• Aucun résultat trouvé

Stress concentration factor Kt in complex structures

N/A
N/A
Protected

Academic year: 2022

Partager "Stress concentration factor Kt in complex structures"

Copied!
22
0
0

Texte intégral

(1)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress concentration 1

Stress concentration factor K

t

in complex structures

The tubular junctions of offshore platforms are examples of complex structures (figure below) . These platforms consist of tubes welded together, forming tubular junctions. Complex intersections of these junctions are structural discontinuities leading to high levels of stress in the weld seams.

Offshore wind turbines in Germany

(2)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress concentration 3

These tubular junctions are classified according to their form, type T, Y, K … schematized below.

The study of these junctions requires setting show below, for a K-type junction, which is the most general case.

The sleeve of the junction is embedded at both ends, the applied loads are also shown below.

A. Zeghloul CFMR Concentration des contraintes près des entailles 4

(3)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress concentration 5

The calculation of the SCF Ktin these junctions, uses the finite elements method.

The great difficulty in modelling these junction, is the generation of meshes in the areas of geometric discontinuities where the stress gradients are important.

An example is shown below.

Meshing of DTDK type junction

Parametric relationships widely used in the offshore industry for the calculation of the SCFKtin the T, K, X, K … type junctions, have been proposed by Efthymiou and Lloyd11.

For the Y- type junction, the relationships given the SCF Kt at the quarter point of the sleeve, are :

Where

(4)

7

Master Mécanique-Matériaux-Structures-Procédés

Chapter 4 – Stress intensity at the crack tip

Prof. Abderrahim Zeghloul Université de Lorraine

Fracture Mechanics, Damage and Fatigue

Contents

Introduction – Stress intensity factor Concept

Cracks loading modes

Westergaard approach

Expressions of stresses and displacements fields from Westergaard stress function

Stress intensity factor K - Expressions of stresses and displacements fields

Anti plane shear mode

Superposition principle in LEFM

Plastic zone at crack tip

Practical methods for calculation of SIF – Methods of weight functions

Toughness – Critical SIF

Griffith’s energy approach

Relationship between Griffith energy and SIF K

(5)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 9

Introduction

Stress concentration in the vicinity of a notch, studied in the previous chapter, has allowed to introduce the stress concentration factor, calledKt . This parameter is suitable for the characterisation of the severity of a notch.

For a plate with an elliptical hole loaded in tension, the SCF Kt is defined by :

1 2 1 2

t

a a

K = + b = + ρ

max

( ) A K

t a

σ = σ

A crack can be considered as a very flattened elliptical hole, i.e.

b<<a.

Under these conditions, the Ktparameter tends to infinity and the concept of SCF is no longer applicable.

It is therefore necessary to introduce a new parameter.

Based on Westergaard’s work14, Irwin15proposed the stress intensity factor (SIF). Applying the SIF concept to the description of the stress field in the vicinity of a crack tip, is commonly called LEFM.

The use of a single parameter (the SIF K) to describe the stress distribution near the crack tip, is justified by the similarities that can be observed between various cracks loaded in tension, as shown in the figure below.

(6)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 11

Edge crack

Central crack Crack near hole

The fringes of the photoelasticity cliche are similar for the three different cracks.

This result suggests that the stress distributions are the same.

The SIF concept is presented in this chapter. To determine the stress field and the displacement field near a crack tip, we use the Westergaard approach based on the complex potentials introduced previously (chapter 2).

Cracks modes loading

According to the loading direction, three modes of the crack lips displacement can be distinguished. These mode shown below, correspond to three kinematics of displacement of the lips of a crack.

Opening mode Mode I

Plane shear mode Mode II

Anti plane shear mode Mode III

(7)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 13

Mode I or opening mode - The relative displacement of the lips of the crack, is defined by :

Mode II or plane shear mode - The relative displacement of the lips of the crack, is defined by :

Mode III or anti plane shear mode - The relative displacement of the lips of the crack, is defined by :

Mode Ileads to a discontinuity of displacement according to the direction x2, while mode II leads to a discontinuity according to direction x1.

The cracks in service do not always appear in the configuration shown in the previous figure.

When the cracks are sufficiently long, they generally pass through the thin structures such plates.

In a thicker structures, cracks may be corner or surface.

The figure below shows various crack configurations, that can be observed in the vicinity of a circular hole.

Through cracks, are usually treated as a two-dimensional problem (planar problem), while corner cracks or surface cracks involve three-dimensional calculations.

Through crack

Front crack Surface

crack Corner

crack

(8)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 15

The Westergaard approach

In plane elasticity, the stresses derive from a biharmonic stress function, the Airy stress function A, whose expression according to the complex potentialsϕ(z) andχ(z), is :

( )

Re ( ) ( )

A = z ϕ z + χ z

The stress components are given by

( )

4 Re '( )

2 2 ''( ) ''( )

y x

y x xy

z

i z z z

σ σ ϕ

σ σ σ ϕ χ

+ =



− + = +

( )

( )

( )

Re 2 '( ) ''( ) ''( ) Re 2 '( ) ''( ) ''( )

Im ''( ) ''( )

x y

xy

z z z z

z z z z

z z z

σ ϕ ϕ χ

σ ϕ ϕ χ

σ ϕ χ

 = − −

   = + +

 = +

0 for

y xy

z z z a σ = σ = =

 <

The lips ( ) of the crack are free, and therefore the stress vector ( , ) is zero. The normal to the lips being , we have ( , ) 0 :

L T M L n

n y T M y σ y

= ± ± = ⋅± =

(L)

Now consider a cracked body, with a very small crack size compared to the dimensions of the cracked body.

The cracked body is subjected to a given loading, the crack length is 2a (as shown below).

(9)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 17

( )

( )

( )

Re 2 '( ) ''( ) ''( ) Re 2 '( ) ''( ) ''( )

Im ''( ) ''( )

x y

xy

z z z z

z z z z

z z z

σ ϕ ϕ χ

σ ϕ ϕ χ

σ ϕ χ

 = − −

 = + +

  = +

The boundary conditions on the lips of the crack, lead to :

( )

( )

Re 2 '( ) ''( ) ''( ) 0

for Im ''( ) ''( ) 0

z z

z z z z

z a

z z z

ϕ ϕ χ

ϕ χ

+ + = =

 

  

+ = <

 

2 '( ) ''( ) ''( ) imaginary number

on the lips ''( ) ''( ) real number

z z z z

z z z L

ϕ ϕ χ

ϕ χ

+ +

  

 +

( )

Re 2 '( ) ϕ z z ϕ ''( ) z χ ''( ) z

 = − −

( )

Re 2 '( ) ϕ z = − z ϕ ''( ) z − χ ''( ) z

The function ϕ can be decomposed into half the sum of two functionsϕ1andϕ2, as follows :

1 2

1 2 2

and its derivatives, are imaginary

with on

2 and its derivatives, are real

' '' ''

L z

ϕ ϕ ϕ

ϕ

ϕ ϕ χ ϕ +

 = 

 

 = − − 

2 2

by integrating the relationship ''χ = −zϕ ϕ''− ' = −d z( ϕ')+ −ϕ ϕ' ' , we get :

2 2 1

'( ) z z ' d z ( ) 2 d z ( )

χ = − ϕ ϕ ϕ + − = − ϕ + ϕ ϕ − = − ϕ ϕ +

( ) z z

1

dz

χ ϕ ϕ

 = − +  A = Re ( z ϕ ( ) z + χ ( ) z )

(

1

)

Re

A z ϕ ϕ z ϕ dz

 = − + 

(10)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 19

(

1

)

1 1 2

Re Re Im Im

I II

A A

A= z

ϕ ϕ

z +

 ϕ

dz =

 ϕ

dz+y

ϕ

+ y

ϕ

( )

( )

( )

Re 2 ' '' '' Re 2 ' '' ''

Im '' ''

x y

xy

z z z

σ ϕ ϕ χ

σ ϕ ϕ χ

σ ϕ χ

 = − −

 = + +

 = +

'

2

z '' '' ϕ = − ϕ χ −

( )

( )

( )

1 2

1

2

Re ' 2 ' '' ''

Re ' '' ''

Im '' '' '

x y xy

z z

z z

z z

σ ϕ ϕ ϕ ϕ

σ ϕ ϕ ϕ

σ ϕ ϕ ϕ

 = + + −

 = + −

 = − −

1 1 2 2

1 1 2

1 2 2

Re ' Im '' 2 Re ' Im '' Re ' Im '' Im ''

Re '' Re '' Im '

x y xy

y y

y y

y y

σ ϕ ϕ ϕ ϕ

σ ϕ ϕ ϕ

σ ϕ ϕ ϕ

 = − + −

 = + +

 = − − −

z x iy z x iy

= +

= −

It appears that the stress field [σ] is the sum of two fields [σ1] and [σ2] derived from the following Airy stress functions :

1 1

2

Re Im

Im

I II

A dz y

A y

ϕ ϕ

ϕ

 = +



 =

Mode I

Mode II Westergaard defines for these modes, the following

analytical functions

1 2

( ) ' ( ) ( ) ' ( )

I II

Z z z

Z z i z

ϕ ϕ

=



 =

Re Im

Im Re

I I I

II II II

A Z y Z

A y iZ y Z

 = +



= − = −



Westergaard called ', '' the successive derivatives of and , the successive primitives of

Z Z Z

Z Z Z

(11)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 21

Stresses and displacements expressions by the Westergaard method

Before performing the calculations, it should be remembered that for any analytical functiong(z), we have :

It follows therefore that

Opening mode I

1 1 2 2

1 1 2

1 2 2

Re ' Im '' 2 Re ' Im ''

Re ' Im '' Im ''

Re '' Re '' Im '

x y xy

y y

y y

y y

σ ϕ ϕ ϕ ϕ

σ ϕ ϕ ϕ

σ ϕ ϕ ϕ

 = − + −

 = + +

 = − − −

Stresses expressions

as 'ϕ 1 =ZI

1 1

1 1

1

Re ' Im '' Re ' Im ''

Re ''

x y

xy

y y y

σ ϕ ϕ

σ ϕ ϕ

σ ϕ

 = −

 = +

 = −

Re Im '

Re Im '

Re '

x I I

y I I

xy I

Z y Z

Z y Z

y Z

σ σ

σ

 = −

 = +

 = −

(12)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 23

Displacements expressions

2 (1 *) *

Hooke's law 2 (1 *) *

2

x x y

y y x

xy xy

µε υ σ υ σ µε υ σ υ σ

µε σ

 = − −

 = − −

 =

* in plane strain with

* in plane stress 1

υ υ υ υ

υ

=



 =

 +

Re Im '

Re Im '

Re '

x I I

y I I

xy I

Z y Z

Z y Z

y Z

σ σ

σ

 = −

 = +

 = −

2 x (1 2 *) Re I Im 'I 2 ux

Z y Z

µε = − υ − = µ x

2 µ u

x

(1 2 *) Re υ Z

I

y Im Z

I

 = − −

(1 *) *

2 (1 2 *) Re Im '

y x

y

I I

Z y Z

υ σ υ σ

µε υ

− −

=  

− +

Re Im '

Re Im '

Re '

x I I

y I I

xy I

Z y Z

Z y Z

y Z σ

σ σ

 = −

 = +

  = −

Re Im

Im ' Re

I I

I I

Z Z

y

Z Z

y

 =

 ∂

 

 = − ∂

 ∂

Im

Im ' Re ( Re ) Re

I

I I I I

y Z

y Z y Z y Z Z

y y

∂ ∂

= − = − +

∂ ∂

2 u

y

2(1 *) Im

I

( Re

I

)

Z y Z

y y y

µ = − υ

∂ ∂ ∂

2 µ u

y

2(1 υ *) Im Z

I

y Re Z

I

 = − −

(13)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 25

Plane shear Mode II

1 1 2 2

1 1 2

1 2 2

Re ' Im '' 2 Re ' Im ''

Re ' Im '' Im ''

Re '' Re '' Im '

x y xy

y y

y y

y y

σ ϕ ϕ ϕ ϕ

σ ϕ ϕ ϕ

σ ϕ ϕ ϕ

 = − + −

 = + +

 = − − −

Stresses expressions

as ' ϕ

2

= − iZ

II

2 2

2

2 2

2 Re ' Im '' Im '' Re '' Im '

x y xy

y y y

σ ϕ ϕ

σ ϕ

σ ϕ ϕ

 = −

 =

 = − −

2 Im Re '

Re '

Re Im '

x II II

y II

xy II II

Z y Z

y Z

Z y Z

σ σ σ

 = +

 = −

  = −

2 (1 *) *

Hooke's Law 2 (1 *) *

2

x x y

y y x

xy xy

µε υ σ υ σ µε υ σ υ σ

µε σ

 = − −

 = − −

 =

2

x

2(1 *) Im

II

Re '

II

2 u

x

Z y Z

µε = − υ + = µ x

2 µ u

x

2(1 υ *) Im Z

II

y Re Z

II

 = − +

2 Im Re '

Re '

Re Im '

x II II

y II

xy II II

Z y Z

y Z

Z y Z

σ σ σ

 = +

 = −

  = −

Displacements expressions

(14)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 27

(1 *) *

2 2 * Im Re '

y x

y

II II

Z y Z

υ σ υ σ

µε υ

− −

=  

− −

2 Im Re '

Re '

Re Im '

x II II

y II

xy II II

Z y Z

y Z

Z y Z

σ σ σ

 = +

 = −

 = −

Re ' Im

Im Re

II II

II II

Z Z

y

Z Z

y

 =

 ∂



 = − ∂

 ∂

Re

Re ' Im ( Im ) Im

II

II II II II

y Z

y Z y Z y Z Z

y y

∂ ∂

− = − = − +

∂ ∂

2 uy (1 2 *) Re II ( Im II)

Z y Z

y y y

µ = − − υ

∂ ∂ ∂

( )

2 µ u

y

(1 2 *) Re υ Z

II

y Im Z

II

 = − − +

Stresses and displacements expressions from the Stress Intensity Factor (SIF)

Should initially determine the analytical functions ZI and ZII introduced by Westergaard. Consider for example the functionZI(the reasoning is also applicable to mode II) and looking at the boundary conditions in the vicinity of small crack length 2a, loaded in mode I.

Re Im '

Re Im '

Re '

x I I

y I I

xy I

Z y Z

Z y Z

y Z

σ σ

σ

 = −

 = +

  = −

On the crack plane (at y=0), we have :

Re at 0 0

x y I

xy

Z y

σ σ σ

= =

 =

 =

(15)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 29

The lips of the crack being unloaded, the BC are :

0 à 0 et

y xy

y z a

σ = σ =

 

= <

From these two relationships, we deduce that

0 at 0 and

x y xy

y z a

σ = σ = σ =

 

= <

Re at 0 0

x y I

xy

Z y

σ σ σ

= =

 =

 =

2 2

( ) ( )

I

Z z g z

z a

= −

With g(z)a real function for y=0 and finite for z=±a

Now consider the stressσyalone. From either side of each crack tip (A or A’), σy is either zero or tends to infinity (remember that Kt

→∞). It follows that the functionZI(z)must be of the form :

The boundary conditions are then checked, since we have on the crack plane :

2 2

1 is a pure imaginary for z a ReZI 0

z a <  =

2 2

1 is a pure real for Re I z a

z a

z a Z

z a

+

→+

→−

>  →∞

Ends A and A’ play identical roles. Also, we make a translation of the Cartesian coordinate system (x,y), so that the origin is at point A. This translation is equivalent to the following change of variable :

z a

ζ = −

The position of point M

ζ = re

iθ

is represented by :

(16)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 31

Westergaard stress function ZI(z), is then written :

1 2

1 0 1 2

( ) ( ) where ( )

I

Z z g

ζ

g

ζ α α ζ α ζ

=

ζ

= + + + ⋅⋅⋅

( ) 0

ZI

ζ α

ζ

0 0

lim 2 ( ) ( ) lim 2 ( ) 2

I z a I I

K =

π za Z z =

ζ

πζ Z ζ = πα

As we try to determine the stress field at the immediate vicinity of the crack tip (asymptotic field), i.e. for |ζ|→0, the stress function

ZI(ζ) can be written :

The Stress Intensity Factor (SIF), called KIin opening mode I, is defined by :

( ) 2

I I

Z z K

= πζ

( ) 2

II II

Z z K

= πζ

As the Westergaard function has the dimension of stress ( ) the SIF will have the dimension of stress length (MPa m )

I I

Z MPa

K i

For the plane shear mode II, the same approach as before, leads to a similar result in the immediate vicinity of the crack tip :

KIIis the Stress Intensity factor for the plane shear mode II

(17)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 33

( ) avec 2

I i I

Z

ζ

K

ζ

reθ

=

πζ

=

Re cos Im sin

2 2

2 2

I I

I I

K K

Z Z

r r

θ θ

π π

= = −

3 / 2

1 1 3 1 3

' Re ' cos Im ' sin

2 2 2 2 2 2 2 2

I I I

I I I

K K K

Z Z Z

r r r r

θ θ

πζ π π

= − = − =

2 1/ 2 Re 2 cos Im 2 sin

2 2 2 2

2

I

I I I I I

K r r

Z ζ Z K θ Z K θ

π π

= π = =

Stresses and displacements expressions From the preceding expressions of the derivative

and the primitive of ZI, and noting that : 2 sin cos

2 2

y= r θ θ

We calculate the components of the stress tensor and the displacement, schematized on the figure below :

(18)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 35

Re Im '

Re Im '

Re '

x I I

y I I

xy I

Z y Z

Z y Z

y Z σ

σ σ

=

= +

= −

ux = −(1 2 *) Reυ ZIyImZIuy =2(1−υ*) ImZIyReZI

Re cos Im sin

2 2

2 2

I I

I I

K K

Z Z

r r

θ θ

π π

= = −

2 1/ 2 Re 2 cos Im 2 sin

2 2 2 2

2

I

I I I I I

K r r

Z ζ Z K θ Z K θ

π π

= π = =

3 / 2

1 1 3 1 3

' Re ' cos Im ' sin

2 2 2 2 2 2 2 2

I I I

I I I

K K K

Z Z Z

r r r r

θ θ

πζ π π

= − = − =

cos 1 sin sin3

2 2 2

2

cos 1 sin sin3

2 2 2

2

cos sin cos3

2 2 2

2

I x

I y

I xy

K r K

r K

r

θ θ θ

σ π

θ θ θ

σ π

θ θ θ

σ π

=

= +

=

2

2

2 cos 1 2 * sin

2 2 2

2 sin 2(1 *) cos

2 2 2

I x

I y

K r

u

K r

u

θ υ θ

µ π

θ υ θ

µ π

= +

=

We have in mode I, a discontinuity of the crack lips displacement along the yaxis, uy(π)=-uy(-π)

sin 2 cos cos3

2 2 2

2

sin cos cos3

2 2 2

2

cos 1 sin sin3

2 2 2

2

II x

II y

II xy

K r K r K

r

θ θ θ

σ π

θ θ θ

σ π

θ θ θ

σ π

= − +

=

=

2

2

2 sin 2(1 *) cos

2 2 2

2 cos 1 2 * sin

2 2 2

II x

II y

K r

u

K r

u

θ υ θ

µ π

θ υ θ

µ π

= +

=

We have in mode II, a discontinuity of the crack lips displacement along de xaxis, ux(π)=-ux(-̟)

Plane shear mode II

2 Im Re '

Re '

Re Im '

x II II

y II

xy II II

Z y Z

y Z

Z y Z

σ σ σ

= +

= −

=

ux =2(1−υ*) ImZII +yReZII

( )

uy = − (1 2 *) Re− υ ZII +yImZII

Re cos Im sin

2 2

2 2

II II

II II

K K

Z Z

r r

θ θ

π π

= = −

2 1/ 2 Re 2 cos Im 2 sin

2 2 2 2

2

II

II II II II II

K r r

Z = πζ Z = K π θ Z = K π θ

3 / 2

1 1 3 1 3

' Re ' cos Im ' sin

2 2 2 2 2 2 2 2

II II II

II II II

K K K

Z Z Z

r r r r

θ θ

πζ π π

= − = − =

(19)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 37

Anti plane shear mode

When a cracked structure is loaded in anti plane shear mode, the lips of the crack move, as shown on the figure below, along a

direction perpendicular to the plane (x,y)

x3

The displacement field is thus of the form

3 3

avec

3 3

( , ) u = u x u = u x y

In linear elasticity, the strains are given by

13 1,3 3,1 3,1

23 2,3 3,2 3,2

1 1

( )

2 2

1 1

( )

2 2

u u u

u u u

ε ε

 = + =



 = + =



13 13 3,1

23 23 3,2

Hooke's Law 2

2

u u

σ µε µ

σ µε µ

= =



= =

13,1 23,2

Equilibrium equation σ +σ =0

3

0

 ∆ = u

The displacement component u3 is thus harmonic. It can be considered as the real part or the imaginary part of an analytical function.

Westergaard approach can be used to address the anti plane shear stress problem. If the Westergaard function associated with this loading is called ZIII, it is shown that the displacement u3 can be expressed in the following form :

(20)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 39

3

1 Im

III

u Z

= µ

As is homogeneous to a stress, is homogeneous to a stress length so that is homogeneous to a length

III III

III

Z Z

Z µ

i

13 3,1

23 3,2

u u

σ µ

σ µ

=



 =

13 23

Im Re

III III

Z Z σ

σ

=

  

 =

The function ZIIIhas the same form as ZI and ZII

2

III III

Z K

= πζ

KIIIis the Stress Intensity Factor in mode III

The stresses and the displacement in mode III, are then given by

13 23

Im Re

III III

Z Z σ

σ

=

 

 =

3

1 Im

III

u Z

= µ

2

III III

Z K

= πζ

13

23

3

sin 2 2

cos 2 2

2 sin 2

III

III

III

K r K

r

K r

u σ θ

π σ θ

π

θ

µ π

 = −

 

 =

 

  =



(21)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 41

Tutorial 8 : Crack loaded in opening mode I

From the expressions, based on KI, of the stresses in the vicinity of a crack tip :

1- Calculate σx, σy and τxyfor θ =0,45,90,135 and 180°at a distance rfrom the end of the crack.

2- Represent the stress state around the crack tip at the current point M for the angles considered at question 1.

3- Determine, using Mohr construction, the main stresses and the main directions. What values take these quantities forθ=45 and 90°? 4- For which value ofθ, the normal stress is maximum?

M

Crack

cos 1 sin sin3

2 2 2

2

cos 1 sin sin3

2 2 2

2

cos sin cos3

2 2 2

2

I x

I y

I xy

K r K

r K

r

θ θ θ

σ π

θ θ θ

σ π

θ θ θ

σ π

=

= +

=

( ) 2

I

ij ij

K f

σ r θ

= π

1. Calculation of ( ) for =0, 45, 90, 135 and 180°fij θ θ

f11

f22

f12

(22)

A. Zeghloul Fracture mechanics, damage and fatigue – Stress intensity factor 43

2. Stress distribution around the crack tip 1. Calculation of ( ) for =0, 45, 90, 135 and 180°fij θ θ

f11

f22

f12

3. Mohr construction ( angle between the directions 1 and )α y

1 2

Using the Mohr Constrcution, the main stresses, σ and σ , are given by :

Références

Documents relatifs

Sowohl zur Diagnostik der zur Einweisung führenden Störung wie auch zur Früherken- nung neu auftretender Veränderungen und zur Verlaufskontrolle der Behandlung sind diese

Based on the previously obtained eigensolutions, a three-dimensional hybrid FE-SAFE method is developed for the analysis of mode scattering by inhomogeneities inside

We expose two elementary applications of the notation: first, we characterize graphically when a faithful balanced monoidal functor F : C −→ D transports a trace operator from

where the subscripts s and G denote soft mode and Goldstone mode respectively f and he are the relaxation frequency and dielectnc strengths of the mode, K~ is the elastic constant,

Les polymères conducteurs électroniques (PCE) sont des macromolécules conjuguées dans lesquelles les monomères contiennent des électrons π avec une alternance régulière de simple

One key characteristic of the experimental texture is obtained: the a-axes lie on the shear plane and are normal to the shear direction, whereas the c-axes are aligned with the

In this paper, we presented an extension of our previous linear stability analysis of coplanar crack propagation in mixed-mode I+III (Leblond et al., 2011), including a heuristic

At least for values of the ratio of the initial mode III to mode I stress intensity factors larger than some threshold, simulations reproduced salient features of the crack