

µ

u

+

µ

Tu

)

=∇ · (

µ

u

)

+ ∇ · (

µ

Tu

)

=∇ · (

µ

u

)

+ ∇

Tu

· ∇

µ

+

µ

∇ · (∇

Tu

)

=∇ · (

µ

u

)

+ [

µ

]∇

Tu

·

n

δ

Ŵ

,

where ∇ · (

µ

u) isaformalequivalentoftheone-phaseflow formulationofviscouseffects. Thereforeeachcomponent is

solved independently fromthe others,asthe cross-termsofthe viscousterm in [

µ

]∇Tu

·nδŴ are enforcedexplicitly asa

jumpcondition.Thepredictionstepis:

ρ

n+1u5

− 1

t

∇ ·

³

µ

u5

´

=

ρ

n+1

Ã

un

− 1

t

µ

¡

un

· ∇

¢

un

g

!

.

(7)

∇ ·

µ ∇

p n+1

ρ

n+1

=

∇ ·

u ∗ 5

1

t

+ ∇ ·

à ¡

σ κ

+ [

µ

]

¡

nT

· ∇

u

·

n

¢

n

¢

ρ

n+1 n

δ

Ŵ

!

.

(4)

Finally, thecorrectionsteptocomputethedivergencefree velocityis:

un+1

=

u5

1

t

ρ

n+1

Ã

pn+1

µ

σ κ

+ [

µ

]

¡

nT

· ∇

u

·

n

¢

n

n

δ

Ŵ

!

.

(5)

Remark.Theimplementationofanimplicittemporaldiscretizationoftheviscoustermsiseasierwiththismethod(GFSCMI)

than GFCMI.Indeed if GFSCMIisused,eachvelocity componentcan becomputedbysolvingasimple linearsystem

(sym-metricdefinitepositive)thatdoesnottreatcross-derivativesimplicitly.However,eventhoughGFCMItreatscross-derivatives

implicitly, afew iterations ofGauss–Seidel suffice forconvergence and theresults are superior toGFSCMI. Thesemethods

are compared in section 3.4 to offer some insight on how velocity boundary conditions should be enforced on irregular

domains.

2.2.5. Anoteonthetimestepconstraint

Letusremarkthat,unlikeGFCMI,GFSCMIdoesnotfullyremovethestabilityconstraintonthetimestepduetoviscosity,

sinceanexplicitpartdependingontheviscosityjumpconditionremainsinequation(5).Therefore,asithasbeendiscussed

in[26],astabilityconstraintdependingontheviscosityjumpconditionmustbeimposedtoensurestabilityofthemethod.

Specifically,thefollowingstandardtimestepconstraintsfortheconvectionandthesurfacetensioneffects,mustbeimposed

toensurethetemporalstabilityofthecomputation:

1

tconv

=

1

x max

|

u

|

,

1

tsurf_tens

=

1 2

r

ρ

l

σ

1

x 3/2

,

foraglobaltimesteprestriction of: 1

1

t

=

1

1

tconv

+

1

1

tsurf_tens

.

(6)

IfGFSCMIisused,thefollowingconstraintmustbeaddedtoaccountforthejumpconditiononviscosityinequation(5):

1

tvisc

=

ρ

[

µ

]

1

x 2

,

where

ρ

istheaveragedensity ofthetwophases.Thisleadstoanewglobaltimesteprestriction givenby:

1

1

t

=

1

1

tconv

+

1

1

tsurf_tens

+

1

1

tvisc

.

2.3. Anoteonsolid’sboundaryconditionsformultiphaseflows

As stated earlier, when irregular domains are handled, Neumann boundary conditions on the domain boundaries are

enforcedonŴs thefluid–solidinterfaceforthepressurefield.ItleadstothefollowingrelationforGFCMI:

ns

·

p

ρ

¯

¯

¯

¯

Ŵs

=

ns

·

¡

u

us

+

σ κ

n

δ

Ŵ

¢¯

¯

Ŵs

,

and forGFSCMIas:

ns

·

p

ρ

¯

¯

¯

¯

Ŵs

=

ns

·

Ã

u

us

+

³

σ κ

+ [

µ

]

¡

nT

· ∇

u

·

n

¢

n

´

n

δ

Ŵ

¯

¯

¯

¯

Ŵ s

.

Onecannoticethatjumpconditionshavetobetakenintoaccountontheirregulardomainaswell.Section3willdiscuss

thenumericaldiscretizationofthese boundaryconditions.

3. Numericalmethods

Inthissection,weprovidethedetailsofthenumericalmethodsusedinourtwo-phaseflowsolverinirregulardomains.

First, we present the level-set method and the spatial discretizations of the two different projection methods that we

consider forirregular domains.Wethenprovidethedetailsoftheimplicitdiscretizationoftheviscoustermsand howthe

(8)

Fig. 2. StandardMACgridconfiguration:thescalarvariablesaresampledatthecells’centers(circles),thex-componentofthevelocityfieldissampled ontheverticalfaces(bluetriangles),andthey-componentofthevelocityfieldissampledonthehorizontalfaces(redtriangles).Theirregulardomain isrepresentedbytheshadedareaÄs.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthis

article.)

3.1. Capturingthemovinginterface

Inthiswork, weusethelevel-setmethod ofOsherand Sethian [37]torepresent theinterfacebetween thetwofluids.

A signedand continuouslevel-set functionφ isdefined in adomain Ä suchasÄ−= {x: φ(x)<0}, Ä+{x: φ(x)>0} and

Ŵ= {x: φ(x)=0} whereŴ representstheinterfacecapturedbythefollowingtransportequation:

∂φ

t

+

u

· ∇φ =

0

.

(7)

Oneofthebenefitsforusingthelevel-setfunctionisitsregularpropertyinthewholedomain.Sussmanetal.[49]

devel-opedanalgorithmallowingtomaintainthispropertybyre-initializingthelevel-set functionwiththefollowingequation:

d

τ

=

Sign

(φ) (

1

− |∇

d

|),

(8)

where Sign(φ) is a regularized signed functiondefined by Sussman et al. in [49] and d the update of the function φ.

Equation (8) iterates for a few fictitious time step

τ

to finally converge to a continuous signed distance function in the

whole domain.Thus,geometricpropertiessuchasn theoutwardunitnormalvectortotheinterfaceand

κ

thelocalmean

curvaturecanbeaccuratelycomputed:

n

=

∇φ

|∇φ|

,

and

κ

(φ)

= ∇ ·

n

.

Spatialderivativesinequations(7)and(8)arecomputedwiththeWENO-Zscheme[5],andthetemporalderivativewith

athirdorderTVDRunge–Kuttascheme.Letusnoticethat thetemporalintegrationisfully coupledwiththeNavier–Stokes

solver[24].

3.2. Discretizationoftheprojectionmethodinirregulardomains

The method developed in this study to solve thePoisson equation (4) on irregular domains is based on Ng, Min and

Gibou’salgorithm [35]. Thisnumericalmethodpresentsseveral attractivefeatures.Indeedthespatialdiscretization forthe

pressure Poisson equation is second order, for all computationalnodes, includingthe irregular domain nodes crossed by

thesolid–fluid interfacewhere theembeddedNeumannBoundary conditionis enforced.Moreover,theresulting matrix of

thelinearsystemisstillsymmetricdefinitepositivewhichallowsusingaclassicalPreconditioned ConjugateGradient.More

efficientsolvers,astheBlackBoxMultiGrid[13],canalsobeusedtospeed-upsimulations.

ConsideravectorfielduinthedomainÄ,separatedbytheinterfaceŴs intotwodistinctsubdomainsÄf andÄs,such

as Ä= Äf ∪ Äs. As Äs would correspond to a solid media, weonly solvethe Navier–Stokes equations in Äf. Let φs be

another level-setfunctionsuch asÄs= {x: φs(x)>0},Äf{x: φs(x)<0} and Ŵs= {x: φs(x)=0}. Weconsider aMAC grid

configuration and a cell Ci,j= [i−1/2,i+1/2]× [j−1/2,j+1/2], partially covered with Äf. For moreclarity we only

consider a2Dexampletoillustratethemethodwhichcanbeextendedto3D.TheconfigurationisillustratedinFig. 2.

Consideringafinitevolumeapproach,weintegratethelefthandside ofequation(4)over Ci,j and applythedivergence

theorem:

Z

Ci,j∩Äf

∇ ·

µ ∇

ρ

p

d A

=

Z

∂(Ci,j∩Äf) n

·

µ ∇

p

ρ

dl

,

(9)

withd A anddl differentialareaandlength.Similarlyfortherighthandside:

Z

Ci,j∩Äf

∇ ·

ud A

+

Z

Ci,j∩Äf

∇ ·

µ

FS T

ρ

d A

=

Z

∂(Ci,j∩Äf) n

·

udl

+

Z

∂(Ci,j∩Äf) n

·

µ

FS T

ρ

dl

,

where FS T canrepresent thesurface tensioneffects and thejump conditionsdue toviscosity depending onthe choiceof

theintermediatevelocity:

• ForGFCMI,FS T =

σ κ

nfδf. • ForGFSCMI,FS T= ³

σ κ

+ [

µ

]Ŵ ¡ nT· ∇u·n¢n´ nδf.

Wenow onlyconsider thecontribution ofallthecomponents of∂(Ci,j∩ Äf), anddefinethelengthfractionLi,j ofthe

facecovered bytheirregular domain{xs(x)≤0} whichcanbelinearlyapproximatedherefor[i−12]× [j−12,j+12]by:

Li1 2,j

=

1

y

φ

i1 2,j−12

φ

i1 2,j−12

− φ

i−12,j+12 for

φ

i1 2,j−12

<

0 and

φ

i−12,j12

>

0

,

1

y

φ

i− 1 2,j+12

φ

i1 2,j+12

− φ

i−12,j−12 for

φ

i1 2,j−12

>

0 and

φ

i−12,j12

<

0

,

1

y for

φ

i1 2,j−12

<

0 and

φ

i−12,j12

<

0

,

0 for

φ

i1 2,j−12

>

0 and

φ

i−12,j12

>

0

.

(9)

Formoreclaritythesubscript“s”isomitted,butitisthefunctionφs thatisusedtoestimatethelengthfractions. Using

thelengthfractionestablishedinequation(9),andsampledvaluesatthecenterofthecell,weobtain:

Z

∂(Ci,j∩Äf) n

·

µ ∇

p

ρ

dl

Li −12,j

ρ

i1 2,j

µ

p i,j

pi1,j

1

x

+

Li +12,j

ρ

i+1 2,j

µ

p i,j

pi+1,j

1

x

+

Li,j1 2

ρ

i,j1 2

µ

p i,j

pi,j−1

1

y

+

Li,j+1 2

ρ

i,j+1 2

µ

p i,j

pi,j+1

1

y

Z

Ci,j∩Ŵ n

·

µ ∇

p

ρ

dl

,

where R

Ci,j∩Ŵ istheintegralover theinterfacewiththeirregular externalboundary.Similarly,weobtain:

Z

∂(Ci,j∩Äf) n

·

udl

Li −12,jui12,j

Li+12,jui+12,j

+

Li,j12vi,j12

Li,j+12vi,j+12

Z

Ci,j∩Ŵ n

·

udl

.

ForcellswherebothŴ andŴs arepresent,respectivelythefluid–fluidinterfaceandthefluid–solidinterface,the

Ghost-Fluid Method [15,28] is applied on eachpart of Ŵ:let βi,j= ρ1i

,j bea diffusion coefficient in the cell, computed with a

harmonic averageofthevalues β+ in theregion whereφ ispositive and β− for thenegativeregion, and a(xŴ)=

σ κ

the

correspondingjumpfunctionforGFCMI.Fortheinterfacecrossingacellborderbetween xi,j and xi+1,j:

β

i+1/2,j

=

β

+

β

β

+

θ

+ β

(

1

− θ)

,

and a

(

xŴ

)

i+1/2,j

=

σ κ

i,j

θ

+

σ κ

i+1,j

(

1

− θ),

with

θ

=

i+1,j

|

i,j

| + |φ

i+1,j

|

.

(10)

Thenonecandefinegi,j asin[26]: giL,j

= ±β

i1 2,ja

(

xŴ

)

i−12,j g R i,j

= ±β

i+12,ja

(

xŴ

)

i+12,j g B i,j

= ±β

i,j−12a

(

xŴ

)

i,j−12 g T i,j

= ±β

i,j+12a

(

xŴ

)

i,j+12 and finallyobtain:

Z

∂(Ci,j∩Ä−) n

·

µ

σ κ

n f

δ

f

ρ

dl

Li −12,jg L i,j

+

Li+12,jg R i,j

+

Li,j12g B i,j

+

Li,j+12g T i,j

Z

Ci,j∩Ŵ n

·

µ

σ κ

n f

δ

f

ρ

dl

.

If GFSCMI is used, one can notice that the formulation is almost the same, except that the function a(xŴ) will be

completedwiththejumpduetotheviscousterm:

a

(

xŴ

)

i+1/2,j

= θ

³

σ κ

+ [

µ

]

Ŵ

¡

nT

· ∇

u

·

n

¢

n

´

i,j

+ (

1

− θ)

³

σ κ

+ [

µ

]

Ŵ

¡

nT

· ∇

u

·

n

¢

n

´

i+1,j

,

and

Z

∂(Ci,j∩Ä−) n

·

³

σ κ

+ [

µ

]

Ŵ

¡

nT

· ∇

u

·

n

¢

n

´

nf

δ

f

ρ

dl

Li1 2,jg L i,j

+

Li+12,jgiR,j

+

Li,j12giB,j

+

Li,j+12gTi,j

Z

Ci,j∩Ŵ n

·

³

σ κ

+ [

µ

]

Ŵ

¡

nT

· ∇

u

·

n

¢

n

´

nf

δ

f

ρ

dl

.

Finally,oneobtainsthefollowingproblemwithNeumannboundaryconditionsontheembeddedsolidboundary:

Li −12,j

ρ

i1 2,j

µ

p i,j

pi1,j

1

x

+

Li +12,j

ρ

i+1 2,j

µ

p i,j

pi+1,j

1

x

+

Li,j −12

ρ

i,j1 2

µ

p i,j

pi,j1

1

y

+

Li,j +12

ρ

i,j+1 2

µ

p i,j

pi,j+1

1

y

=

Li −12,jui−12,j

Li +12,jui+12,j

+

Li,j −12vi,j−12

Li,j +12vi,j+12

+

Li1 2,jg L i,j

+

Li+12,jg R i,j

+

Li,j−12g B i,j

+

Li,j+12g T i,j

.

As Ng,Minand Gibou demonstratedin[35],theabove discretizationformsa symmetricpositive definite linearsystem

forthepressurefield.

3.3. Spatialdiscretizationoftheviscousterms

As illustrated inSection 2, the implementation ofthe viscosity terms dependson the formulation ofthe intermediate

velocity,thusgeneratingdifferentdiscretizationsthatareformallyequivalents.TheimplicitformulationsforbothGFCMand

GFSCMarethoroughlydetailedinthefollowingsection.

3.3.1. GFCMIdiscretization

Wehaveseeninsection2that theequationoftheintermediatevelocityforGFCMIis:

ρ

n+1u

− 1

t

¡∇ ·

¡

2

µ

D

¢¢ =

Frhs

,

(10)

withFrhs theright-handsideofequation(10):

Frhs

=

ρ

n+1

¡

un

− 1

t

¡¡

un

· ∇

¢

un

g

¢¢.

(11)

Inorderto computetheintermediatevelocity field,onemustcomputeallthetermsoftheright-handside ofequation

(11). Theadvection termissolved withafifth orderWENO-Z scheme[5].Let usremind thestress tensorformulationfor

thediscretizationoftheviscousterm:

D

=

1 2

³

u

+ ∇

Tu

´

with

u

=

u

x

u

y

v

x

v

y

.

(11)

The discretizationis presentedasa 2Ddiscretization, but canbeeasily extended toa 3Dformulation. Byapplying the divergence operator:

∇ ·

³

2

µ

D

´

=

x

µ

2

µ

u

x

+

y

µ

µ

µ ∂

u

y

+

v

x

¶¶

y

µ

2

µ

v

y

+

x

µ

µ

µ ∂

u

y

+

v

x

¶¶

.

Byprojectingontheex direction:

∇ ·

³

2

µ

D

´

·

ex

¯

¯

¯

i +12,j

=

x

µ

2

µ

u

x

¶¯

¯

¯

¯

i +12,j

+

y

µ

µ

µ ∂

u

y

+

v

x

¶¶¯

¯

¯

¯

i +12,j

,

(12) with:

x

µ

2

µ

u

x

¶¯

¯

¯

¯

i +12,j

2

µ

i+1,j

Ã

u i+32j

ui+12,j

1

x

!

2

µ

i,j

Ã

u i+12,j

ui12,j

1

x

!

1

x

,

y

µ

µ

u

y

¶¯

¯

¯

¯

i +12,j

µ

i+1 2,j+12

Ã

u i+12,j+1

ui+12,j

1

y

!

µ

i+1 2,j−12

Ã

u i+12,j

ui+12,j−1

1

y

!

1

y

,

and

y

µ

µ

v

x

¶¯

¯

¯

¯

i +12,j

µ

i+1 2,j+12

Ã

v i+1,j+12

vi,j+12

1

x

!

µ

i+1 2,j−12

Ã

v i+1,j−12

vi,j−12

1

x

!

1

y

.

Likewise,byprojectingontheey|i,j+1

2 direction:

∇ ·

³

2

µ

D

´

·

ey

¯

¯

¯

i ,j+12

=

x

µ

µ

µ ∂

u

y

+

v

x

¶¶¯

¯

¯

¯

i,j +12

+

y

µ

2

µ

v

y

¶¯

¯

¯

¯

i,j +12

,

(13) with:

x

µ

µ

u

y

¶¯

¯

¯

¯

i ,j+12

µ

i+1 2,j+12

Ã

u i+12,j+1

ui+12,j

1

y

!

µ

i1 2,j+12

Ã

u i12,j+1

ui12,j

1

y

!

1

x

,

x

µ

µ

v

x

¶¯

¯

¯

¯

i,j +12

µ

i+1 2,j+12

Ã

v i+1,j+1 2

vi,j+12

1

x

!

µ

i1 2,j+12

Ã

v i,j+1 2

vi1 j+12

1

x

!

1

x

,

and

y

µ

2

µ

v

y

¶¯

¯

¯

¯

i,j +12

2

µ

i,j+1

Ã

v i,j+3 2

vi,j+12

1

y

!

2

µ

i,j

Ã

v i,j+1 2

vi,j−12

1

y

!

1

y

.

Inordertocomputerightfullytheviscoustermattheintermediatetimestep,onemustsolveacoupledlinearsystemof

two matriceswith9diagonalspervelocitycomponentsas:

ai+1,jui+3 2,j

+

ai,jui1 2,j

+

ai+1 2,j+12ui+12,j+1

+

ai+1 2,j−12ui+12,j−1

+

α

ui+12,j

bi+1 2,j+12vi+1,j+12

+

bi+1 2,j+12vi,j+12

bi+1 2,j−12vi+1,j−12

+

bi1 2,j−12vi,j−12

=

Fx_rhs and ci +12,j+12vi+1,j+12

+

ci12,j+12vi1 j+12

+

ci,j+1vi,j+32

+

ci,jvi,j12

+ β

vi,j+12

bi +12,j+12ui+12,j+1

bi12,j+12ui+12,j

+

bi+12,j+12ui12,j+1

+

bi21,j+12ui12,j

=

Fy_rhs

(12)

with Fx_rhs and Fy_rhs the right-hand side terms from GFCMI projection method in equation (11), respectively projected

onto thex- and y-directions,respectively. Thematrixcoefficientsarededucedfromequations(10),(12)and (13)as:

ai+1,j

= −

2

µ

i+1,j

1

x2

1

t

,

bi+12,j+12

=

µ

i+1 2,j+12

1

x

1

y

1

t

,

ci+12,j+12

= −

µ

i+1 2,j+12

1

x2

1

t

,

ai,j

= −

2

µ

i,j

1

x2

1

t

,

bi+12,j12

=

µ

i+1 2,j−12

1

x

1

y

1

t

,

ci−12,j+12

= −

µ

i1 2,j+12

1

x2

1

t

,

ai +12,j+12

= −

µ

i+1 2,j+12

1

y2

1

t

,

bi12,j+12

=

µ

i1 2,j+12

1

x

1

y

1

t

,

ci,j+1

= −

2

µ

i,j+1

1

y2

1

t

,

ai +12,j−12

= −

µi +12,j−12 1y2

1

t

,

bi12,j12

=

µ

i1 2,j−12

1

x

1

y

1

t

,

ci,j

= −

2

µ

i,j

1

y2

1

t

,

(14)

α

=

ρ

n+1 i+12,j

ai+1,j

ai,j

ai+12,j+12

ai+12,j−12

,

(15) and

β

=

ρ

n+1 i,j+12

ci+12,j+12

ci−12,j+12

ci,j+1

ci,j

.

(16) Since the linear system is diagonally dominant,2 it can be solved efficiently with a few Gauss–Seidel iterations (<20 iterationsfortypicalmultiphaseflowconfigurations,suchasthebenchmarksofsection4).Fora3Dsystem,athirdcoupled

matrix hastobeaccountedfor, resultingina15-diagonalmatrixpervelocitycomponents.

3.3.2. GFSCMIdiscretization

GFSCMI projection proposed in [26] enables an easier implementation for an implicit temporal discretization of the

viscousterms,albeitsemi-implicit:

ρ

n+1u 5

− 1

t

∇ ·

¡

µ

u5

¢ =

Frhs

=

ρ

n+1

µ

un

− 1

t

¡ ¡

un

.

¢

un

g

¢

.

(17)

Theviscoustermcanbecomputedas:

∇. (

µ

u

)

=

x

µ

µ

u

x

+

y

µ

µ

u

y

x

µ

µ

v

x

+

y

µ

µ

v

y

.

Byprojectinginthex-direction:

∇ · (

µ

u

)

·

ex

|

i+1 2,j

=

x

µ

µ

u

x

¶¯

¯

¯

¯

i +12,j

+

y

µ

µ

u

y

¶¯

¯

¯

¯

i +12,j

,

(18) with:

x

µ

µ

u

x

¶¯

¯

¯

¯

i +12,j

µ

i+1,j

Ã

u i+32j

ui+12,j

1

x

!

µ

i,j

Ã

u i+12,j

ui12,j

1

x

!

1

x

,

and

y

µ

µ

u

y

¶¯

¯

¯

¯

i +12,j

µ

i+1 2,j+12

Ã

u i+12,j+1

ui+12,j

1

y

!

µ

i+1 2,j−12

Ã

u i+12,j

ui+12,j−1

1

y

!

1

y

.

Likewise,byprojectinginthe y-direction:

∇ · (

µ

u

)

·

ey

¯

¯

i ,j+12

=

x

µ

µ

v

x

¶¯

¯

¯

¯

i ,j+12

+

y

µ

µ

v

y

¶¯

¯

¯

¯

i ,j+12

,

(19)

2 Depending onthetime stepconstraint,ifρ>> 6a

i j, thenthesystemisdiagonallydominant,whichisalwaysthecase in ourconfigurations, cf.

(13)

with:

x

µ

µ

v

x

¶¯

¯

¯

¯

i ,j+12

µ

i+1 2,j+12

Ã

v i+1,j+12

vi,j+12

1

x

!

µ

i1 2,j+12

Ã

v i,j+12

vi1 j+12

1

x

!

1

x

,

and

y

µ

µ

v

y

¶¯

¯

¯

¯

i,j +12

µ

i,j+1

Ã

v i,j+32

vi,j+12

1

y

!

µ

i,j

Ã

v i,j+12

vi,j12

1

y

!

1

y

.

Inordertosolvefortheviscoustermintheintermediatetimestep,onemustsolvealinearsystemineachdirection:

ai+1,jui +32j

+

ai,jui −12,j

+

ai +12,j+12ui+12,j+1

+

ai+12,j12ui+12,j1

+

α

ui+12,j

=

Fx_rhs

,

and ci +12,j+12vi+1,j+12

+

ci −12,j+12vi1 j+12

+

ci,j+1vi,j+3 2

+

ci,jvi,j1 2

+ β

vi,j+12

=

Fy_rhs

,

with Fx_rhsand Fy_rhstheright-handsidetermsfromGFSCMIprojectionmethodinEq.(17),respectivelyprojectedontothe x- and y-direction.Thecoefficients abovearegivenbyequations(14),(15)and(16).

As explained before, this formulation is quite straightforward as each component is decoupled from the others. This

section is concluded by some comments on how to define the density

ρ

n+1

i,j+1 2

and

ρ

n+1

i+1 2,j

, as well as all the viscosity constants

µ

i±1

2j±12.The definitionsmustbecompatible withthecomputationofthecorrectionstep,which itselfrelieson

the way the density is computed when the Poisson equation for the pressure is solved. We use the computation of the

harmonicaveragewhengridcellsarecrossedbythefluid–fluidinterface,asproposedin[24,28]:

1

ρ

n+1

=

1

ρ

+

ρ

− 1

ρ

+

θ

+

1

ρ

(

1

− θ)

=

ρ

1

θ

+

ρ

+

(

1

− θ)

.

3.4. Velocityboundaryconditions

On thesolid–fluidinterface,we imposethefollowingDirichlet boundarycondition toenforcethesolid’svelocity us on

thefluidtoensuretheno-slipcondition: u

|

Ŵs

=

us

.

In[18],theauthorsintroducedasecond-orderaccuratenumericalschemetoenforceaDirichletboundaryconditionforthe

Poissonequationinirregulardomains.Wefollowthisapproachtoimplicitlyimposetheno-slipconditionwhenconsidering

theviscousterm,i.e.inthecaseofthelinearsystemsforbothGFCMIandGFSCMIgiveninsection3.3.2. Theprojectiononthex-directionofthestresstensorinthecaseofGFCMIgives:

∇ ·

³

2

µ

D

´

·

ex

¯

¯

¯

i +12,j

=

x

µ

2

µ

u

x

¶¯

¯

¯

¯

i +12,j

+

y

µ

µ

µ ∂

u

y

+

v

x

¶¶¯

¯

¯

¯

i +12,j

.

(20)

Thediscretizationofequation(20)gives:

∇ ·

³

2

µ

D

´

·

ex

|

i+1 2,j

2

µ

i+1 j

µ ∂

u

x

i+1,j

2

µ

i,j

µ ∂

u

x

i,j

1

x

+

µ

i+1 2j+12

µ ∂

u

y

i+12,j+12

µ

i+1 2j−12

µ ∂

u

y

i+12,j12

1

y

+

µ

i+1 2j+12

µ ∂

v

x

i+12,j+12

µ

i+1 2j−12

µ ∂

u

x

i+12,j−12

1

y

.

(14)

Eachtermisdiscretizedasfollows: • Discretizationof ∂ux ¯ ¯ ¯ ¯ i+1,j : Ifφi+1 2,jφi+32j>0,thecell h

i+12,i+32i×[ j] isentirelycoveredwithfluid.Inthiscase,theapproximationis:

u

x

¯

¯

¯

¯

i +1,j

=

ui +32j

ui+12,j

1

x

.

Ifφi +12,jφi+ 3 2j

0,therearetwopossiblesituations:eitherthecellpoint³i+12,j´isinthesoliddomain,whichmeans that ui

+12,j=0,orthecellpoint ³

i+ 32,j´isinthesoliddomain.Inthisscenario, themethodof[18]isapplied,giving:

u

x

¯

¯

¯

¯

i +1,j

=

uŴ

ui+1 2,j

θ 1

x

,

withuŴ thevelocityboundaryconditionandθ 1x thelengthfractionofthecellcoveredbythefluid,hence:

θ

=

i+

1 2,j

|

i+12,j

| + |φ

i+32j

|

.

Theinterpolatedlengthfractioniscomputedonastaggeredcellpointinordertokeepsecond-orderaccuracy with:

φ

i+1 2,j

=

φ

i+1,j

+ φ

i,j 2 and

φ

i+32,j

=

φ

i+2,j

+ φ

i+1,j 2

.

• Discretizationof ∂ux ¯ ¯ ¯ ¯ i,j : Ifφi+1 2,jφi−12,j>0 thecell h

i12,i+12i×[ j] isentirelycoveredwithfluid.Inthiscase,theapproximationis:

u

x

¯

¯

¯

¯

i ,j

=

ui+1 2,j

ui−12,j

1

x

.

Ifφi+1

2,jφi−12,j≤0,therearetwopossiblesituations:eitherthecellpoint ³

i+12,j´isinthesoliddomain,whichmeans that ui

+12,j=0,orthecellpoint ³

i 12,j´isinthesoliddomain.Inthiscase,themethodof[18]isapplied,giving:

u

x

¯

¯

¯

¯

i,j

=

ui+1 2,j

uŴ

θ 1

x

,

with

θ

=

i+12,j

|

i+12,j

| + |φ

i−12,j

|

.

• Discretizationof ∂uy ¯ ¯ ¯ ¯ i+1 2,j+12 : Ifφi+1 2,j+1φi+12,j>0,thecell h

i+12i×[ j,j+1] isentirelycoveredwithfluid.Inthiscase,theapproximationis:

u

y

¯

¯

¯

¯

i +12,j+12

=

ui +12,j+1

ui+12,j

1

y

.

If φi+1

2,j+1φi+12,j≤0, there are two possible situations: either the cell point ³

i+12,j´ is in the solid domain, which means that ui

+12,j=0, orthe cellpoint ³

i+12,j+1´ isin thesolid domain.In thiscase, themethodof [18]is applied, giving:

u

y

¯

¯

¯

¯

i +12,j+12

=

uŴ

ui+1 2,j

θ 1

y

,

with

θ

=

i+12,j

|

i+1 2,j

| + |φ

i+12,j+1

|

.

Figure

Fig. 1. The computational domain in the case of two-phase flows in irregular domains.
Fig. 2. Standard MAC grid configuration: the scalar variables are sampled at the cells’ centers (circles), the x-component of the velocity field is sampled on the vertical faces (blue triangles), and the y-component of the velocity field is sampled on the
Fig. 3. Streamlines for a flow past a cylinder at Re = 40. Characteristics such as the location of the vortices center ( x c , y c ) and the length, x s , of the recirculation are represented.
Fig. 4. Streamline representation and vorticity contours (s − 1 ) [− 5 ; . 5 ; 5 ] for Case A (a, c) and B (b, d).
+7

Références

Documents relatifs

Cela nous permet aussi de nous assurer que l’inégalité oracle force l’estimateur multi-tâches à avoir un risque inférieur à l’estimateur mono-tâche dans les cas étudiés..

Long-lived germ-line-less flies show increased production of Drosophila insulin-like peptides (dilps) and hypogly- cemia but simultaneously exhibit several characteristics of

L’année prochaine une autre refleurira et, elle aussi sera fière que son sang soit récolté, mis en flacon et apprécié pour ses nombreuses vertus.. Il fait très

One of the most important questions in mathematical Fluid Mechanics, which is still far from being understood, is to know whether a finite energy, and initially smooth,

an inhomogeneous distribution of the resistivity along the electrode: the local resistivity is small on the lateral edges of the electrode and large in the middle part of the

3 , the results are analyzed: we present the macroscopic effect of the controlled flow on time-averaged drag coefficient and relate it to the modification of the flow on the

Taelman R.-Foot ball nouvelles techniques d’entrainement, Paris :2000.-p.. • ﺔﻴرﺎﺠﻔﻨﻻا ةوﻘﻝا : لوﻘﻴ كﻴﺒﻝأ ﻲﻬﻴﻓ ﻲﻠﻋ ﺎﻬﻨﺄﺒ ﺔﻴرﺎﺠﻔﻨﻹا ةوﻘﻝا ﻰﻠﻋ &#34; ﻲﻓ

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Testing Surface Waterproofers for Concrete.