• Aucun résultat trouvé

Prototype of interferometric absolute motion sensor

N/A
N/A
Protected

Academic year: 2021

Partager "Prototype of interferometric absolute motion sensor"

Copied!
6
0
0

Texte intégral

(1)

Prototype

of

interferometric

absolute

motion

sensor

C.

Collette

a,∗

,

F.

Nassif

a

,

J.

Amar

a

,

C.

Depouhon

a

,

S.-P.

Gorza

b

aUniversitéLibredeBruxelles,BEAMSDepartment,F.D.Roosevelt50,B-1050Brussels,Belgium bUniversitéLibredeBruxelles,OPERADepartment,F.D.Roosevelt50,B-1050Brussels,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4November2014

Receivedinrevisedform20January2015 Accepted20January2015

Availableonline29January2015 Keywords: Inertialsensor Accelerometer Seismometer Geophone

a

b

s

t

r

a

c

t

Formanyapplications,thereisanincreasingdemandforlowcost,highresolutioninertialsensors,which arecapableofoperatinginharshenvironments.Basedonrecentdevelopmentsinopticalseismometry, thispaperpresentsanewsmallinterferometricinertialsensorwitharesolutionof3pm/√Hzabove 4Hz.Comparedtomoststate-of-the-artdevices,thisprototypedoesnotcontainanycoil,whichoffers severalimportantadvantages:(i)whenitisusedforactivecontrol,itmagnifiesthecontrolperformances aroundthesensorresonance;(ii)itdecreasesthethermalnoiseinthesuspension(Brownianmotion), (iii)itiscompatiblewithmagneticenvironments(likeparticlecollider);(iv)astheinterferencefringes sweepcontinuouslyacrossthedetector,itallowsarealtimecalibrationoftheparameters,andthusthe calibrationcanbecontinuousmonitoredandupdated.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Inertialsensorshavebeenusedformorethanacenturymainly toanswertheneedsofseismology,thesciencewhichstudiesthe propagationof wavesthroughtheEarth.Depending onthe fre-quencyrange of interest,three types of sensorsare commonly usedtomeasureseismicvibrations[1]:seismicaccelerometers, geophonesandbroadbandseismometers.Acomparisonofthese inertialsensorscanbefoundin[2].

Formorethan30years,seismometershavereachedsufficient resolutionanddynamicrangetocaptureseismicsignalsatmost locationoftheEarthsurfaceinabroadfrequencyrange extend-ingtypicallyfrom1minto100Hz(seee.g.[3–6]).However,there isstillacontinuousdemandforhigh-endinstruments,more effi-cient and better adapted to some specific applications. In this respect,recentdevelopmentsinopticaltechnologiesoffer interest-ingperspectivesfornovelinertialsensors.Intheoil/gasandmining industryforinstance,inertialsensorscapableofoperatinginharsh environments(e.g.down-holes,boreholes)areneeded,andoptical seismometerswithoutelectronicsandinsensitivetotemperature and highpressure [7–10]have been developed. In thefield of security,miniatureautonomousopticalinertialsensorshavebeen testedforthedetectionofdetonationarisingfromnucleartests conductedbycountriesengagedinnuclearproliferation[11–13].

∗ Correspondingauthor.Tel.:+3226502840.

E-mailaddress:christophe.collette@ulb.ac.be(C.Collette).

Besidesseismologyandtheaforementionedapplications,there is also a demand for inertial sensors for precision engineering and scientific experimentsrequiring a very stable environment [14]. Typical applications are: (i) Tests and validation of space equipments on vibration-free space simulator. (ii) Isolation of lithographymachinesinthesemiconductorindustry.(iii) Reduc-tionofvibrationsofatomicforcemicroscopes(supportandsample) forincreasingtheirresolution.(iv)Stabilizationand isolationof large instruments dedicated to extreme experimental physics, likegravitationalwaveinterferometricdetectorsorfutureparticle colliders.Inthesesystemstheimmunitytoenvironmental distur-bancesisobtainedbyactivelycancellingthestructuralvibration measuredbyinertialsensors[15].

A few other prototypes of optical inertial sensors and seis-mometers have been developed and reported in theliterature. Theyare based on Fabry-Perot interferometer[22],fiber inter-ferometer[19–21],triangulationsystem[23],fiberBragggrating [24,25], optical encoder [26] or grating sensor [27]. More recently, optical accelerometers have been proposed for mea-suringthemechanical vibrationof gravitationalwave detectors [16–18].

However,tothebestof theauthors’knowledge,there is no commercialseismometercapableoffulfillingtherequirementsfor applicationsin advanced active vibration isolation systems, i.e. small,sub-nanometerresolutionatlow frequency,and compat-ible witha magnetic environment. In this paper, we present a non-magneticOpticalinertialSEnsor(NOSE),whichisbased on ahorizontalpendulumandaMichelsoninterferometer.Itissmall, http://dx.doi.org/10.1016/j.sna.2015.01.019

(2)

Fig.1.Picture(a)andschematic(b)oftheprototypeoftheinterferometricinertialsensorNOSE.(A)Singledegreeoffreedomoscillator,(B)interferometricdisplacement sensorand(C)acquisitionprocessingunit.

passive,andmeasuresseismicmotionintheverticaldirection.1We

willshowthat,besidesthecompatibilitywithmagnetic environ-ment,theabsenceofcoiloffersalsoseveraladvantages.

Thepaperisorganizedasfollows:Thenewsensorispresented inSection2.Section3containsexperimentalvalidations,and Sec-tion4drawstheconclusionsanddirectionsforimprovements. 2. Descriptionoftheopticalinertialsensor

Thesensoriscomposedofthreemainparts(seeFig.1):Asingle degreeoffreedom(d.o.f)oscillator(A),aninterferometric displace-mentsensor(B),andanacquisitionprocessingunit(C).Eachofthe threepartsaredetailedinthefollowingsections.

2.1. Mechanics

Themechanicalpartconsistsofa horizontalpendulum, con-nectedtoarigidframethroughaflexuraljoint,madeofCuBealloy. Aleafspring,madeofthesamealloy,isusedtoadjustthe equilib-riumpositionoftheinertialmassandcompensateforgravity.The oscillatorischaracterizedbyaninertialmassm=0.055kg,a prin-cipalresonancefrequencyω0=6*2rad/s(tunable)andspurious

resonancesabove100Hz.

Usually,andmostspecificallyforgeophones,ahighdampingof theinertialmass,i.e.asmallQfactor,isimposedinordertoincrease thebandwidthofthesensorandreduceitssensitivityto miscali-bration.Acriticaldampingisobtainedbyconnectingaresistorto thesensingcoil.Onthecontrary,ourinertialsensoris character-izedbyahighQfactor(around60)becauseitdoesnotcontainany loadedcoil.Afirstadvantageofthecoil-freeconfigurationisthat thesensoriscompatiblewithmagneticenvironmentslike encoun-teredinproximitytoparticlecolliders.Asecondadvantageisthat thehighQdecreasesthethermalnoiseinthesuspension(Brownian motion)definedas[28]: B(f)=



4kB0m/Q m(2f)2 10 −11f−2[m/Hz] (1)

wherekBistheBoltzmannconstant,T=300Kisthetemperature

andω0istheangularresonancefrequency.

When the inertial sensor is used for active vibration isola-tion,thehighQoffersathirdadvantagebecauseitmagnifiesthe controlperformancearoundthesensor resonance.Asan exam-ple,consider thesingled.o.f. isolator shown in Fig.2(a)where a sensitiveequipment(m) mountedonan activesuspension is represented.The motionx of the equipmentis measured with

1Inprinciple,thesensorisalsocapabletomeasureseismicmotioninthe

hori-zontaldirection.However,thisfeaturehasnotbeeninvestigated.

an inertial sensor. Then, the signal is filtered by a filter H(s), used to generate a feedback force f. Fig. 2(b) shows a typi-caltransmissibility(x/w)ofthesuspensionwhenthecontrolis turned off (solid line), and turned on for two sensors: a geo-phone critically damped (dotted line) and NOSE (dashed line). The same controller H(s) has been used for both sensors. The curveshavebeenobtainedwithanumericalmodeloftheisolator, andthefollowingnumericalvaluesoftheparameters:m=100kg, k=1.6MN/m,c=1200Ns/m.Thefigureshowsthat,forbothsensors, thetransmissibilityhasbeenreducedbythefeedbackoperation inalargebandwidth,extendingfromafractionofthegeophone corner frequency toa multiple of the resonance of the equip-ment.

However,forNOSE,thestrongmechanicalamplificationatthe resonanceimprovessignificantlytheisolationinafrequencyrange aroundthisresonance,whileusingthesamecrossoverfrequencies forbothsensors.Suchfeaturecanbeparticularlyinterestingto can-celnarrowbandexcitations.Moreover,asthephoto-diodessignals amplituderemainsbounded(seeSection2.3),thepeakof perfor-manceisnotlimitedbytheclassicaltrade-offbetweenresolution anddynamicrange.

Ontheotherhand,whenthesensorisnotusedinafeedback loop,thelowdampingoftheinertialmassbecomesadisadvantage becauseitreducesthebandwidthandbecauselargeoscillations oftheinertial massaresuperimposedtotheusefulsignal.Still, theabsenceofcoilremainsinterestingforthecompatibilitywith magneticenvironments.

2.2. Interferometricsensor

Inordertomeasuretherelativedisplacementbetweenthe iner-tialmassandthesupport,wehavedevelopedasensorbasedona Michelsoninterferometer,adaptedtoenablethemeasurementof bothquadraturesofthesignalsasin[7,29].Theopticalschemeis showninFig.3.

ThelasersourceisaHe–Nelaserwithawavelengthof632.8nm. Theinputbeam,linearlypolarizedat45◦,isfirstsplitintwo ortho-gonalbeamsbymeansofa50/50nonpolarizingbeamsplitter(BS). EachbeamisthenreflectedonthemirrorsM1orM2.M1 isfixed

ontheinertialmassandM2ismountedonaminiaturetwod.o.f.

tiltstagetoenablethealignmentoftheinterferometer. Addition-ally,thearmd2containsa/8waveplatetogenerateacircularly

polarizedbeam(itisinanellipticalpolarizationafter1pass,anda circularpolarizationafterdouble-passingthewaveplate).Thetwo beamsarerecombinedinthebeamssplitter(BS).Theverticallyand thehorizontallypolarizedcomponentsoftherecombinedbeamare thenseparatedbyapolarizingbeamsplitter(PBS).Theintensityin thetwobeamsarefinallymeasuredbymeansoftwophotodiodes. Thelasersourceismountedonafourd.o.f.stage(twotranslations andtworotations)toadjustthepositionandtheangleofthebeams

(3)

Fig.2.(a)Principleofactivevibrationisolatorusinginertialsensor;(b)simulatedtransmissibility(x/w)ofthenumericalmodeloftheisolatorshownin(a)whenthe controlleristurnedoff,turnedonusingacommercialgeophone,andturnedonusingalowdampedinertialsensorlikeNOSE.

onthephotodiodes.Thelengthofthetwoarms(d1and d2)are

similartominimizetheimpactofthelaserfrequencynoiseonthe measurements[30].NotethattheHe–Nelasercanbereplacedbya pigtailedlaserdiodewithapolarization-maintainingopticalfiber [8]andafibercollimator.

2.3. Acquisitionandprocessing

Thetwophotodiodesignals (PD1and PD2)havethegeneral form:



PD1=a1+b1cos(ϕ0+ϕ)

PD2=a2+b2sin(ϕ)

(2)

wheretheamplitudesa1,a2,b1,b2 dependontheactualsetup

(lossesandbeamsalignment),andϕisthephaseproportionalto therelativedisplacementxofthemirrorM2

ϕ= 4

 x, (3)

beingthewavelengthofthelasersource;andwhereϕ0 takes

intoaccount possibledeviationof thephase delayfrom /4 in theoctaedric waveplate. Fig.4 shows a typicalexample of an experimentalLissajousfigure(bluecurve)obtainedwhenthefirst photodiodesignal(PD1)isplottedagainsttheother(PD2).Note that,inthisexample,thefringevisibilityisnotmaximum.

Fig.3.OpticalschemeoftheinterferometerusedinNOSE. Adaptedfrom[8].

Severalmethodsarereportedintheliteraturetodemodulate thesignalsandextractthephase.In[32],thesineandcosine com-ponentsarenormalized,usingthesignalfromathirdphotodiode. Insomeothertechniques,thesignalsarederivedandrecombined toextractthephase.However,ithasbeenobservedthatthese tech-niquesarequitenoisesensitive,resultinginadecreaseofthesignal tonoiseratio.Inanothertechniquedescribedin[31,33],the param-etersoftheLissajousfigurearefirstcalculatedtotransformthe ellipseinaunitcirclecenteredontheorigin(seeinFig.4,green curve)fromwhichthephasecanreadilybeextracted.This tech-niquehasbeenproventoberobustandwasthenusedtoextract thedisplacementparameterfromtherecordeddata.

Inoperating condition,themass,subjectedtotheexcitation fromthegroundmotion,oscillatescontinuouslyatitsresonance frequency,withanamplitudeproportionaltotheQfactorofthe oscillatortimestheamplitudeofthegroundmotionatthesensor location.AhighQfactor,asforNOSE,leadstoalargemotionofthe inertialmassandresultsinacontinuoussweepingofthe interfer-encefringesacrossthedetector.Thisisafourthadvantageofahigh Qfactor,becauseitallowsarealtimeestimationoftheLissajous fig-ureparameters,andthusanunbiaseddemodulationofthesignals. Anotherassetofthistechnologyisthat,sincetheamplitudeofthe photodiodesignalsisboundedinaninterferometricdisplacement

0 2 4 6 8 10 −2 −1 0 1 2 3 4 5 6 7 [V] [V] PD1 vs. PD2 Reconstructed circle

Fig.4. ExampleofexperimentalLissajousfigure(bluecurve)obtainedwhenthe firstphotodiodesignal(PD1)isplottedagainsttheother(PD2).Unitcirclecentered ontheorigin(green)calculatedusingtheparametersoftheellipseandanalgorithm describedin[31].(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthearticle.)

(4)

Fig.5.ExperimentalamplitudespectrumofthePolytecOFV502(dashedgreenline) comparedtoourprototypeofinertialsensorNOSE(solidblueline).(For interpreta-tionofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthearticle.)

sensor,anequivalentof30bitresolutioncanbeobtainedwithonly a16bitsA/Dconverter.

Thenextsectionpresentstheresultsofthreeexperiments:a validationoftheinterferometricdisplacementsensor(NOSE),an identificationofthedifferentsourcesofnoiseinthesignal,andan experimentalvalidationofNOSEbycomparisonwithacommercial seismometer.

3. Experiments

3.1. Assessmentoftheinterferometer

Asafirststep,wehavemadeanexperimenttoconfirmthatthe displacementmeasuredwithourinterferometerprototype corre-spondstotheactualdisplacementoftheinertialmass.Tothisend, theoutputsignalofNOSEwascomparedtothemeasured displace-mentoftheinertialmassbyacommercialinterferometer(Polytec OFV502).Thelowersideoftheinertialmasswaspointedbyour interferometer,whiletheuppersidewaspointedbythe commer-cialsensor.Theamplitudespectrumofthetwomeasuredsignals areplottedinFig.5.

Itcanbeseenthatbothspectraarenearlyidentical,fromDC toapproximately50Hz.Thetransferfunctionbetweenthe Poly-tecOFV502andourinterferometerisshowninFig.6.Averygood agreementbetweenthetwosensorsisobtainedinthefrequency range0.1–50Hz.Thescalefactorof0.8hasnotbeeninvestigated. Thepeaksinthetransferfunctionaround60Hzandabovehave beenidentifiedtocorrelatewithresonancesofthePolytecOFV502 headholder.

Fig.6. Experimentalamplitudeandphaseofthetransferfunctionbetweenthe Poly-tecOFV502andourprototypeofinertialsensor,pointingtheupperandlowerside oftheinertialmass,respectively.

Fig.7. Experimentalnoisebudgetingoftheinterferometer. 3.2. Noisebudgeting

AnexpectedfeatureoftheNOSEsensorisitsabilitytomeasure lowfrequencyvibrationswithagoodresolution.Inorderto iden-tifythevarioussourcesofnoise,whicharethefactorslimitingthe sensorresolution,wehaveblockedtheinertialmassandrecorded thephotodiodesignalsintheconfigurationslistedbelow(the cor-respondingexperimentalamplitudespectraareplottedinFig.7): • Cableunpluggedfromtherecorder(ADCnoise).

• Voltagesourcealone,whenitsupplies9V(Sourcenoise). • Thevoltagesourcesupplies9Vtothecircuit,butthephotodiode

isnotconnected(Circuitnoise)

• Thevoltagesourcesupplies9Vtothecircuit,thephotodiodeis connected,butthelaserswitchedoff(LaserOFF)

• Thevoltagesourcesupplies9Vtothecircuit,thephotodiodeis connected,andthelaserswitchedon(LaserON)

In our experiment, thesampling frequency is 20kHz. Fig.7 showsthattheresolutionislimitedbyaconstantvoltagenoise above2Hz,andbya1/fcurrentnoisebelow2Hzcomingfromthe laseropticalpowernoise[30].

Thesharppeaksat50Hzandmultiplesof50Hzarerelatedto theelectricalsupplynetwork.Thesepeakscanberemovedbyusing anelectromagneticshieldingofthesensor,andbyusingbatteries tosupplytheoperationalamplifiers.

Fig.8showstheexperimentalamplitudespectrumofthe inter-ferometernoise(bluedashed-dottedline),expressedinphysical unitsof[m/√Hz].Ithasbeenobtainedintwosteps.Inthefirst step,wemanuallyslightlymovedonemirrorinordertoobtainthe

Fig.8.Comparisonofsensorexperimentalresolution:GuralpCMG-6T(blackline, obtainedfromtwosensorssidebysideplacedinaquietenvironment);resolutionof ourNOSEprototype,measuredbyblockingtheinertialmass;estimatedresolution ofNOSE(redline).(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthearticle.)

(5)

Fig.9.Experimentalamplitudeandphaseofthetransferfunctionbetweenthe sig-nalfromacommercialGuralpCMG-6Tcalibratedindisplacementunitsandour prototypeNOSE.

parametersoftheLissajousfigureforthecalibration.Inasecond step,wehaverecordedthesignalwithoutdisturbingthe interfer-ometer,and usedtheparametersfromthefirststeptoexpress thephotodiodesignals assensornoisein displacementunits.It resultsina resolutionof 3pm/√Hz above1Hz,and 20pm/√Hz above0.3Hz.

3.3. Assessmentoftheinertialsensor

Inordertoconfirmthatoursensormeasuresproperlyseismic motion,wemadeathirdexperimentwheretheoutputsignalof ourprototypewascomparedtothereadoutofacommercial seis-mometer(GuralpCMG-6T),locatedbesideoursensor.Fig.9shows theexperimentaltransferfunctionbetweenthesensors(calibrated indisplacementunits),whichcorrespondstothesensitivitycurve ofNOSE,becausetheCMG-6Thasaconstantsensitivityfrom30s to100Hz.

Dividingthe interferometerresolution(Fig.8)by thesensor transferfunction(Fig.9)givestheestimationoftheNOSE reso-lution,alsoshowninFig.8(redcurve).TheresolutionoftheGuralp CMG-6T(measuredinaquietenvironmentwithtwosensorssideby side)isalsoshowninthesamefigureforcomparison.Below50Hz, NOSEresolutionoverpassesGMG-6T,byuptoafactor100around 6Hz,becauseofthemechanicalresonance.Atthatfrequency,NOSE resolutionpeaksat0.1pm/√Hz.

4. Conclusionandfuturework

Wehavepresentedanewsmall,lowcost,non-magnetic opti-calinertialsensor,calledNOSE.Comparedtomoststate-of-the-art commercialinertialsensors,thisprototypedoesnotcontainany coil,resultinginahugeamplificationoftheresponseatthesensor resonance.We haveshownthat,whencombinedtoan interfer-ometricsensor,thisfeatureoffersfourimportantadvantages:(i) whenusedforactivecontrol,itmagnifiesthecontrolperformance aroundthesensorresonance;(ii)thesuspensionhasalow ther-malnoise,(iii)itiscompatiblewithmagneticenvironments(like encounteredinparticlecollider);(iv)itallowsarealtime calibra-tionoftheparameters,andthusanunbiaseddemodulationofthe signaltankstothecontinuoussweepingofthefringesacrossthe detectors.Usinglowcostcomponents,wehavedemonstrateda res-olutionof3pm/√Hzabove4Hz.Theprototypehasbeenvalidated

for funding and supporting this research. We also warmly acknowledgeProf.IulianRomanescuforhishelptoconstructthe mechanicalparts.ManythankstoStefJanssensandKurtArtoosfor theircollaboration,andforlendingtheGuralpseismometers,and toourcolleaguesattheLIGOLaboftheMassachusettsInstituteof Technologyfornumerousinspiringdiscussionsoninterferometric inertialsensors.ThisdocumenthasbeenassignedLIGOLaboratory documentnumberLIGO-P1400115.

References

[1]E.Wienlandt,Seismometry,in:W.H.K.Lee,H.Kanamori,P.C.Jennings,C. Kisslinger(Eds.),InternationalHandbookofEarthquakeandEngineering Seis-mology,PartA,AcademicPress,Amsterdam,2002,pp.283–304.

[2]C.Collette,S.Janssens,P.Fernandez-Carmona,K.Artoos,M.Guinchard,C. Hauviller,A.Preumont,Review:inertialsensorsforlow-frequencyseismic vibrationmeasurement,Bull.Seismol.Soc.Am.102(4)(2012)1289–1300. [3]H.E.Sheffield,Anelectronicverticallong-periodseismometer,IEEETrans.Inst.

Meas.13(1964)2–7.

[4]C.Teupser,A.Plesinger,Designoffeedback-controlledwide-band seismo-graphswithrespecttoundesiredside-effects,Phys.EarthPlanet.Inter.18 (1979)58–63.

[5]M.J.Usher,R.F.Burch,C.Guralp,Wide-bandfeedbackseismometers,Phys.Earth Planet.Inter.18(1979)38–50.

[6]E.Wielandt,G.Sterkeisen,Theleafspringseismometer:designand perfor-mance,Bull.Seismol.Soc.Am.72(1982).

[7]M.Zumberge,J.Berger,J.Otero,E.Wielandt,Anopticalseismometerwithout forcefeedback,Bull.Seismol.Soc.Am.100(2)(2010)598–605.

[8]J.Otero,DevelopmentandCharacterizationofanObservatory-class, Broad-band,Non-Fedback,Leaf-SpringInterferometricSeismometer(PhDthesis), UniversityofCalifornia,SanDego,2009.

[9]M. Zumberge, J. Berger, E. Wielandt, Optical seismometer, US patent 2012/0247213A1,2012.

[10]USSI.http://www.ussensorsystems.com/USSI-Geophone-brochure.pdf [11]D.Carr,G.Bogart,S.Goodman,P.Baldwin,D.Robinson,Alaser

interferomet-ricminiatureseismometer,in:MonitoringResearchReview:Ground-Based NuclearExplosionMonitoringTechnologies,2008.

[12]D.Carr,P.Baldwin,S.Knapp-Kleinsorge,H.Milburn,D.Robinson,ALaser Inter-ferometricMiniatureSeismometer,2010,pp.268.

[13]D. Carr,P.Baldwin,S.Knapp-Kleinsorge,H.Milburn,D.Robinson,Alaser interferometric miniature seismometer,in: MonitoringResearch Review: Ground-BasedNuclearExplosionMonitoringTechnologies,2011.

[14]P.Shore,C.Cunningham,D.DeBra,C.Evans,J.Hough,R.Gilmozzi,H. Kun-zmann,P.Morantz,X.Tonnellier,Precisionengineeringforastronomyand gravityscience,CIRPAnn.Manuf.Technol.59(2010)694–716.

[15]C.Collette,S.Janssens,K.Artoos,Reviewofactivevibrationisolationstrategies, RecentPatentsMech.Eng.4(2011)212–219.

[16]F.Acernese,G.Giordano,R.Romano,R.DeRosa,F.Barone,Mechanical mono-lithichorizontalsensorforlowfrequencyseismicnoisemeasurement,Rev.Sci. Instrum.79(2008)074501.

[17]F.Acernese,G.Giordano,R.Romano,R.DeRosa,F.Barone,Tunablemechanical monolithic sensor with interferometric readout for low frequency seis-micnoise measurement,Nucl. Instrum.MethodsPhys.Res.A617(2010) 457–458.

[18]F. Acernese,G. Giordano,R. Romano,F. Barone, Compacttunable mono-lithic sensorsforvibrationmonitoringandcontrolofstructuresandvery lowfrequencylargebandcharacterizationofsites,in:15thWorld Confer-enceinEarthquakeEngineering,24–28September2012,Lisbon,Portugal, 2012.

[19]D.Gardner,T.Hofler,S.Baker,R.Yarber,S.Garrett,Afiber-opticinterferometric seismometer,J.LightwaveTechnol.5(7)(July1987)953–960.

[20]A.Araya,K.Kawabe,T.Sato,M.Mio,K.Tsubono,Highlysensitivewideband seismometerusingalaserinterferometer,Rev.Sci.Instrum.64(5)(1993) 1337–1341.

[21]A. Araya, K. Sekiya, Y. Shindo, Broadband seismometer for ocean bore-holeobservations,in:SymposiumonUnderwaterTechnologyandWorkshop on Scientific Use of Submarine Cables and Related Technologies, 2007, pp.245–248.

(6)

[22]I.Littler,J.Chow,D.Mcclelland,Asystem,deviceandmethodfordetecting seismicacceleration,WO2010057247,2010.

[23]D.Chatrefou,Fiber-opticvibrationsensor,EP354882,2003.

[24]B.Levine,Simplefiberopticseismometerforharshenvironments,US7714271, 2007.

[25]B.Levine,Fiberopticmicroseismicsensingsystems,WO201150275,2011. [26]R.Cahill,E.Udd,Opticalvibrationsensor,US4471659,1984.

[27]B.Merchant,M.Okandan,AnInterferometricMEMSSeismometer:Designand Testing,2009,pp.352.

[28]P.R.Saulson,Thermalnoiseinmechanicalexperiments,Phys.Rev.D42(8) (1990)2437–2445.

[29]M.J.Downs,K.W.Raine,Anunmodulatedbi-directionalfringe-counting inter-ferometersystemformeasuringdisplacement,Appl.Mech.Mater.365(1979) 85–88.

[30]J.Hrabina,J.Lazar,M.Hola,O.Cip,Frequencynoisepropertiesoflasersfor interferometryinnanometrology,Sensors13(2)(2013)2206–2219. [31]M.Zumberge,J.Berger,M.Dzieciuch,R.Parker,Resolvingquadraturefringes

inrealtime,Rev.Sci.Instrum.43(4)(2004)771–775.

[32]D.Ponceau,P.Millier,S.Olivier,SubnanometricMichelsonInterferometryfor SeismologicalApplications,2008,pp.70030.

[33]M.Zumberge,M.Berger,R.Parker,Resolvingquadraturefringesinrealtime, USpatent8023116B1,2011.

Biographies

ChristopheCollette receivedM.Sc.and Ph.D. degrees inmechanicalengineeringfromtheUniversitéLibrede Bruxellesin2003and2007.Since2014,heisprofessorin theFacultyofEngineeringattheULBandismemberofthe BEAMSdepartment.Hismainresearchinterestsinclude theprecisionandvibrationcontroloflargeinstruments dedicatedtoexperimentalphysics.

FaresNassifreceivedM.S.inMechatronicsand Mechani-calConstructionformUniversiteLibredeBruxelles(ULB) in2012and2014respectively.Hismasterwasfocusedon measuringgroundvibrationsatlowfrequencies.A sen-sorimmunetotilt-to-horizontalcouplingwasstudiedand presented.Alsoasensorfusionexperimentbetweenan inertialsensorandaseismometerinordertoincrease sensingbandwidthwasundertaken.

JulienAmarrecently receivedhis engineeringdegree fromthe Université deTechnologie de Belfort Mont-béliard(UTBM)in2015inFrancebydoingseveralresearch projects,suchastherealizationofanopticalinertial sen-sorattheUniversitylibredeBruxellesandtheconception ofaC++autonomousprogramforaparrotAR.Droneusing OpenCVatWakayamauniversity,Japan.

CélineDepouhon received her M.S. in Mechatronics andMechanicalConstructionfromUniversiteLibrede Bruxelles in2014. Hermasterthesiswas focused on swarm robotics and more specially the distributed control of multi-robot systems. Her research inter-estsincludealsoopticalinertialsensorandMichelson interferometer.

Simon-PierreGorzareceivedhisM.S.andPh.D.degrees inphysicalengineeringfromtheUniversitélibrede Brux-elles(ULB)in2001and2005,respectively.Since2010heis professorintheFacultyofEngineeringattheULBandisa memberoftheOPERA-photonicgroup.Hismainresearch interestsincludespatialandtemporaldynamicsinoptical nonlinearmedia,pulsecharacterizationtechniquesand applicationoflinearandnonlinearopticstobio-imaging andsensors.

Figure

Fig. 1. Picture (a) and schematic (b) of the prototype of the interferometric inertial sensor NOSE
Fig. 2. (a) Principle of active vibration isolator using inertial sensor; (b) simulated transmissibility (x/w) of the numerical model of the isolator shown in (a) when the controller is turned off, turned on using a commercial geophone, and turned on using
Fig. 8 shows the experimental amplitude spectrum of the inter- inter-ferometer noise (blue dashed-dotted line), expressed in physical units of [m/ √
Fig. 9. Experimental amplitude and phase of the transfer function between the sig- sig-nal from a commercial Guralp CMG-6T calibrated in displacement units and our prototype NOSE.

Références

Documents relatifs

The results coming from the module of determinant can be presented in two steps. • First, the sampled analysis and their output variation effects measured from correlation

Focal adhesions assembly starts with integrin occupancy and clustering to finally connect to actin stress fibers while at least assembly of podosome type adhesion of RSV

On distingue sur la figure la transmission en l’absence d’aérosols (en noir) et la transmission en présence d’aérosols stratosphériques de fond (en rouge) caractérisant

ISO Technical Report 9790 includes a large set of dynamic biofidelity performance specifications for the head, neck, shoulder, thorax, abdomen and pelvis of a 50 th percentile

ii) a decision (operational) module to provide the system with the optimal sensor placement solutions according to specific requirements. 3 depicts the integrated system

The wild-type, single mutant F290K, and double mutants (A289P − F290L, A289P−F290C, and A289P−F290I) of NpAS were subjected to molecular dynamics (MD) simulations (20 ns) in