• Aucun résultat trouvé

Assessing household energy uses: an online interactive tool dedicated to citizens and local stakeholders

N/A
N/A
Protected

Academic year: 2021

Partager "Assessing household energy uses: an online interactive tool dedicated to citizens and local stakeholders"

Copied!
11
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Energy

and

Buildings

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Assessing

household

energy

uses:

An

online

interactive

tool

dedicated

to

citizens

and

local

stakeholders

Anne-Franc¸

oise

Marique

a,∗

,

Simon

Cuvellier

b

,

André

De

Herde

b

,

Sigrid

Reiter

a

aUniversityofLiège,Urban&EnvironmentalEngineering,LEMA,AlléedelaDécouverte9(Bât.B52/3),Liège4000,Belgium bUniversitécatholiquedeLouvain,LOCI,ArchitectureetClimat,PlaceduLevant1,Louvain-La-Neuve1348,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2November2015

Receivedinrevisedform22March2017 Accepted29June2017

Availableonline8July2017 Keywords: Buildings Transportation Energyuses Energyconsumption Tool Localactors Sustainability Urbanform

a

b

s

t

r

a

c

t

ThispaperpresentstheSOLENintegratedonlinetool,dedicatedtocitizensandlocalauthorities.This methodology,developedtoallowpreciseenergyassessment(heating,cooling,ventilation,lighting, appliances,andcookingbutalsolocalproductionofrenewableenergy)ofhouseholdenergyuses,is firstlyintroduced.SOLENusesatypologicalclassificationofbuildingsandthermalsimulations.Many parametersaredefinedandtakenintoaccounttocapturethespecificitiesofnumeroustypesof build-ingsexhaustively(e.g.typeofbuildings;numberoffloors;commonownership;orientation;thermal performancesofthewalls,floors,roofs,andwindows;andventilationtype).Theseresultsrelatedto buildingenergyconsumptionarethencrossed,inanintegratedapproach,withseveralindicatorsof urbansustainability,totakeintoaccountinthebalanceoftheimpactofthelocationofbuildingson transportationenergyconsumptionortheimpactoftheurbanformontheproductionofsolar renew-ableenergy.Thistoolmakesaccessibletoalargenon-specializedaudiencetheresultsofathree-year scientificresearchstudyinWallonia(Belgium)andwasawardedanEnergyGlobeAward(Belgium)in 2014.Thefirstfeedbackfromusersispresentedtoconcludethiscontribution.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Thereis an urgent need to reduceenergy uses in ourbuilt environments,includingcities, suburbanareas, aswell asrural settlements.InEurope,energyconsumption inthebuilding sec-toraccountsfor morethan 40%of thefinal energy suppliedto thecustomers[1],representingthemostimportantsector,above transportationandindustry.Buildingsarethusconsideredasmajor contributorstoclimatechangebecauseoftherelease ofcarbon dioxideandothersgreenhousesgases,andpromotingenergy effi-ciencyinbuildingsisoftenpresentedasaviableapproachtothe mitigationofclimatechange.Energyefficiencyinthebuilding sec-torhasthusbeenthefocusofextensiveworldwideresearchover thepastdecades.Numerousresearcheffortshavehighlightedthe needtoproducemoreefficientbuildings,butalsotoretrofitthe existingbuildingstock,especially inEuropewhere therenewal rateofbuildingsisquitelow[2–4],thustheexistingbuildingstock shouldbethemaintargettosignificantlyreduceenergy consump-tion.

∗ Correspondingauthor.

E-mailaddress:afmarique@ulg.ac.be(A.-F.Marique).

Theuseofmathematicalmodelsandsimulationtoolsisoften presentedasthemostcredibleapproachtomodelthebehaviour andtopredicttheenergyconsumptionofasystem[5,6].Mostof theseexistingmodelsfocusontheheatingrequirementsof resi-dentialortertiarybuildings,attheindividualbuildingscale.More recently,therolethaturbanformplaysininfluencingtheenergy consumptionofindividualsbuildingshasalsobeenstudied exten-sively[7–9];theimportanceofthelocationofabuildingandthe characteristicsoftheneighbourhoodinwhichitislocated(density, diversityoffunction,accesstoamenities,etc.)onthegenerationof mobilitypatternsandqualityoflifehasbeenhighlighted.Infact, itseemscounterproductivetoproduceorretrofitefficient build-ingswithoutanyconcernforthelocationofthebuildingandits impactonthemobilityofitsinhabitants.Amongsttheir numer-ousadvantages,theapproachesbasedonmathematicalmodelsand simulationtoolscanaccountforalargenumberofparametersthat areknowntoactupontheenergyconsumptionofasystemandcan utilizeparametricvariationstotesttheimpactofenergyefficiency strategies.

Last but not least, several research and empirical results have demonstrated the significant impactof the lifestyles and behavioursofhousingoccupantsonenergyconsumption[10,11]. Citizensandlocalauthoritiesmustbeconsideredasthefirstactors thatcanconcretelyaltertheenergyconsumptioninbuildingsand http://dx.doi.org/10.1016/j.enbuild.2017.06.075

(2)

A.-F.Mariqueetal./EnergyandBuildings151(2017)418–428 419 incities.Therateofprivateownershipin theresidential

build-ingsectorishighinmostEuropeanregions(especiallyinBelgium wherealmost70%ofhouseholdoccupantsareownersoftheirown dwellings[12]).Privateownershaveacentralroleintheretrofitting ofthebuildingstock.Smalladaptationstoindividualbehaviours (e.g.thermostat,heatedarea,etc.)canhelptoreduceenergy con-sumptiondrastically.However,researchmethodsandtoolsthat allowprecisequantificationofenergyusesinbuildingsandenergy savingsrelated tovariousactions(insulatingtheroof,changing theglazing,behaviouralchanges, etc.)remaindedicatedmostly totrained professionalusers [13–15], thusneglecting thehuge potentialenergysavingslinkedtoindividualactionsundertakenby citizensintheirdwellings.Moreover,althoughanincreasing num-berofhouseholdoccupantsarepayingattentiontotheirenergy consumptionandaremotivatedtoundertakelightorheavy renova-tion,theydonotknowwhatactionstoundertakeandareunaware oftheimpactsofrenovationintermsofcomfort,energysavings, costs,etc.Raising publicawarenessoftheimpactofcitizenson energyefficiencyiscrucial andcouldquicklyleadtosignificant reductionsinthetotalenergyconsumptionofaterritory.

Thedisseminationofacademicresearchtothepublic(citizens, local authorities, policymakers, etc.) is crucial toensure more sustainabledevelopmentofourterritoriesandtoreduceenergy consumptioninbuildings.Thus,themainaimofthisresearchwas toencouragepositivechangesintheenergyefficiencyofthe build-ingstock,by providingan onlineinteractivetoolthat willhelp citizensandlocalstakeholderstoassessenergyusesintheirhouses andneighbourhoods,startingattheindividualscale.Thistoolwas intendedtotransferthemainresultsofa three-yearstudytoa non-specializedaudience.Theneedforthistypeofresearchlies inthefactthatitsdisseminationisforpeoplethatdo nothave specificknowledgeintheenergyfield,butforthemtohavethe necessaryinformationtoconductthemselvesintheirhomesand neighbourhoodsmoreenergyefficiently.

In this context, this paper presentsthe SOLENtool, a novel integrated urbantool, developed withinthe“Solutionsfor Low EnergyNeighbourhoods”projectanddedicatedtocitizensandlocal authorities.Theaimofthistoolistoaddressthepreviously high-lightedmainchallenges, inanintegratedapproach, byallowing theusertoperformanentireassessmentofenergyusesfrom res-identialbuildingsand dailymobility, aswellastoquantifythe

energyefficiencyofseveraltypesofretrofitsandchangesindaily habits.Thistoolisbasedonapreviousversion,developedtoassess onlysuburbanhousesandneighbourhoods[16].Majorupdatesand complementsweredevelopedtostronglyimproveandenrichthe firstversionandarepresented,especially:

• Themethodologytoassessenergyusesinbuildingswasstrongly improvedtoalsoconsiderlighting,appliances,andcooking; • Theupdatedversionofthetoolallowsthelocalproductionof

renewableenergy, suchasPV panels,solarheating,etc.tobe takenintoaccount;

• Theimpactoftheneighbourhoodinwhichthebuildingislocated istakenintoaccount;

• Themethodologyusedtoassesstransportationenergyuseswas modifiedtoincludealltypesoftravel,includingchainedtrips; • Several sustainability indicators were developed and crossed

withenergyconsumptioninbuildings;and

• Itisnowalsopossibletoobtainfinancialgainsrelatedtoenergy consumptionsandpotentialenergysavings.

TheSOLENinteractivetoolwasbuiltuponnumerousmethods, tools,anddatathat cannotbepresented extensivelyina single paper.Asthispaperfocusesonthepresentationof the interac-tivetool,enablingthetransferofscientificmethods andresults toanon-specializedaudience,theinterestedreadercanreferto severalpreviousscientificpapersinwhichallpartsofthe meth-ods and related assumptions have been extensively presented [10,16–18,29,33–36].The methodsthathavebeendeveloped to buildtheSOLENtoolaresummarized inthetwofollowing sec-tions.Section2brieflypresentsthemethodologythatenablesa preciseassessmentofenergyusesinbuildings(heating,cooling, ventilation,lighting,appliances,cooking,andproductionoflocal renewableenergy).ThismethodologywasappliedtotheWalloon (Belgium)buildingstockandahugedatabaseincludingmorethan 250,000individualresultswasproduced.Then,Section3presents severalindicatorsofurbansustainabilitythatweredevelopedto betakenintoaccountintheonlineinteractivetool,includingthe impactofthelocation orurbanformonenergyproductionand consumption.InSection4,theSOLENonlineintegratedurbantool, developedbasedonpreviousmethodologiesandtheirapplication, ispresented.Thistool, especiallydedicatedtocitizensand local

(3)

stakeholders,makesaccessibletoalargenon-specializedaudience theresultsofathree-yearscientificresearchstudythatcombined numerousscientifictools.Themainfindingsandsuggestionsfor furtherresearcharefinallysummarizedinSection5.

Fig.1illustratesthearticulationbetweenthedifferent compo-nentsoftheresearch.

2. Methodologytoassessresidentialenergyuses

A methodology was developed to assess residential energy uses(energyrequirementsforspaceheating,cooling,ventilation, electricalappliances,cooking,and domestic hotwater) andthe localproduction of renewable energy, based ona “bottom-up” approach.Itallowsforpreciseassessment ofenergyusesatthe individualbuildingscale,butalsoforthedrawingoftrends,atthe neighbourhood,city,andregionalscales,byaggregating individ-ualresults.Thismethodologyisbasedonseveralcomponentsand relatedassumptionsthathavealreadybeenextensivelypresented inpreviouspapers(referencedinthefollowingsections).Themain elementsandassumptionsofthesecomponentsaresummarized andreferencedbelow,astheyarethebasisonwhichthe inter-activetoolwasbuilt.Thenewinsightsandassumptionsarealso presented.

2.1. Energyusesinbuildings

Thismethodologycombinesseveralresearchmethodsandtools [16–18],includingatypologicalclassificationofbuildings,dynamic thermalsimulations,andsurveyscarriedoutbytheregional insti-tutesinchargeofenergyyearbooks[19].Theenergyconsumption levels related to heating, cooling, and ventilation are derived fromdynamicthermalsimulations.Theenergyconsumption lev-elsrelatedtodomestichotwater,electricalappliances,andcooking arebasedonregionalempiricalsurveysandarelinkedtothe num-berofinhabitantsineachdwelling.Thismethodologywasapplied totheWalloonbuildingstock.However,thisworkisreproducible forotherterritories.Forterritorieswithsimilarbuildingstocks, buildingconstructiontechniques,and heating systems(such as France,Luxemburg,andtheNetherlands),theclimateconditions (degree-days)andmeanconsumptionforhotwater,cooking,and appliancescanbeadapted.Forterritorieswithverydifferenttypes ofbuildings,constructiontechniques,andheating/coolingsystems, themethodsarereproduciblebutthetypologyofbuildingsand neighbourhoodsmustberedefined.Theproposedresultsdefine energyconsumptioninkWh/m2year,primaryenergy consump-tioninkWh/m2year,andCO

2emissionsinkgCO2/m2. 2.1.1. Energyconsumptionforspaceheating–ESH,cooling– ECO,andventilation–EV

Basedona typologicalapproach,60maintypesofdwellings weredefinedtorepresenttheWalloonresidentialbuildingstock, basedonthemaincharacteristicsofWalloondwellings[18,20,21]. Thetypologycomprises housesandapartments.Forhouses,the characteristicsthatweretakenintoaccounttobuildthetypology aretheorientation(B.1,seeTable1),thenumberoffloors(B.2) (oneandhalf,two,three,orfour),thecommonownership(B.3) (detached,semi-detached,orterracedhouse),andtheorientation (B.4)ofthebuilding.Forapartments,thecharacteristicsaretheplan configuration(B.1)(widecrossing,narrowcrossing,threefronts, onefront,orcornerapartment),theposition(B.3)oftheapartment inthebuilding(groundfloor,intermediatefloor,ortopfloor),and theorientation(B.4)ofthebuilding(north,east,south,orwest). Foralltypesofdwellings,theceilingheightwasdeemed2.4m; noattachmentsweremodelledwithsuch,buttheycanbetaken intoaccountbyincludingtheminthetotalareaofthedwelling. Eachofthe60typeswasmodelledwithseveraldifferentheated

areas.Asfarasthethermalperformancesofthehousingare con-cerned,two typesofwall(C.1)aredefined(solidorcavity).The insulationmaterialconsideredinthemethodhasathermal con-ductivity(␭-value)of0.040W/mK.Theinsulationintheslabsand thewalls(C.2andC.3)canvaryfrom0to30centimetres,andthatin theroofs(C.4)canvaryfrom0to35centimetres.Theglazingtype (C.5) maybe simple (U-value=5.8W/m2K),double-old (typical fromthe1970’sandthe1980’s,U-value=2.83W/m2K), double-new(new generationof double-glazing,U-value=1.05W/m2K), ortriple(U-value=0.6W/m2K).Theglazingsurfaceareaoneach fac¸ade isdefined accordingtothehousingtype, usingatypical window-to-wallratioforeachtype,asdevelopedin[22]forthe Walloonbuildingstock.Threeventilationmodes(C.6)aredefined: naturalventilation(typeA),ventilationwithmechanicalextraction (typeC),anddouble-flowventilationwithheatrecovery(typeD). ForventilationoftypeA,thewindowsareopenedforaninternal temperaturehigherthan25◦Candareclosedwhenthis tempera-turedropsdownto23◦C[39–41].Inthecaseofventilationoftypes CandD,airflowsaredefinedaccordingtotheBelgianrequirements [23].Theheatrecoverysystemefficiencyissetat85%.Threetypes ofsetpoints(C.7)aredefinedaccordingtoBelgianregulations[26] andnorms[42]:18◦Cduringdayandnight,20◦Cduringdayand night,and20◦Cwithareductionto16◦Cinadailyworkpattern andduringnight.Thesethreetypesofsetpointsaredefinedto ensurethermalcomfort.Becauseofthenumberofsimulationto proceedandtothenumerousenergyperformancestudied(very lowtoveryhighenergyperformancethatcorrespondtoverylong toveryshortheatingseasons),noannualprofilehasbeendefined. Acoupleofrulesofcombinationswerefinallydefinedtoeliminate non-realisticcases(forexample,abuildingwith20cmofinsulation andsimpleglazing).Inall,250,000typesofbuildingsweredefined. The TRNSys thermal simulation software was then used to automaticallyperformanenergyconsumption analysisofspace heatingneeds(ESH)andelectricityneedsforventilationsystems (EV)foreachofthe250,000casesinastandardcontext(the cli-mate of Brussels withoutany surroundings buildings).Because ofthetemperateclimateinBelgium(meantemperatureinJuly from 1981 to 2010=18.4◦C [24]), cooling was not considered in thisanalysis becausecoolingneedsare verylow in Belgium andmainlyconcernofficebuildings.Inthesesimulations, inter-nalgainsweredefinedaccordingtoMassartandDeHerde[25]as 70W/personforoccupationand6W/m2and4W/m2fornominal powerlightingandappliances,respectively.Theyarefunctionsof thedwelling’ssurfaceandofthenumberofoccupantswhichare setinthefunctionofthetypeofhousing.Internalgainsarealsoset accordingtoadailyandweeklyschedule.Inadditiontothe sim-ulationresults, threeenergystandardsdefinedbytheEuropean EnergyPerformanceofBuildingsDirective(EPBD)wereaddedin thedatabase:thelow-energystandard,theverylow-energy stan-dard,andthepassivestandard,whichcorrespondtoannualheating requirementslowerthan60kWh/m2year,30kWh/m2year,and 15kWh/m2year,respectively.

Next,energyconsumptionforspaceheating(ESH)and venti-lation(EV) wereobtainedbyapplyingtothesimulation results (energyneeds),aconversionfactor,dependingontheefficiency oftheheatingsystem(production,distribution,andemission)and thetypeoffuelused;eighttypesofheatingsystems(C.8)and11 typesoffuel(C.9)weretakenintoaccount.Foreachtype,the con-versioncoefficientthatwasusedcomesfromBelgianregulations [26,27](seealsoAppendixA).

Finally,twocorrectionfactorsweredefinedandappliedtothe previoussimulationresults,totakeintoaccountthelocalclimate (adaptationofdegree-daysincomparisonwiththeUccle-Brussels climate,A1in Table1)andtheimpactof theneighbourhoodin whichthebuildingis located(density,shadows,A2in Table1). Asfarasthelocalclimateisconcerned,1347possibilitieswere

(4)

A.-F. Marique et al. / Energy and Buildings 151 (2017) 418–428 421 Table1

Parametersrelatedto(A)theenvironmentinwhichthebuildingislocated,(B)thecharacteristicsofthebuilding,and(C)thethermalperformancesoftheenvelopeandthesystemswhicharetakenintoaccounttocalculatethe annualenergyconsumptionforspaceheating.

A.ENVIRONMENT B.TYPOLOGY C.THERMALPERFORMANCESANDSYSTEMS 1.Climate 2.

Neighbourhood

1.Housingtype 2.Numberof floor

3.Joint ownership

4.Orientation 1.Walltype 2.Slabinsulation [cm]

3.Wall insulation[cm]

4.Roof insulation[cm]

5.Glazing 6.Ventilation 7.Thermostats 8.Heating system 9.Fueltype Choiceamongst 1347locations Dense downtown

Widehouse 1.5 Detachedor semi-detached

North Solid 0 0 0 Simple,

double-oldor double-new

A 18 ◦ Cor20 ◦ Cor 20 ◦ C(day)–16 ◦ C (night)

Hotwaterboiler condensing

Naturalgas

Terraced NorthorEast 16

Continuous urban

2 Detachedor semi-detached

North 3 3 3 Hotwaterboiler

noncondensing Gazole

Terraced NorthorEast 16

Semi-continuous urban

Narrowhouse 1.5 Detachedor semi-detached

North 6 6 6 Electric

resistance heating

Propane

Terraced NorthorEast 16

Homogeneous semi-continuous orsocialdistrict 2 Detachedor semi-detached North 10 10 10 Double-newor triple

CordD Heatpump Butane

Terraced NorthorEast 20 Double-old,

double-newor triple Villageorrural

core

3 Semi-detached North Cavity 15 15 15 Double-newor

triple

Heatpump water

LPG

Terraced NorthorEast 30 Double-old,

double-newor triple

Suburbanarea 4 Terraced NorthorEast 20 20 20 Double-newor

triple

Microcombined heatandpower

Coal Widecrossing apartment 1 Top, intermediate, ground

NorthorEast 30 Double-old,

double-newor triple Isolatedrural Narrowcrossing

apartment

1 Top,

intermediate, ground

NorthorEast 25 25 25 Double-newor

triple Stove Wood Threefronts apartment 1 Top, intermediate, ground North 35 Double-old, double-newor triple "Greatsets" Onefront

apartment 1 Top, intermediate, ground North,East, South,West 30 30 30 Double-newor triple Radiatoror electricheater Wood(3 variants) Comer apartment 1 Top, intermediate, ground North,East, South,West 35 Double-old, double-newor triple

2EPBDrequirements(accordingtoUmax) Electricstorage

heater

Electricity 3EPBDthermalstandards(lowenergy–verylowenergy–passive)

(5)

Table2

Correctionfactorsdefinedaccordingtothetypeofneighbourhood.

Typeofneighbourhood Correction

factorfor roofs

Correction factorfor facades

1.Denseurbancore 0.72 0.42

2.Continuousurbanneighbourhood 0.82 0.69

3.Semi-continuousurbanneighbourhood 0.96 0.78

4.Homogeneoussemi-continuousneighbourhood 0.95 0.79

5.Villagesandruralcore 0.98 0.85

6.Suburbanneighbourhood 0.98 0.90

7.Isolatedruralarea 1.00 1.00

8.Greatsets 0.96 0.60

defined,based ontheheating degree-days(15/15) provided by theNationalMeteorologyInstitute(diffusedthrough[32])tocover thevariationoftheclimateineverymunicipalityofWalloonia,in comparisonwiththerepresentativeclimateofBrussels.A coeffi-cientbasedondegree-dayswasattributedtoeachlocation and thenappliedtothethermal simulationresults(performedwith therepresentativeBrussels’climate).Itisworthmentioningthat thedifferencesbetweenthedifferentlocationsremainedsmall, asBelgiumisasmallcountrywithatemperateclimate(Northern Europe).

Toaccountfortheimpactoftheneighbourhood(urbanform)in whichthebuildingislocated,eightmaintypesofresidential neigh-bourhoodsweredefinedbasedonthetypologicalclassificationof theWalloonbuildingstock[29].Theseeighttypesarethedense urban core,continuous urbanneighbourhood, semi-continuous urbanneighbourhood,homogeneoussemi-continuous neighbour-hood(includingsocialhousing),villagesandruralcores,suburban neighbourhoods,isolatedruralareas,andgreatsets.

Three representative cases of each neighbourhood category wereselectedinWalloonia.Simulationswereperformedonthese 24selectedneighbourhoods withTownscope,a software devel-opedvia[30]toassessdirect,diffused,andreflectedsolarradiation easilyaswellasthermalcomfortwithinbuiltenvironments,based on3Dmodels.Onthefacadesandroofsofeachneighbourhood,500 pointswererandomlydefined,andanassessmentofsolargainswas performedinordertodefinecorrectionfactorstoapply,according tothedensityoftheneighbourhoodandshadowingeffects.Asolar factor,M,wascalculatedforeachtypeofneighbourhoodtoreflect theimpactofsolarmasksandurbanformonthesolarresource, andthisfactorwasalsousedtoassessthelocalproductionofsolar energy(seebelow).Thesecorrectionfactorsaccordingtothetype ofneighbourhoodarelistedinTable2.

Thecorrectionfactorsrelating toclimateand tothetype of neighbourhoodwerefinallystoredinthedatabaseandthenapplied totheresultsofthethermalsimulationsofbuildings,inorderto takeintoaccount,respectively,thelocalclimateandthediminution ofsolargainsonfacadesandroofs,accordingtothebuiltdensityof theneighbourhoodinwhichtheconsideredbuildingwaslocated. 2.1.2. Energyconsumptionforelectricalappliances(EEA)and energyconsumptionforcooking(ECK)

EEA(Eq.(1))andECK(Eq.(2))arecalculated basedondata fromregionalyearbooks.TheWalloonInstituteforenergyand sus-tainabledevelopment(ICEDD)[19]highlightsthateachhousehold uses2.827kWhannuallyforelectricappliancesand461kWhper yearforcooking.Therefore,theconsumptionforelectrical appli-ancesandcookingarecalculatedusingstatisticsfromtheICEDD butweightedaccordingtothenumberofpeople(N)perhousehold andthecorrespondingyieldcoefficient(YeaandYck).

EEA =(−40N2+550N+1765)Yea (1)

ECK=(200N)Yck (2)

2.1.3. Energyconsumptionfordomestichotwater(EHW)

AnnualEHWisobtained(Eq.(3))bymultiplyingthevolumeof water(L)neededannuallybyalltheinhabitants(N),thedifference intemperature(T)betweenthehotandcoldwater,andtheheat capacityofwater(C).Itisestimated,basedonregionalaverages, thatanoccupantuses40Lofhotwaterand100Lofcoldwaterper day.Thetemperaturesofthehotandcoldwateraresetrespectively at60◦Cand10◦C.Finally,asforheating,11systemsproducinghot waterwereusedtoreflecttheperformanceofthesystem(Yhw).

EHW =NLTCYhw (3)

2.1.4. Storageoftheresultsinthedatabase

Theresultsoftheenergyassessments(spaceheating,cooling, ventilation,appliances,cooking,andhotwater)werestoredina hugedatabasecomprised of sevenparts:Part1 isdedicatedto thebaseddegree-dayscoefficient,Part2storesthesolarfactors dependingonthebuiltdensityoftheneighbourhoodinwhichthe buildingislocated,Part3isdedicatedtospaceheating require-mentsandelectricityneedsfortheventilationsystem,Part4relates to the characteristics of the heating systems, Part 5 addresses domestichotwaterrequirements,Part6relatestocooking require-ments,andPart7isdedicatedtoelectricalappliancerequirements. Part3(spaceheatingenergyneedsandelectricityneedsforthe ventilationsystem)iscomprisedofsevencolumns,asillustrated inTable3.Thefirstcolumnincludesauniquenumericcodethat allowsonetoidentifythecorrespondingbuildingandits charac-teristicsdirectlyandeasily:eachitemofthecodecorrespondstoa specificvariationofacoefficientandprovidestheidentitycardof thetestedcase.

Columns2and3areusedtostoretheslope(mq)andthe inter-cept(pq),respectively,ofthelinearextrapolationusedtogeneralize spaceheatingenergyneedsobtainedthroughthermalsimulations toanysimilarbuildingthatpresentsadifferentheatedsurfacearea. Columns4and5(msandps,respectively)storecoefficientsrelated tosolargains.Thetwolastcolumns(mvandpv)areusedtocalculate theelectricalneedsoftheventilation’sfans.

Thecoefficientsthatareusedtotransformenergyneedsinto fuelconsumption, primaryenergy consumption,and CO2 emis-sionsintoanestimationoftheannualcostarealsostoredinthe database.CoefficientsrelatedtoprimaryenergyandCO2emissions comefromthecurrentthermalregulations[26,27].Ameanenergy priceisproposedforeachtypeofenergyandcanbechangedbythe userintheonlinetool.

2.2. Localproductionofrenewableenergy

2.2.1. Electricityproductionfromphotovoltaicpanels−EPV Thepotentialofurban,suburban,andruralbuildingsforactive solarheatingandphotovoltaicelectricityproductionisobtainedvia numericalsimulationsperformedwithTownscopesoftware[30]. Townscopeallowsfortheattainmentofdirect,diffuse,and reflect-ingsolarradiationreachingapointandradiationdistributionona surface,underaclearsky,whichisnotrepresentativeoftheBelgian climate.AcorrectionfactorM(differencebetweenthevalues cal-culatedfortheassessedneighbourhoodandthesamesitewithout anybuildings)isthuscalculatedandappliedtothemeansolar radi-ation(MSR)fortheconsideredlatitude(MSR=1000kWh/m2year forBelgium).AcorrectionfactorFisthenappliedtoaccountforthe orientationandinclinationoftheroofs[31].Solarenergyreceived bytheconsideredsurface(Esol)isobtainedusingEq.(4).

Esol =MSRFM (4)

Thepotentialof roofsfor photovoltaicelectricity production (EPV,inkWhperyear)isobtainedusingEq.(5).InEq.(5),S repre-sentsthesurfaceareaoftheconsideredroofs,Cthepercentageof

(6)

A.-F.Mariqueetal./EnergyandBuildings151(2017)418–428 423

Table3

Exampleofthedatabaseforthespaceheatingandventilationneeds(Part3).

Code mq[kWh/m2] pq[kWh] ms[kWh/m2] ps[kWh] mv[kWh/m2] pv[kWh] 1321clg321 41.9 38.6 8.1 486 2.2 −23.1 1 321clg322 54.1 142.3 13.9 768.9 2.2 −23.1 1321clg323 49.1 105.5 8.1 486 2.2 −23.1 1321clg331 24.7 558.9 8.1 486 6.9 −73 1321clg332 32.4 792.5 11.3 646.2 6.9 −73 1321clg333 30.2 681.6 8.1 486 6.9 −73

theroofscoveredbypanels(maximum0.80),Ypvtheyieldofthe photovoltaicpanels,Yinvtheyieldoftheinverter,and␭a correc-tionfactortakingintoaccountelectricitylosses.Intheonlinetool, theyieldofthephotovoltaicpanelsisfixedat0.145,theyieldof theinverterat0.96,andelectricitylossesat0.2.

EPV =EsolSCYpvYinv(1-␭) (5)

2.2.2. Solarheating–ETH

Thepotentialofroofsforheatinghotwaterthroughthermal panelscannotbeassessedthroughtheequationusedfor photo-voltaicelectricity becausethesystemsare quitedifferent.Solar energy receivedannually bytheroof is determinedviaEq. (4). Eq.(6)allowsforthedeterminationiftheroofsofthehousesof theneighbourhoodsareadaptedtotheproductionofhotwater. InEq.(6),Esolrepresentsthesolarenergyreceivedbytheroofs, Sthesurfaceareaofthepanel,andYththeyieldofthethermal panels.Itisassumedthat55%oftheproductionofhotwaterof eachhouseholdmustbecoveredthroughthermalpanels(froma technical-economicpointofview,theoptimumisoftenconsidered toliebetween50%and60%).Underthiscondition,theyieldofthe systemis0.35.

ETH= EsolSYth (6)

2.2.3. Biomass–EBIO

Theuseofbiomassasarenewableenergysourceistakeninto accountbychoosingaheatingsystemusingbiomassasfuel(see AppendixA).Inthiscase,thespaceheatingenergyconsumptionis notequaltozerobutCO2emissionsare.Infact,inaccordancewith EUlegislation[32],biomassis consideredcarbon neutral,based ontheassumptionthatthecarbonreleasedwhensolidbiomassis burnedwillbereabsorbedduringvegetativegrowth.

2.2.4. Micro-cogeneration–ECHP

Amicro-CHPisaheatingsystemabletoproducethermaland electrical energy. Therefore, following a space heating demand DSH,anamountofelectricityisproducedandcanbeconsidered renewableenergy.ThisproductionofelectricityECHPcanbe cal-culatedusingEq.(7),whereYsystistheyieldofheatdistribution andemissionsystems,␭istheportionofspaceheatingthatneeds tobeconvertedbythemicro-CHP,Ychpéistheelectricalyieldof themicro-CHP,andYchpthisthethermalyieldofthemicro-CHP.

ECHP= (DSH/Ysyst)␭(Ychpé/Ychpth) (7)

2.2.5. Heatpump–EHP

Heat pumps allow for the use of renewable energy in our environment.Theuseofthis energyisrecognizedthroughhigh efficiencyheatingsystems,andtheconsumptionofelectricityis theenergyconsumptionforspaceheatingESHcalculatedusinga specificsystemyieldforheatpumps(seeAppendixA).

2.2.6. Windturbines–EWT

Asnumerouspoliticaluncertaintiesstillexist,regardingwind turbinesin Walloon,theelectricityproductionofwindturbines EWTisnotconsideredintheonlinetool.

3. Othersustainabilityindicatorsrelatedtoresidential

energyuses

Energyconsumptioninbuildingsisamajorcontributortothe (un)sustainability of our builtenvironment. However, previous studieshavealsohighlightedthehugeimpactofother parame-tersrelatedtourbanform,location,andtransportationhabitsof inhabitants[33,34].Toincludethesechallengesintheenergy bal-anceprovidedintheSOLENtool,resultsrelatedtobuildingenergy usescanbecomparedtoothersustainabilityindicators.Amongst theindicatorsdevelopedduringtheresearchandprovidedinthe SOLENtool,thefollowingarehighlightedinparticular.

3.1. Transportationenergyuses

Based on a quantitative methodology previously developed bytheauthorsandextensivelypresentedin[17],transportation energyusesfordailymobilityofinhabitantscanbeassessedand compared tobuildingenergyusesand productionofrenewable energy (inkWh,Fig.3).The previouslydeveloped methodwas improvedtoallowfortheaccountingofchainedtripsandto pre-ciselyrepresentthemobilityoftheusers.Modeoftransportation, travelleddistance,typeof vehicle,consumption ofthevehicles, numberofpeople,etc.canbedefinedbytheuserofthetool,to adapttoeachparticularsituation.

3.2. Urbanaccessibility

TocompletethequantitativeapproachpresentedinSection3.1, otherindicatorsrelated toaccessibilityandpotentialitiesof the urbancontextinwhich thebuildingislocatedweredeveloped. Theseindicatorswereallvalidatedbytheregionalauthoritiesin chargeofurbanplanningpolicies,intheframeworkofaregional handbookforsustainableneighbourhoods[35,36].Allthe thresh-oldvaluespresentedbelowarethosedevelopedandvalidatedin thishandbook[35,36]:

• Trainservices:thiscriteriontakesintoaccountthedistancefrom theneighbourhoodtothetrainstationandthetypeofstation (regionalorlocal).Thedistancetoaregionaltrainstationmust belessthan1500morthedistancetoalocaltrainstationmust belessthan1000m.

• Busservices:thiscriteriontakesintoaccountthenumberofbuses perdayintheareasurroundingtheneighbourhood(the assess-menttakesplaceinanareaof700maroundtheboundariesofthe neighbourhood).Targetvaluesareadaptedaccordingtothe loca-tionoftheneighbourhood:minimum34busesperdayinurban coresandcitycentresandminimum20invillagesandruralcores. • Diversityoffunctions:theneighbourhoodmustbelocatedina mixed-useenvironmenttofavouractivecommutingandreduce travelleddistance.Thetargetvaluesareatleast15different func-tions(alimentary shops,bakeries,postoffices,etc.)inanarea of700maroundtheboundariesoftheneighbourhoodinurban coresandcitycentresandatleast5invillagesandruralcores. Moreover,atleast,threedifferentcategoriesoffunctionsmust

(7)

Table4

Summaryoftheinputdataneededinthesimplifiedassessmentandinthedetailedassessment.

Simplifiedassessment Detailedassessment

Urbanform Typeofneighbourhood(8possibilities,fromcitycentreto

ruralsettlement)

Typeofneighbourhood(8possibilities,fromcitycentreto ruralsettlement)

Locationand householdcomposition

Nameofthedistrict/municipality(1348choices) Nameofthedistrict/municipality(1348choices)

Numberofadults/childreninthehousehold Numberofadults/childreninthehousehold

Transportation Numberofkmtravelledeachyearbycar/bus/train/bike/on

foot

Foreachtransportationtrip:

– originandintermediaryandfinaldestinations – mode(s)oftransportation

– characteristicsofthemode(s)oftransportation(e.g.for privatecar:typeoffuel,consumptionofthecar,number ofpeopleinthecar,etc.)

– travelleddistances

– numberoftripsperweekandperyear

Typeofdwelling Typeofhouse/apartment Typeofhouseapartment

Surfacearea Orientationofthemainfacade

Yearofconstruction Surfacearea

Yearofconstruction

Constructivedetails (Providedbythetool,basedontheyearofconstruction) Typeofinsulationintheslab/walls/roofs Typeofwindows

Typeofventilationsystem Heatingset-point

Heatingsystem Typeofboiler Typeofboiler

Typeoffuel Typeoffuel

Hotwater/electricity (Meanvalueprovidedbythetool) Typeofboiler

Typeoffuel

Typeofelectricitynetwork

Renewableenergy PVandthermalpanels:surfacearea,slope,andorientation PVandthermalpanels:surfacearea,slope,andorientation Biomass

Micro-cogeneration Heatpump

Costs (Providedbythetool) Annualcostfortransportation,bymode

Annualcost(frominvoices)forheatingandelectricity

berepresented(amongstsupermarkets,shops,leisure,services, andpublicservices).

• Proximityofschoolfacilities:thereisaleastoneschoolinthe surroundingsoftheneighbourhood.

Theseindicatorscanbeassessedonebyonebutalsocombined intoanintegratedindicatorofsustainability(fromaverylow acces-sibilitytoaveryhighaccessibility).Thiscombinedindicatorallows forcomparisonofthepotentialfordifferentresidentiallocations, takingintoaccounttheactivitiesgoingonintheconsidered loca-tions.

4. SOLENonlineinteractivetool 4.1. PresentationoftheSOLENtool

TheSOLENonlineinteractivetoolwasdeveloped,basedonan initialonlinetool(thatwasdedicatedtoonlysuburbanbuildings andneighbourhoods[16]).Thistool,availablefreeat www.solen-energie.be,makesaccessibletoalargenon-specializedaudience, thenumerous resultsofa three-yearstudydedicatedtoenergy usesinbuildingsandneighbourhoods.Thewebsitecomprisesthree differentassessmenttools,eachwithdifferentobjectives.The sim-plifiedassessmentisveryeasyandquicktouseandisdedicated toa user/householdwithout any specific knowledge of energy consumptionandbuildings.Thedetailedassessmentallowsfora preciseassessmentofenergyusesinabuilding,butthe question-nairetakeslongertocompleteandrequiresspecificinformation (suchasthecentimetresofinsulationinthewall,thetypesof win-dows,etc.).Table4summarizestheinputdataneededforthesetwo typesofassessments,focusingonhouseholdenergyconsumption. Lastbutnotleast,theneighbourhoodassessmentisdedicatedto localauthorities,architects,andprivatedevelopersandallowsfor assessmentofanentire(existingorplanned)neighbourhood, tak-ingintoaccountbothbuildingandtransportationenergyuses.The

methodologiesandindicatorspresentedinthispaperarerelated totheassessmentofindividualbuildings.Theyhavebeenadapted duringtheresearchtoallowforthedevelopmentofthe “neighbour-hoodassessmenttool”,buttheseadaptations arenotpresented here,becauseofthelengthlimitforthispaper.Formore informa-tionontheneighbourhoodassessmenttool,theinterestedreader canreferto[43].

To ensure a wide diffusion of the SOLEN online portal, the questionnairesusedintheevaluationtoolsaresimple,intuitive, andeasytocomplete,asillustratedinFig.2.Theresultsarealso expressedinaverysimpleform,asseeninFig.3,forenergyusesin theconsidereddwelling,andinFig.4,fortheannualenergybalance (dwelling+transportation+renewableenergy)ofahousehold.

Severalstrategiestoimprovetheenergyefficiencyofthetested buildingarethenprovidedtotheuser(suchasinsulationofthe roof,changeoftheglazing,insulationofthebuilding’senvelope, behaviouralchanges,etc.).Theyarepersonalizedaccordingtothe characteristicsofeachdwelling.Quantification(inkWh/year,in%, andinD)ofthepotentialenergysavingslinkedtoeachstrategyis alsoprovidedbasedontheresultsstoredinthedatabaseandthe uniquecodeusedtostoretheresults(Table1).

4.2. Validationandaccuracyoftheresults

Allthesoftwareusedinthedevelopmentofthedatabaseandthe SOLENtoolwerevalidated.TRNSysthermalsimulationsoftwareis awholebuildingenergysimulationprogramthatwasdeemedasa BESTESTreferencestandard[37]andthemethodsdevelopbythe researchteamhavebeenextensivelypresentedandvalidatedin previouspapers[10,16–18,29,33–36].Individualresultsobtained throughthemethodologiespresentedinthispaperhavebeen com-paredwithdatafromregionalyearbooksandsurveystoensure theiraccuracy[19].ThetotalenergyconsumptionoftheWalloon buildingstockwascalculatedviathemethodologypresentedinthis

(8)

A.-F.Mariqueetal./EnergyandBuildings151(2017)418–428 425

Fig.2. Exampleofuser’sinputinterfaceprovidedintheSOLENonlineportal(here,todefinethemaincharacteristicsofthedwelling).

Fig.3. ExampleofresultsprovidedintheSOLENonlineportal(energyconsumptioninthedwelling,pertypeofconsumption).Theenergyconsumptionofthehouseholdis alsocomparedwithareferencecasecorrespondingtocurrentthermalregulations.

paperandtheresultwascomparedwitharegionalyearbook(data collectedbyICEDD[19]).Thedifferencebetweenthecalculatedand therealvaluewasonly8.2%,whichwasconsideredacceptable.

Severalretrofittingscenariosofthebuildingstockwerefinally testedandquantifiedduringtheresearch.Theyprovide informa-tionregardingthedevelopmentofspecificpoliciesadaptedtothe

particularcharacteristicsofmaintypesofbuildingsandofthe envi-ronmentinwhichtheyarelocated.Theseresultsalsoshowthe importanceoftheretrofittingoftheprivatebuildingstockandthe relevanceoftakingintoaccount,inanintegratedapproach, build-ingenergyusesandtransportationenergyusesincludingurban characteristics.

(9)

Fig.4.Exampleofresultsprovidedintheonlinetool:comparison,inprimaryenergy,oftheannualenergyconsumptionofahouseholdfortransportation(permodeof transport);energyconsumptioninthedwelling(forheating,appliances,domestichotwater,cooking,andventilation);andtheproductionofrenewableenergyofthis household(here,PVpanels,thermalpanels,andmicro-combinedandheatingpowerareconsidered).

4.3. “Usability”testing

ThefinalversionoftheSOLENtoolhasbeenonlinesinceofthe endof2014atwww.solen-energie.be(onlyinFrench).Realusers (80individuals)tested thefinalversion oftheonline tool.Two initialtestsessionswereorganizedwiththehelpoftheregional authorityinchargeofenergy.Theygathered58professionalusers deeplyinvolvedinthefieldsofsustainablearchitectureandenergy efficiencyintheirdailywork.Theseuserscamefromtheregional departmentsofenergyandurbanplanning(24),local administra-tions(19),architectureorengineeringagencies(11),andprivate developergroups(4)currentlydevelopingorinterestedinenergy efficiencyin retrofitting projects.Then, two more test sessions wereorganized withstudents in architecturalengineering (15) andresearchersin energyefficiency(7). Aftera presentationof theresearchbytheresearchteamandatestsessionoftheentire SOLENtoolincludingthethreetypesofevaluationandthe speci-ficationsheets,participantswereaskedtoansweraquestionnaire individuallyandafterhavingtestedthetoolalonebyapplyingit totheirownprojects.Feedbackfromtheseinitialuserswasquite positive,with93.1%oftherespondentsclassifyingtheSOLENtool “fromusefultoveryuseful”,intheframeworkoftheirprofessional orpersonalpractice.Theassessmenttoolthatreceivedthemost voteswasthedetailedevaluationone(62.1%).

Themostpositiveaspectshighlightedbythetesterswere(1) thepossibilitytoeasily,quickly,andaccuratelyassessenergy con-sumptioninbuildings(thefactthatthetoolisbaseduponscientific researchwashighlyappreciatedbytherespondents),inparticular inordertodefinethemostefficientretrofittingtodo(changingthe glazing?Insulatingtheroof?Withhowmanycentimetres?)and(2) thepossibilitytocomparebuildingenergyusesandtransportation energyuses(asnumeroustestersdidnotrealizetheenvironmental

impactsandthecostoftheirmobilitybehaviours).Alargemajority ofrespondents(93.1%)consideredthetoolveryeasytouse;the webinterfacefriendly;andtheresultsnumerous,wellpresented, anddirectlyrelevanttothem.

Asfarasconcreteactionsareconcerned,84.6%ofthe respon-dentsdeclared that the useof the tool is “from susceptible to verysusceptible”toledthemtoconcretelyinvestinretrofitting toreducetheenergyconsumptionoftheirdwelling;whereas72% oftherespondentsdeclaredthattheuseofthetoolis“from sus-ceptibletohighlysusceptible”toencouragebehaviouralchangesin theirhouseholdtothosethataremoreenergyefficient.Behavioural changesrelatedtobuildings(reducingthetemperature,etc.)were moreappreciatedthanbehaviouralchangesrelatedtomobilityand transportation(modalchanges,etc.).Changingmobilitybehaviours ismoredifficult,namelybecauseofhousinglocation(farfromcity centres,withnoalternativestocars).

InadditiontothedevelopmentoftheSOLENonlinetool, numer-ousactionshavebeen—andwillbe—undertakenbytheresearch teamtopromote this initiative and toextensivelyraise aware-nessontheimportanceofimprovingenergyefficiencyinbuildings, startingfromtheindividualscale.Theseactionsarededicatedtoa widerangeofactors:studentsinarchitectureandurbanplanning, researchers,localand regionalstakeholders,privatedevelopers, architects,and,ofcourse,citizens.

5. Conclusion

Thispaperpresentedamethodologythatenablesoneto pre-cisely assess energy needs and energy consumption for space heating, cooling, ventilation, lighting, appliances, and cooking withinindividualdwellingsbasedona“bottom-up”approach.This methodologywasbasedonatypologicalclassificationofbuildings,

(10)

A.-F.Mariqueetal./EnergyandBuildings151(2017)418–428 427 thermalsimulations,and localyearbooks,tocoverawiderange

ofbuildingsandparameters.Theimpactsoftheclimateandofthe locationinwhichadwellingislocatedhavebeentakenintoaccount viatheapplicationofcorrectionfactorsbasedonthebuiltdensityof theneighbourhood.ThismethodologywasappliedtotheWalloon residentialbuildingstocktobuildahugedatabasethatincluded morethan 250,000individualresults. Thisestablished database wasmobilizedtobuildtheSOLENonlineinteractiveportalthat aimstoraisepublicawarenessofenergyefficiencyinbuildings. Thus,citizensareabletoassessthesourcesofenergy consump-tionforbuildingseasily.Theymayalsocomparethesedifferent energyconsumptionsourcesinordertodeterminerelevantand personalizedrecommendationswithwhichtoreducetheirenergy consumption.Thisinteractiveonlineportal representsthemain resultofanimportantthree-yearscientificresearchproject dedi-catedtoenergyefficiencyinWalloonthatisaccessibletoalarge non-specializedaudience,whichiscrucialinthescopeof sustain-abledevelopment.Thetool,availablesince 2014,wastestedby realusersandthefeedbackwasquitepositive.TheSOLENtoolhas beenawardedthe“2014Nationalenergyglobeaward−Belgium” toapplauditseffortstowardsmoresustainabilityinthebuilt envi-ronment,startingattheindividualscale[38].

Acknowledgements

This research wasfunded by the Walloon region (Belgium) under the “SOlutions for Low Energy Neighbourhoods” project (SOLEN).WethankJulienWinantforthewebdevelopmentofthe tool.

AppendixA. Heatingsystemyieldcoefficientusedtoget

theenergyconsumptionforspaceheating[26,27]

Combustionheating system

Naturalgas Gazole Propane ButaneLPG

Coal Wood Hotwatercondensing

boiler

0.78 0.82 0.80 0.84 0.81 Hotwaternon

condensingboiler

0.70 0.74 0.72 0.75 0.73 Domesticmicro

combinedheatand power

0.75 0.77 – – 0.77

Collectivemicro combinedheatand power

0.61 0.63 – – 0.62

Stove 0.65 0.65 0.65 0.61 0.59

Electricalheatingsystem

Resistanceheating 0.87

Storageheatingwithexternalsensor 0.92 Storageheatingwithoutexternalsensor 0.85 Radiator/convectorwithelectronicregulation 0.96 Radiator/convectorwithoutelectronicregulation 0.90

Airheatpump 2.18

Hotwaterheatpumpwithsurfaceheating 1.78 Hotwaterheatpumpwithradiator/convector 1.07

References

[1]EuropeanCommission(2015). https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings,online(AccessedOctober2015).

[2]Z.Ma,P.Cooper,D.Daly,L.Ledo,Existingbuildingretrofits:methodologyand state-of-the-art,EnergyBuild.55(2012)889–902.

[3]F.Nemry,A.Uihlein,C.M.Colodel,C.Wetzel,A.Braune,B.Wittstock,I.Hasan, J.Kreißig,N.Gallon,S.Niemeier,Y.Frech,Optionstoreducethe

environmentalimpactsofresidentialbuildingsintheEuropeanUnion -potentialandcosts,EnergyBuild.42(2010)976–984.

[4]OfficeofClimatechange(2007).Householdemissionsproject.FinalReport.

[5]L.Perez-Lombard,J.Ortiz,C.Pout,Areviewonbuildingsenergyconsumption information,EnergyBuild.40(3)(2008)394–398.

[6]V.A.Dakwale,R.V.Ralegaonkar,S.Mandavgane,Improvingenvironmental performanceofbuildingthroughincreasedenergyefficiency:areview, Sustain.CitiesSoc.1(4)(2011)211–218.

[7]K.Steemers,Energyandthecity:density,buildingsandtransport,Energy Build.35(2003)3–14.

[8]C.Ratti,N.Baker,K.Steemers,Energyconsumptionandurbantexture,Energy Build.37(7)(2005)762–776.

[9]P.J.Jones,S.Lannon,J.Williams,Modelingbuildingenergyuseaturbanscale, in:The7thInternationalIBSPAConference,RiodeJaneiro,Brazil,2001,pp. 175–180.

[10]T.deMeester,A.-F.Marique,A.DeHerde,S.Reiter,Impactsofoccupant behavioursonresidentialheatingconsumptionfordetachedhouses,Energy Build.57(2013)313–323.

[11]O.G.Santin,L.Itard,H.Visscher,Theeffectofoccupancyandbuilding characteristicsonenergyconsumptionforspaceandwaterheatinginDutch residentialstock,EnergyBuild.4(2009)1123–1232.

[12]D.Vanneste,I.Thomas,L.Goosens,LelogementenBelgique.Monographie. SPFEconomieetStatistique,SPFPolitiquescientifique,Bruxelles, 2007.

[13]C.Tweed,P.Jones,Theroleofmodelsinargumentsabouturban sustainability,Environ.ImpactAssess.Rev.20(2000)277–287. [14]S.Attia,E.Gratia,A.DeHerde,J.L.M.Hensen,Simulation-baseddecision

supporttoolforearlystagesofzero-energybuildingdesign,EnergyBuild.49 (2012)2–15.

[15]L.R.Glicksman,Promotingsustainablebuildings,HVAC&RRes.9(2013) 107–109.

[16]A.-F.Marique,T.deMeester,A.DeHerde,S.Reiter,Anonlineinteractivetool toassessenergyconsumptioninresidentialbuildingsandfordailymobility, EnergyBuild.78C(2014)50–58.

[17]A.F.Marique,S.Reiter,Amethodforevaluatingtransportenergyconsumption insuburbanareas,Environ.ImpactAssess.Rev.33(1)(2012)1–6.

[18]A.-F.Marique,S.Reiter,Amethodtoevaluatetheenergyconsumptionof suburbanneighbourhoods,HVAC&RRes.18(1–2)(2012)88–99.

[19]ICEDD(2008).Bilanénergétiquewallon2008:Consommationsdusecteurdu logement2008.ConceptionetréalisationICEDDasbl.

[20]A.Evrard,C.Hernand,A.DeHerde,Vade-mecum–OutilsEPEEH,Evaluationdu potentield’économied’énergiepartyped’habitatwallon,Architectureet Climat–UCL,2012.

[21]C.Kints,Larénovationénergétiqueetdurabledeslogementswallons, ArchitectureetClimat–UCL,2008.

[22]S.Dujardin,A.F.Marique,J.Teller,Spatialplanningasadriverforchangein mobilityandresidentialenergyconsumption,EnergyBuild.68(2014) 779–785.

[23]NBN(2008).NORMENBND50-001,Dispositifsdeventilationdansles bâtimentsd’habitation,Brussels.

[24]IRM(2016). http://www.meteo.be/meteo/view/fr/360955-Normales+mensuelles.html,(AccessedApril2016).

[25]C.Massart,A.DeHerde,Conceptiondemaisonsneuvesdurables,Elaboration d’unoutild’aideàlaconceptiondemaisonsàtrèsbasseconsommation d’énergie,ArchitectureetClimat–UCL,2010.

[26]PEB(2008).ArrêtéduGouvernementwallon,AnnexeIandAnnexeIII. [27]PEB(2012).ArrêtéduGouvernementwallonAnnexeIII.

[29]A.-F.Marique,S.Reiter,Solarbuildingsandtheurbanenvironment,in:Paper PresentedatThe3rdNewEnergyForum-2013.FromGreenDreamtoReality, Xian,China,2013.

[30]T.Teller,S.Azar,TOWNSCOPEII—acomputersystemtosupportsolaraccess decision-making,Int.J.Sol.Energy70(3)(2001)187–200.

[31] http://www.ef4.be/fr/photovoltaique/aspects-techniques/orientation-structure.html,(AccessedDecember2013).

[32]D.Bourguignon,BiomassforElectricityandHeating.Opportunitiesand Challenges.Briefing,EuropeanParliamentResearchService,2015,8p. [33]S.Reiter,A.-F.Marique,Towardlowenergycities:acasestudyoftheurban

areaofLiège,J.Ind.Ecol.16(6)(2012)829–838.

[34]A.F.Marique,S.Reiter,Asimplifiedframeworktoassessthefeasibilityof zero-energyattheneighbourhood/communityscale,EnergyBuild.82(2014) 114–122.

[35]J.Teller,A.F.Marique,V.Loiseau,F.Godard,C.Delbar,RéférentielQuartiers Durables(Guidesméthodologiques),Namur,Belgique,SPWDGO4,2014. [36]A.-F.Marique,C.Delbar,V.Loiseau,F.Godard,J.Teller,Versune

généralisationdesquartiersdurables?Présentationduréférentield’aideàla conceptionetàl’évaluationdéveloppéenWallonieetanalyseprospectivede douzequartiers,Urbia18(2015)149–162.

[37]http://sel.me.wisc.edu/trnsys/faq/faq.htm,(AccessedApril2016). [38]http://www.energyglobe.info/belgium2014?cl=english,2014.

[39]S.Obyn,G.vanMoeseke,Comparisonanddiscussionofheatingsystemsfor single-familyhomesintheframeworkofarenovation,EnergyConvers. Manage.88(2014)153–1678.

[40]M.Santamouris,D.Assimakopoulos,PassiveCoolingofBuildings,Antony RoweLtd.,Chippenham:James&James(SciencePublishers)Ltd.,London, 1996.

(11)

[41]G.VanMoeseke,E.Gratia,S.Reiter,A.DeHerde,Windpressuredistribution influenceonnaturalventilationfordifferentincidencesandenvironment densities,EnergyBuild.37(2005)878–889.

[42]CENStandardEN15251,IndoorEnvironmentalInputParametersforDesign andAssessmentofEnergyPerformanceofBuildingsAddressingIndoorAir

Quality,ThermalEnvironment,LightingandAcoustics,Europeancommittee forStandardisation,Bruxelles,2007.

[43]A.-F.Marique,Locationandaccessibilityofneighborhoods:twokeyfactors forthesustainabilityofbuiltenvironments,in:A.Cohen(Ed.),Urbanand BuiltEnvironments:SustainableDevelopment,HealthImplicationsand Challenges(pp.5),Novasciencepublishers,New-York,USA,2015.

Figure

Fig. 1. Articulation between the components of the research (methods – database – user interface).
Fig. 2. Example of user’s input interface provided in the SOLEN online portal (here, to define the main characteristics of the dwelling).
Fig. 4. Example of results provided in the online tool: comparison, in primary energy, of the annual energy consumption of a household for transportation (per mode of transport); energy consumption in the dwelling (for heating, appliances, domestic hot wat

Références

Documents relatifs

Clean household energy could be coordinated with the national “safety net” programme (45) to transition over 800 000 vulnerable households to clean energy for cooking and to

It calls on countries to adopt the following energy target to pave the way for achieving the Millennium Development Goals: "By 2015, to reduce the number of people without

Several technical Key Performance Indicators (KPIs) have been defined to inform users on their building thermal en- ergy consumption, while user-friendly KPIs present energy savings

27 increases based on model parameter estimates and mean (or modal) variable values suggest that for both CFLs and LEDs the portion of the luminosity rebound associated with

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Dynamic Shutdown (DNS) is one possible power saving mode in network devices that turns net- work node to sleep during intervals when it is not processing any data.. The approach

- A global analysis of the fuel poverty of the Compiègne urban area and the city of Grenoble, which will provide decision-makers with a new tool for understanding their

In this paper, we focus on the presentation of the meta-model of human activities within the household (presented in Section 2) and the dynamics of this model which