• Aucun résultat trouvé

Pore network simulation of water condensation in Gas Diffusion Layers of PEM Fuel Cells

N/A
N/A
Protected

Academic year: 2021

Partager "Pore network simulation of water condensation in Gas Diffusion Layers of PEM Fuel Cells"

Copied!
39
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible.

To cite this version : Straubhaar, Benjamin and Pauchet, Joël and Prat,

Marc Pore network simulation of water condensation in Gas Diffusion

Layers of PEM Fuel Cells. (2015) In: 7th International Conference on

Porous Media - InterPore 2015, 18 May 2015 - 21 May 2015 (Padova,

Italy). (Unpublished)

Any correspondance concerning this service should be sent to the

repository administrator:

staff-oatao@listes-diff.inp-toulouse.fr

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

(2)

Pore network simulation of water condensation in Gas

Diffusion Layers of PEM Fuel Cells

B. Straubhaar1, J. Pauchet2 &M. Prat1 1Institut de Mécanique des Fluides de Toulouse, France

(3)

Outline

1 Introduction

2 Pore Network Model

3 Water transfer (∆T 6= 0)

(4)

Outline

1 Introduction

2 Pore Network Model

3 Water transfer (∆T 6= 0)

(5)

Introduction : Proton Exchange Membrane Fuel Cells

(PEMFC)

= Stack

Creates electricity/heat with hydrogen and oxygen Operating between 60 and 80°C

(6)

Introduction : Gas diffusion layer (GDL)

The GDL is a carbon fiber-based medium : hydrophobic

170 to 400 µm of thickness 0,21 to 0,73 g/cm2 of density

70 and 80 % of porosity ; resulting pores between 20 and 50 µm ⇒ GDL = Thin porous medium

(7)

Introduction : Gas diffusion layer (GDL)

The main challenges in a GDL are :

4 To diffuse reactant gas uniformally from the channel to the active layer 4 To keep the membrane hydrated for proton transfer

4 To evacuate excess water to avoid cell flooding and let oxygen reach the active layer =

(8)

What kind of water transfer in the GDL ?

First option

(9)

What kind of water transfer in the GDL ?

Other options

Only vapor transfer ?

(10)

What kind of water transfer in the GDL ?

Other options

Only vapor transfer ?

Only liquid transfer ?

(11)

Method : simulation of water transport using PNM

What numerical model ?

Classical 2-phase flow model based on generalized Darcy’s law and

macroscopic capillary pressure ?

But GDL is very thin (No length-scale separation)

⇒ Use of 3D Pore Network Model (PNM)

(12)

Outline

1 Introduction 2 Pore Network Model

3 Water transfer (∆T 6= 0)

(13)

Pore Network Model (PNM)

Allow invasion percolation process (pore with largest connected bond is invaded) or invasion with viscous effects

Allow multiple injection points :

Ceballos et al., Phys. Rev. E 84, 056311 (2011)

(14)

Properties

6 × 50 × 50pores with a 40µm step ⇒ 240µm × 2mm × 2mm network Cubic pores and bonds

Random distribution : [dpmin; dpmax] = [24µm ; 36µm] and [dtmin; dtmax] = [10µm ;

24µm]

(15)

Outline

1 Introduction

2 Pore Network Model 3 Water transfer (∆T 6= 0)

Temperature field Hypothesis

Pore Network Model with condensation and evaporation Results

(16)

Introduction

Introduction

Electrolysis ⇒ Heat flux Φ at the GDL/active layer interface

(17)

Calculation of temperature field with Finite-volume method

(18)
(19)

At 80℃, ∆Hliq

(20)

b) Thermal anisotropy in the GDL → λ = 0.5W/(m.K) in through-plane direction and λ = 5 or 50W/(m.K) in in-plane direction (for i = 1 A/cm2)

(21)

b) Thermal anisotropy in the GDL → λ = 0.5W/(m.K) in through-plane direction and λ = 5 or 50W/(m.K) in in-plane direction (for i = 1 A/cm2)

(22)

Water production rate

Q =

2F

iA

i: current density A: cross-sectional area F : Faraday constant

Is it possible to transfer this flux in vapor phase accross

the GDL ?

(23)

Estimation of Critical Relative Humidity

Critical RH = RH within the GDL marking the onset of condensation

Calculation of vapor partial pressure field by PN approach

In each pore i, mass conservation :

P

nbneighbours j=1 qij= 0

qij= gij(xvi− xvj)is the local vapor flux from pore i to pore j

gij= cDw/adth2ij/a

c: mole concentration (= p/RT ) dthij: width of the throat between i and j

a: lattice distance

Dw/a: molar diffusion coefficient between air and water

(24)

Example for i = 1 A/cm2 - RH channel = 50 %

RHlocal= pvspv(T (x,y,z))(x,y,z)

Isotropy : Maximum of local Relative Humidity at the GDL/AL interface

⇒Anisotropy : Maximum of local Relative Humidity under the rib and at the GDL/AL interface ⇒No condensation as long as local RH < 1 in the GDL

(25)

Phase diagram

(26)

Pore Network Model with condensation and evaporation

(27)

Step 1 : Nucleation

Identification of nucleation spots

1 Compute pvin each pore assuming no condensation 2 Identify each pore where RH is ≥ 1

3 Invade the pore where RH is ≥ 1 and is maximum 4 Back to step 1 until RH < 1 in each remaining pore 5 Initial state for growth step

(28)

Step 2 : Pore Network Simulation of liquid cluster growth

due to condensation

(29)
(30)

Results (I) Isotropic Thermal Conductivity & i = 1 A/cm2

Condensation happens at the AL/GDL interface and water spreads over the whole AL/GDL interface

(31)
(32)

Results (II) ×10 Anisotropy & i = 1 A/cm2

(33)
(34)

Comparison with previous works (PNM)

(35)
(36)

Outline

1 Introduction

2 Pore Network Model

3 Water transfer (∆T 6= 0) 4 Conclusion

(37)

Conclusion

4 Most of previous works using PNM = Invasion Percolation in liquid phase from catalyst

layer

4 Temperature field is computed → Temperature variations within the GDL leading to

condensation under the rib and at the GDL/AL interface

4 Temperature field control is a key of water management

4 Thermal anisotropy has a strong impact on temperature 4 Thermal anisotropy has a beneficial impact on O2transfer

4 Produced liquid water can be transferred through the GDL up to high RH channel

4 Liquid patterns due to condensation are different from patterns using PNM(IP from active

(38)

Prospects

Coupling with non uniform current density at the GDL/AL interface

Compare with in situ vizualisations for automotive applications (’IMPALA’ project)

Acknowledgements :

Financial support from European Union’s Seventh Framework Program (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Undertaking (project ’IMPALA’) is gratefully acknowledged

(39)

THANK YOU FOR YOUR ATTENTION

QUESTIONS ?

Références

Documents relatifs

1) La charge de travail : le temps à disposition pour effectuer une tâche, sa complexité, l’attention et l’énergie qu’elle demande sont à prendre en

Même s'il est possible de considérer cette préoccupation de Steina et Woody Vasulka avec la manipulation des images et des sons électroniques comme étant une attitude

On est en effet passé d'une structure de marché où l'offre et la demande étaient concentrées dans les pays producteurs traditionnels (principalement France, Espagne, Italie) à

And it actually occurs with SimSoc-Cert, because proofs rely heavily on inversion steps on hypotheses relating memory states of the program, according to a large inductive transi-

Sulfur species in the Galapagos hydrothermal waters show linear trends versus temperature in the data (passing through the ambient sea water temperature and

In order to better understand the mechanisms of action of genistein and daidzein, we studied their effects on the expression of the BRCA1 and BRCA2 genes, which are highly involved

La valeur (1) a été affinée pour que le passage dans la branche jaune se fasse une fois par seconde le plus précisément possible. La boucle verte est donc parcourue en 1168µS. Quand

Le développement d’un modèle multi-échelles simulant l’impact des impuretés individuelles ou en mélange permettra également à plus long terme une approche