• Aucun résultat trouvé

Lifting Force and Bearing Capacity of an Ice Sheet

N/A
N/A
Protected

Academic year: 2021

Partager "Lifting Force and Bearing Capacity of an Ice Sheet"

Copied!
30
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1951

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331408

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Lifting Force and Bearing Capacity of an Ice Sheet

Lofquist, B.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=b7148cd1-1c56-436f-b14f-75857f1d0ce5 https://publications-cnrc.canada.ca/fra/voir/objet/?id=b7148cd1-1c56-436f-b14f-75857f1d0ce5

(2)

NATIOBiAL RESEZiRCii COUI.ICIL O F CANADA

Technical T r a n s l a t i o n TT-164

L i f t i n g Force and Bearing Capacity of an I c e Sheet, ( ~ ~ f t k r a f t och E a r f i j r d g a hos e t t ~ s ~ c k e ) Teknisk T i d s k r i f t , No, 25, Stockholm 194.4,

b

B e r t i l L 6 f q u i s t

D r , &gaj, The S t a t e Power Board, Sweden

t r a n s l a t e d by

H O B O G O Nathan

Revised by t h e author !

:

T h i s i s t h e t w e l f t h of t h e s e r i e s of t r a n s l a t i a n s p r e p a r t d f o r Ule Division of Building Research.

(3)

The s t r e n g t h of i c e i s a major s c i e n t i f i c protlem of r e a l concern t o t h e Division of Building Research, The term i s one used t o designate i n simple f a s h i o n a knowledbe of t h e complex mechanical and p h y s i c a l p r o p e r t i e s of i c e , This knowledge i s e s s e n t i a l f o r Ein understanding of p r a c t i c a l problems, such a s t h e p r e s s u r e e x e r t e d by i c e a g a i n s t darcs, and t h e bearing c a p a c i t y of s h e e t s of i c e a s , f o r example, those which cover t h e s u r f a c e s of Canadian l a k e s i n winter, I n t h e course of a search f o r i n f o r n a t i o n on t h i s s u b j e c t , with s p e c i a l reference t o t h e problem of i c e p r e s s u r e s on dams, t h e o p p o r t u n i t y presented i t s e l f of v i s i t i n 4 Stockholm, Sweden,and t h e r e c o n s u l t i n g with members of t h e s t a f f of t h e Royal Swedish S t a t e board of , i v a t e r f a l l s amongst them D r . B e r t i l ~ g f ~ u i s t , t h e author of t h i s

paper o

So l i t t l e information i s a v a i l a b l e i n p r i n t e d form on t h e s t r e n ~ t h of i c e , t h a t permission was sought t o have t h i s paper by

Dro

L o f q u i s t t r a n s l a t e d , This permission was r e a d i l y granted and t h e Division i s glad t o make a v a i l a b l e t h i s u s e f u l paper throu,h t h e Council's t r a n s l a t i o n s e r v i c e ,

It

may u s e f u l l y be menticned t h a t another paper by D r ,

~ b l f ~ u i s t w i l l ,

i t

i s hoped, soon be published i n English a s a p a r t of a symposium on t h e problem of i c e p r e s s u r e s a g a i n s t dams wliich was presented t o t h e American S o c i e t y of C i v i l Engineers a t i t s meet- i n g i n Toronto, Ontario, i n J u l y , 1950, The papers t h e n read a r e being submitted formally t o t h e Society with a view t o t h e i r public- a t i o n and subsequent d i s c u s s i o n , October, 1950 Robert F, Legget, D i r e c t o r , Division of Building Re search

(4)

LIFIING FORCE bl\jL) bhARIIJC CAPACITY Or' AIY ICE SHEET

I n winter, hydraulic c o n s t r u c t i o n works a r e a f f e c t e d Ly f o r c e s s e t up by t h e i c e s h e e t , These f o r c e s , which a c t both i n v e r t i c a l and h o r i z o n t a l d i r e c t i o n , may be r a t h e r l a r g e . Smaller

c o n s t r u c t i o n s , such a s p i t r s , caissons and p i l e groups may be

damaged, among other t h i n g s , due t o t h e f a c t t h a t c o n s t r u c t i o n s a r e r a i s e d by t h e i c e s h e e t a s t h e water l e v e l r i s e s .

The l i f t i n g f o r c e of an i c e s h e e t p a r - t i c u l a r l y a f f e c t s smaller, i s o l a t e d o b j e c t s such a s p i l e s and p i l e groups, which f r e q u e n t l y tecome frozen up during t h e winter u n l e s s s p e c i a l pre- c a u t i o n s a r e taken. Observations i n Northern Sweden have shown t h a t even caissons of considerable s i z e can be l i f t e d by t h e i c e ,

A s f a r a s i s known, no d a t a on t h e magnitude of t h e l i f t - i n g f o r c e s a r e a v a i l a b l e i n t h e l i t e r a t u r e , I n view of t h e g r e a t p r a c t i c a l importance of t h e problem, conditions i n a p o r t i n

Northern Sweden were i n v e s t i g a t e d i n t h e winter of 1939-40 by The Royal Board of Roads and Waterviays, The r e s u l t s o f t h i s i n v e s t i g - a t i o n a f f o r d an i n s i g h t i n t o t h e i c e conditions about p i e r s , I t

was found t h a t some oaissons had been r a i s e d by more than 20 centime- t r e s .

B a s i c a l l y , t h e s t r i c t l y t h e o r e t i c a l determination of t h e l i f t i n g f o r c e of an i c e s h e e t i s d i f f i c u l t s i n c e , i n t h e f i r s t p l a c e , t h e laws f o r t h e p l a s t i c i t y o f . i c e are only roughly known, However,

(5)

by c e r t a i n approxinlations,

it

i s p o s s i i l e t o o b t a i n a r e s u l t which a g r e e s w e l l w i t h t h e a c t u h l c o n d i t i o n s observed d u r i n g t h e above in- v e s t i g a t i o n .

The l i f t i n g f o r c e a c t i n g on a l o n g s t r a i g h t w a l l and t h a t a c t i n g on a n i s o l a t e d o b j e c t a r e determined below, The proilem of t h e l i f t i n g f o r c e i s tantamount t o t h a t of t h e b e a r i n g c a p a c i t y of an i c e s h e e t , The nethod used f o r c a l c u l a t i n g t h e l i f t i n g f o r c e can t h e r e f o r e a l s o be a p p l i e d t o t h e c a l c u l a t i o n of t h e b e a r i n g c a p a c i t y of a n i c e s h e e t , a s shown i n t h e l a s t

c h a p t e r ,

L i f t i n p Porce on a Lonn S t r a i ~ h t \ # a l l

The p a r t s of an i c e s h e e t c l o s e t o s o l i d c o n s t r u c t i o n s , which i s prevented from following t h e r i s i n g of t h e water l e v e l , a r e i n f l u e n c e d by i n c r e a s e d u p l i f t f o r c e s , The l i f t i n g f o r c e i s

t h e n given by t h e displacement due t o t h e b e d i n t h e i c e s h e e t , Iience t h e c h i e f problem i s t o d i s c o v e r what form t h e bends t a k e ,

Assuming t h a t t h e i c e i s an e l a s t i c m a t e r i a l , t h e l i f t i n g f o r c e can be c a l c u l a t e d by t h e t h e o r y of beams and s l a b s on e l a s t i c support, s i n c e t h e upward p r e s s u r e on t h e underside o f t h e i c e s h e e t a t a l l p o i n t s i s p r o p o r t i o n a l t o t h e d e f l e c t i o n ,

The s i m p l e s t c a s e i s t h a t of a lon, s t r a i g h t w a l l f r o z e n i n t o a n i c e s h e e t (Fig, l ) , To bedin with, t h e i c e s h e e t i s

assumed t o be l e v e l and t h a t t h e water l e v e l r i s e s t h e d i s t a n c e 11, L e t u s consider a s t r i p of t h e i c e s h e e t a t r i g h t angle t o t h e w a l l , r i g i d l y f i x e d t o t h e l a t t e r and i n f i n i t e l y long, The i c e s t r i p i s

(6)

a c t e d on by i t s own weight, by t h e upward p r e s s u r e and a t t h e f i x e d end by a v e r t i c a l f o r c e and a negative moment. The weight of t h e i c e s h e e t and t h e corresponding component of t h e u p l i f t f o r c e can be disregarded s i n c e t h e s e f o r c e s balance each o t h e r everywhere and cause no deformations,

The following symbols a r e now introduced:

k

=

modulus of, r e a c t i o n (here 1 t o n per cu, metre)

E

=

modulus of e l a s t i c i t y

d

=

t h i c k n e s s of i c e

1

=

moment of i n e r t i a p e r u n i t of width

p

=

l i f t i n g f o r c e per u n i t of width

For t h e d e f l e c t i o n of t h e i c e s t r i p , t h e following equat- i o n holds;

which has t h e same s o l u t i o n here a s i n t h e case of an i n f i n i t e l y long beam on an e l a s t i c support subjected t o a s i n g l e f o r c e

2

P

,

Hence

-

where

The equation c o n t a i n s a simple ..sine f u n c t i o n m u l t i p l i e d by a damping function, Waves of constant wave l e n g t h form i n t h e

(7)

i c e s t r i p , but with g r e a t l y reduced amplitudes. By equating

x

t o zero and p u t t i n g

Y

=

H

,

t h e l i f t i n g f o r c e i s obtained, v i z . ,

For t h e l i f t i n g f o r c e t o occur, t h e i c e must be a b l e t o r e s i s t tending s t ~ e s s e s which reach a

maximum

a t .the f i x e d end, The maximum moment then becomes

=

and t h e corresponding bending s t r e s s

The aLove expressions apply only a t t h e beginning of a

v e r y r a p i d r i s e i n t h e v;ater l e v e l where t h e i c e may be consicered e l a s t i c , Bowever, i c e i s a highly p l a s t i c m a t e r i a l , i . e , t h e deformations i n c r e a s e vritb time, IGoreover, t h e y depend on t h e t e r ~ p e r a t u r e ana a r e p r o p o r t i o n a t e l y g r e a t e r f o r h i b e r s t r e s s e s t h a n f o r 1or;er ones,

The p l a s t i c deformation of i c e i s caused by t h e p a r t i c l e s s l i p l ~ i n g clue t o t h e i n f l u e n c e of' normal and shearing s t r e s s e s . I n t h e p r e s e n t case, t h e shearing f o r c e s a r e comparatively small, Therefore,

i t

may t e assumed t h a t t h e p l a s t i c i t y i s clue t o tending

s t r e s s e s alone,

(8)

t h e i c e , Ep

,

has been formulated by Uils Rogen

(2),

v i z e ,

where

6'

denotes t h e s t r e s s ,

h

t h e time,

t

t h e temperature i n degrees Centigrade with reversed s i g n and

c

a constant, which f o r t h e t e s t was between

6

x

lod5

and

9

x expressed i n hours, t o n s and metres. The expression i s based on p r e s s u r e t e s t s with moderate s t r e s s e s ,

It

should be p o s s i b l e t o apply t h i s expression t o t e n s i o n a l s o .

Even f o r such m a t e r i a l s a s g l a s s , t i n , p a r a f f i n , brfck- work and ccncrete, t h e p l a s t i c deformation has been found t o be approximately p r o p o r t i o n a l t o t h e cubic r o o t of t h e time,

The e l a s t i c deformations f, and t h e p l a s t i c deformation

E P are t h e n combined t o form t h e modulus of deformation,

F,

which i s defined by

The l i f t i n g f o r c e , wliich i s obtained when t h e water l e v e l r i s e s r a p i d l y , begins t o diminish imnlediately because 19' t h e p l a s t i c - i t y o f t h e i c e , I n o r d e r t o o b t a i n a r o u g h e s t i m a t e o f t h i s d e c r s & s e ,

E

i n equation ( 2 ) i s replaced by

/-

.

Then

,- ---. >- %-,. .>-". -+-

--The decrease of t h e l i f t i n g f o r c e with t h e time, a s expressed by equation ( 6 ) , i s shown i n Fig, 2. The g r e a t e s t decrease o c c u r s during

(9)

t h e f i r s t hour, After t h a t time, t h e l i f t i n g f o r c e remains almost constant

,

I n nature, however, t h e water l e v e l r i s e s a t a c e r t a i n f i n i t e r a t e , f o r which equation (6) cannot be applied d i r e c t l y , The r i s e of t h e water l e v e l i s a f u n c t i c n of time, I n order t o oLtain t h e l i f t i n g f o r c e a t a c e r t a i n time,

h,

,

it

i s assuned

t h a t t h e i c e sheet i s being r a i s e d by i n f i n i t e l y

small

s t a g e s , A

H.

I f such a minute r i s e occurs i n t h e time

h

,

then, according t o equation ( 6 ) , t h e corresponding p a r t i a l f o r c e i n t h e time

A,

i s t

I f vie assulne t h e d i f f e r e n t p a r t i a l f o r c e s according t o t h e formula could be added then

4 -- -- --

--

k

-'d3

--rz

->

f i e

f - .-a

0 t i /

I n order t o solve t h e i n t e g r a l , t h e f u n c t i o n Hmus!; te known. If

it,

i s assumed t h a t t h e water l e v e l r i s e s a t a constant r a t e Q , then

H

=

a h

and

I n t e g r a t i o n can then Le c a r r i e d o u t a n a l y t i c a l l y . Thus

(10)

with t h e aLbreviation

Very soon t h e p l a s t i c deformation becomes considerably g r e a t e r than t h e e l a s t i c deformation, e s p e c i a l l y a t t h e temperat- u r e s near zero degrees

C,

We may t h e r e f o r e w r i t e t h e formula

5

=

u-

and cancel t h e l a s t t h r e e terms i n parentheses,

c v *

t h e n

S i m i l a r l y , t h e bending s t r e s s a t t h e f i x e d end can be derived:

These expressions t h u s give approximate values of t h e l i f t i n g f o r c e and t h e corresponding bending s t r e s s when t h e water l e v e l r i s e s a t t h e r a t e of

a

.

Kith r e s p e c t t o t h e i c e temperature,

t

,

a r e s e r v a t i o n should be made. The formulae apply f o r uniform temperature i n t h e i c e s h e e t , I f t h e upper surface of t h e i c e i s cooled, a non- uniform terqeraturia is obtained s i n c e t h e underside, which i s i n c o n t a c t with t h e watel., has a temperature of OOC, Assunling a

(11)

above formulae hold, i f a c o r r e c t e d mean temperature i s i n t r o - duced, The l a t t e r f a l l s somewhat s h o r t of t h e a r i t h m e t i c mean temperature, Hence, f o r a temperature of t h e upper s u r f a c e of t h e i c e o f , say

-loOc.

,

f

=

4

should be s u b s t i t u t e d i n t h e above formulae

,

Comparison w i t h Conditions Observed i n t h e F i e l d

During t h e winter of 1939-40, t h e movements of t h e i c e s h e e t i n a Northern Swedish p o r t were observed by t h e Royal Board of Roads and 'Aaterways, &vary second day t h e i c e s h e e t i n t h e v i c i n i t y of p i e r s was l e v e l l e d and i t s t h i c k n e s s measured, I n a d d i t i o n , o b s e r v a t i o n s of the water l e v e l were made each day, and t h e m a x i m u m and minimum a i r temperatures were recorded.

Some t y p i c a l deformations of t h e i c e s h e e t , observed between l e v e l surveys, a r e shown i n Fig,

3,

It i s found t h a t t h e deformations agree w e l l with those obtained f o r a beam on an e l a s t i c support,

I n

t h e case under c o n s i d e r a t i o n , t h e i c e s h e e t was f r o z e n t o a p i e r c o n s i s t i n g of c a i s s o n s i n a s i n g l e row, t h u s conforming with t h e long s t r a i g h t w a l l assumed i n t h e p r e v i o u s c h a p t e r ,

The l i f t i n g f o r c e i s obtained from t h e displacement due t o t h e bend i n t h e i c e s h e e t n e a r t h e c o n s t r u c t i o n . By t h e l e v e l survey, t h e r e f o r e ,

it

i s p o s s i b l e t o c a l c u l a t e d i r e c t l y t h e l i f t i n g f o r c e a c t i n g on c a i s s o n s i n t h e v a r i o u s cases. The l i f t i n g f o r c e i s r e p r e s e n t e d by t h e a r e a between t h e curve and i t s

(12)

I n t h e t a b l e bebow, t h e v a l u e s of t h e l i f t i n 6 f o r c e ,

c a l c u l a t e d f r o n equation (i2) with c

=

8

x 10'5 a r e corripared ~ i t h t h o s e of t h e a c t u a l l i f t i n g f o r c e determined by l e v e l l i n g f o r

v a r i o u s conditions. The temperature of t h e i c e was estimated from t h e a i r temperature. The r a t e a t which t h e water l e v e l r i s e s i s assumed t o be a = he

/

A.

Conditions observed i n t h e f i e l d a g r e e s a t i s f a c t o r i l y with t h e v a l u e s obtained from t h e approximation formula (12)

.

From t h e comparison,

i t appears t o be reasonable t o s e t t h e v a l u e f o r t h e c o n s t a n t c a t about 8

x

1 ~ - 5 (hours, t o n s and metres),

Rise i n t h e

The L a x i m u m L i f t i n i : Force

The l i f t i n g f o r c e s shorn i n t h e t a b l e were determined by l e v e l l i n g i n December, 1939, and January, 1940, A f t e r t h a t time, t h e i c e broke on many occasions, Therefore, t h e comparison could not te extended t o g r e a t e r t h i c k n e s s e s of t h e i c e ,

The maximum l i f t i n g f o r c e i s a f u n c t i o n of t h e bending s t r e n g t h of t h e i c e , The l a t t e r i n c r e a s e s a s t h e temperature decreases. A number

of v a l u e s of t h e Lending s t r e n g t h obtained from v a r i o u s sources a r e given below, Time, Thickcess water l e v e l A, i n

H,

,

i n m.

1

h r s , of t h e i c e ,

d

,

i n m. 0.16 O,22 00 235 0.39 0,405 0,31 0.38 i 0 ~ 6 2 ;

O o 1 4

j 0 0 5 3 I Corrected 72 36

48

48 48 L i f t i n g f o r c e i n mean temp, of i c e ,

-

f i n OC, -AOO

- l o o

-0.5

-4.

0

-6,O

t o n s . p e r

m,

--. C a l c u l a t i o n from ea. (12) 0.69 0,84 l a 5 2 0,67 2.83 Getermirled b-; l e v c l l i n a 0.7

l o o

l 0 6 0.6 2,7

J

(13)

T e s t a t t h e Eoyal Illst, of Tecllc. i ' i ? l k ' r i-reiiger ( 1 9 2 l ) iircLger

ii92lj

Brown (1326) Erown ( 1 j26)

Zending s t r e n g t h of Terripe 1.atw.e i c e i n t o n s p e r sq, of t h z i c e i n

13 0 C.

The bending s t r e s s when t h e i c e broke f o r t h e f i r s t time d u r i : i ~ th e o b s e r v a t i o n s was c a l c u l a t e d by means of equation (13) a s 190 t o n s p e r sq, metre, The mean temperature o f t h e i c e was app- roximately - C o 5 0 ~ o

The f i r s t c r a c k s appear:. i n t h e underside of t h e i c e n e a r c o n s t r u c t i o n s where t h e temperature

i s

zero degrees

C.

I n o r d e r t o be on t h e s a f e site, t h e bending s t r e n g t h of t h e i c e ,

$

,

i s s e t a t 200 t o n s p e r sq,

m,

a s f a r as t h e l i f t i n g f o r c e i s concerned,

The maximum l i f t i n g f o r c e i s obtained f r o m e q u a t i o n s (12) and (13). The t o t a l r i s e i n t h e water l e v e l ,

u,

=oX., i s introduced i n t o t h e s e equations. A f t e r e l i m i n a t i n g

h,

i n both e q u a t i o n s , a s i l i ~ p l e e x p r e s s i o n i s f i n a l l y obtained, v i z ,

,

It seems s u r p r i s i n g a t f i r s t t h a t t h e maximurr~ l i f t i n g f o r c e should be indepencient o f the c o e f f i c i e n t of p l a s t i c i t y and t h e temperature of the i c e , This can be explained by t h e f a c t t h a t a t a c e r t a i n v a l u e o f t h e r i s e i n t h e water l e v e l ,

yo

,

t h e

(14)

l i f t i 3 g force may t e the same f o r Loth low and big;, p l a s t i c i t i t s , i f t h e water l e v e l r i s e s a t a slower r a t e i n t h e f i r s t csse then i n t h e l a t t e r ,

k l ~ o s t e x a c t l y t h e same expression a s (14) can be OL- t a i n e d d i r e c t l y from t h e i n i t i a l formulae ( 2 ) and

( 3 )

by elirnin- a t i n g

E-

,

Then

To o ~ t a i n information on t h e a p p l i c a b i l i t y of t h i s ex- p r e s s i o n ,

i t

i s necessary t o introduce t h e p l a s t i c i t y i n t o t h e c a l c u l a t i o n .

The maximum l i f t i n g f o r c e , according t o equation (14) has been p l o t t e d i n Fig,

4

f o r various thicknesses of t h e i c e , I n order t o o b t a i n the maximun l i f t i n g f o r c e ,

i t

may be necessary i n some c a s e s f o r t h e water l e v e l t o r i s e a t a very slow r a t e ,

It t h e time i s limited, s a y t o f o u r days

(96

hours), t h e curves i n t e r s e c t a s can Le seen i n t h e Figure.

For small r i s e s i n t h e water l e v e l , t h e g r e a t e s t l i f t i n g f o r c e s a r e obtained when t h e r i s e s occur r a p i d l y , when t h e de- formations a r e q u i t e e l a s t i c . Then, according t o equation (21, t h e l i f t i n g f o r c e i s p r o p o r t i o n a l t o the i n c r e a s e

4

and

(15)

L i f t i n 2 Force on I s o l a t e d Construction

The above expression cannot be a p p l i e d t o c o n s t r u c t i o n s o f s h o r t l e n g t h , The l i f t i n g f o r c e p e r u n i t of l e n g t h becomes g r e a t e r here due t o t h e f a c t t h a t t h e i c e slieet a c t s l i k e a s l a b on an e l a s t i c support,

A s i m i l a r problem was d e a l t with a s e a r l y a s 1863 by

H , ~ e r t z ( 3 1 , who d e r i v e d a n expression f o r an e l a s t i c i c e s h e e t

with t h e l o a d a p p l i e d a t t h e c e n t r e , The l i f t i n g f o r c e on i s o l a t e d , c i r c u l a r c o n s t r u c t i o n s can be c a l c u l a t e d with t h e a i d of a work by

H, S c h l e i c h e r

(41,

i n wilich a l a r g e numLer of c a s e s of a x i a l l y symmetrical l o a d s a p p l i e d t o a c i r c u l a r s l a b on a n e l a s t i c support a r e thoroughly s t u d i e d , The s o l u t i o n s obtained a r e i n the form of v s r i o u s e y l i n d e r f u n c t i o n s , which have been taLulated i n h i s book, On account of t h e i r complicated s t r u c t u r e , t h e s e f u n c t i o n s a r e n o t open t o treatment of t h e problem i n a manner s i m i l a r t o t h a t f o r t h e long s t r a i g h t wall. However, a conception of t h e c o n d i t i o n s can Le obtained i n t h e csse of i s o l a t e d o b j e c t s i f t h e i c e i s assumed t o be e l a s t i c and i f t h e modulus of e l a s t i c i t y i s replaced by a mean value of t h e modulus of deformation

F ,

I f t h i s method i s a p p l i e d t o t h e l i f t i n g f o r c e on a l o n g

w a l l ,

i t

i s found t h a t t h e maximum l i f t i n g f o r c e f o r a time l i m i t

of f o u r days can be obtained from equations (2) and (3) by i n t r o d - ucing

F

=

3,900 t o n s p e r sq, metre i n t o t h e s e equations, T h i s may Le considered a convenient mean value, Moreover, i t w i l l make h a r d l y any d i f f e r e n c e whether t h e time l i l i i i t i s t h r e e o r f i v e days,

A s b e f o r e , t h e tending s t r e n g t h i s assumed t o be 200 t o n s p e r sq, metre.

(16)

The e q u a t i o n s f o r t h e l i f t i n g f o r c e and s t r e s s e s a r e q u i t e l o n c and t a L l e v a l u e s a r e requirkd f o r t h t ; i r numerical a y j d i c a t i o n , For t h i s reason, t h e r e s u l t of the c a l c u l a t i o n i s given h e r e only f o r some c a s e s which a r e of i n t e r e s t ,

An i c e sheet of tilickness

d

i s frozen t o a c y l i n d r i c a l o b j e c t of diameter

D

( ~ i g , 5 ) , The bending s t r e s s e s reach t h e breaking p o i n t when t h e water l e v e l r i s e s a d i s t a n c e

H o

The g r e a t e s t l i f t i n g f o r c e t h u s obtained has been c a l c u l a t e d f o r v a r i o u s v a l u e s of

d

and

2

.

Consider an i s o l a t e d p i l e of 8 i n , diameter w a t e r l i n e . This corresponds t o

=

0 , 2 metres. Then t h e l i f t i n g f o r c e s

shown i n Fid,

6

a r e obtained, O ~ v i o u s l y , th e f o r c e s a r e v e r y g r e a t , For exar~lple, with a n i c e s h e e t

0.75

m, t h i c k , a l i f t i n g f o r c e of

30

t o n s i s o l t a i L l e d f o r a n i n c r e a s e i n t h e water l e v e l of 0,35 n ~ e t r e s , Calculated p e r u n i t l e n g t h of circumference t h e l i f t i n g ' f o r c e on t h e p i l e i s

48

t o n s p e r metre whereas, accordin6 t o F i g ,

4,

t h e l i f t i n g f o r c e on a long s t r a i g h t w e l l only amounts t o 3.5 t o n s p e r metre where

4

= 0.35,

Great l i f t i n g f o r c e s may occur even i f t h e water l e v e l only r i s e s a fey; c e n t i n ~ e t r e s , h p e r i e n c e shows, moreover, t h a t i n Northern Swedish r i v e r s i s o l a t e d p i l e s o r groups of p i l e s a r e u s u a l l y l i f t e d by t h e i c e during t h e w i n t e r u n l e s s proper p r e c a u t i o n s a r e taken. Sometimes they can even be l i f t e d s e v e r a l metres s i n c e they p a r t i c i p a t e i n t h e r i s i n g , but not i n t h e sub- s i d i n g

of

t h e i c e , Fig, 70

(17)

C a l c ~ l a t e d p e r n e t r e of c i r c u r ~ f e r e n c e , t h e l i f t i n g f o r c e & c r e a s e s a s t h e diameter i n c r e a s e s , and approaches t h e v a l u e s oLtaii~ed f o r a long s t r a i g h t wall, I n Fig, .S t h e max-

ixurn l i f t i n g f o r c e i s shown as a f u n c t i o n of t h e diameter of c o n s t i v c t i o n s of c y l i n d r i c a l form,

For a c o n s t r u c t i o n having another form, t h e Lehav- i o u r of t h e s t r e s s e s i n t h e i c e changes. I n such cases,

it

i s ciifi'icult t o d e r i v e the s t r e s s e s t h e o r e t i c u l l y , For i n s t a n c e , f o r c o n s t r u c t i c r : ~ of square form i t would be s a f e t o c a l c u l a t e a s f o r t h e i n s c r i b e d c i r c l e because a n g l e s r e s u l t i n s t r e s s concent- r a t i o n s ~ h i c h cause t h e i c e t o Lreak more e a s i l y , S i m i l a r l y , a r e c t a n k u l a r form may be replaced by a form with s t r a i g h t s i d e s and semi-circular ends. Then t h e l i f t i n g f o r c e on the s t r a i g h t s i d e s can t e c a l c u l a t e d i n t h e same manner a s t h a t on a long s t r a i g h t wall,

For the above c a l c u l a t i o n , it i s assurned t h a t t h e i c e i s of uniform thickness and i s homogeneous throughout, This i s p r a c t i c a l l y never the case when t h e i c e a t t a i n s a g r e a t thick- ness, Eecause of v a r i a t i o n s of t h e water l e v e l , t h e i c e s h e e t breaks time a f t e r time and t h e water f o r c e s ' i t s way up and

f r e e z e s on t o p of t h e i c e , Therefore, t h i s i c e i s t h i c k e r c l o s e t o c o n s t r u c t i o n s , The newly formed i c e o f t e n c o n s i s t s of ltslush i c e " , i , e , a frozen mixture of snow and water, Slush i c e i s not

a s s t r o n g a s black i c e and s i n c e

i t

i s f r e q u e n t l y cracked i n t h e v i c i n i t y of constructions, i t i s doubtful whether t h e thickening

(18)

a c t u a l l y r e s u l t s i n a s t r e n ~ t h e n i n g , Conditions i n t h e p o r t i n v e s t i g a t e d i n d i c a t e t h a t t h i s i s not t h e case, althouzh i n t h e v i c i n i t y of p i e r s t h e i c e mas sometimes found t o be two metres t h i c k ,

I n view of t h i s a bending-strength value of l e s s than 200 t o n s p e r sq, metre might be s u f f i c i e n t l y s a f e . P a r t i c u l a r l y i n t h e case of i s o l a t e d smaller c o n s t r u c t i o n s , a reduction of t h e assurned bending-strength seems t o be reasonable since here t h e i c e breaks more f r e q u e n t l y than i n t h e case of a long wall. This problem r e q u i r e s f ~ r t h e r i n v e s t i g a t i o n ,

Bearing Capacity of Ice

The thickness of i c e required i n order t o support a person o r a horse, e t c . , i s known from p r a c t i c a l experience, However, f o r more unusual loads

i t

may t e d i f f i c u l t t o estirnate

t h e t e a r i n g c a p a c i t y from empirical knowledge alone. An in- v e s t i g a t i o n i n t o t h e bearing s t r e n g t h of i c e s h e e t s a t v a r i o u s t h i c k n e s s e s t h u s seems appropriate,

L i f t i n g f o r c e and bearing c a p a c i t y a r e b a s i c a l l y t h e same p r o p e r t y of an i c e s h e e t , but seen from d i f f e r e n t p o i n t s o f view, The time fac%or has t h e r e f o r e t h e same i n f l u e n c e on t h e bearing capacity a s on t h e l i f t i n g force. The s m a l l e s t bearing c a p a c i t y i s obtained f o r a n instantaneous load rhen t h e deformation i s e l a s t i c . The smallest bearing s t r e n g t h t h u s depends on t h e modulus of e l a s t i c i t y of i c e , Some of t h e v a l u e s

(19)

f o r t h e modulus of e l a s t i c i t y of i c e ]lave t e e n t a k e n from t h e l i t e r a t u r e and a r e l i s t e d Lelow. hiodulus of e l a s t i c i t y f o r i c e i n t o n s p e r sq.

m.

Bevan 1826 Frankenheim 1858 I,.osley 1871 Reuch 1880 Less 1902 Loch

1713

'I 1914 iireiiger 1922 tt tt II n

Reucll obtained h i s value by determining t h e v i b r a t i o n frequency f o r p r i s m a t i c i c e bars. The o t h e r v a l u e s were obtained from p r e s s u r e and bending t e s t s .

For c a l c u l a t i o n s of t h e bearing c a p a c i t y a high v a l u e should be assumed f o r t h e modulus of e l a s t i c i t y , say

lo6

t o n s p e r sq. metre, I n t h i s connection, t h e tending s t r e n g t h of black i c e which h a s no cracks should not be chosen higher than 100 t o n s p e r sq. metre,

I f

H

i s eliminated i n equations ( 2 ) and(3), then t h e bearing s t r e n g t h f o r instantaneous l o a d s applied on a s t r a i g h t l i n e i s obtained:

The f a c t o r 2 e n t e r s i n t o t h e c a l c u l a t i o n s i n c e t h e i c e s h e e t s c o n t r i b u t e s t o both s i d e s of t h e load.

(20)

I f the load i s applied gradually, a consideraLily g r e a t e r bearing s t r e n g t h i s obtained, This becones evident i f t h e r a t e a t aliicll t h e viater l s v c l r i s e s , 0

,

i s eliminated i n

equations (12) and ( 1 3 > , The11

This expression approximately gives t h e influence of t h e time f a c t o r on t h e bearing s t r e n g t h , Fig,

9

shows t h e bearing

6

s t r e n g t h f o r an instantaneous load with

E =

10 t o n s p e r sq, m e and f o r a load appJied gradually f o r 24 hours (

A,

=

24,

f

=

0

5

and C

=

8

x 10-

i,

The two curves may be considered a s l i m i t cases, Fig, 1 0 gives t h e bearing s t r e n g t h f o r a concentrated l o a d with

E

=

t o n s per sq. n o a s well a s with

F

=

6,400 t o n s p e r sq, m, The l a t t e r case corresponds approximately t o a time

l i m i t

of 24 hcurs wilere

f

equals zero,

It

i s assuned t h a t t h e l o a d i s

spread over a c i r c u l a r a r e a with diameter equal t o t h e tllicltness of t h e i c e , For concentrated loads, the time apparently has n o t a s g r e a t an influence a s f o r a load applied on a s t r a i g h t l i n e . The c a l c u l a t i o n s a r e based on Schleicller s book /cf

,

(4)

/

Liany o t h e r l o a d cases can be d e a l t with s i m i l a r l y ,

R i t h regard t o t h e bending s t r e n g t h of t h e i c e , which i s here assumed t o be 100 t o n s per sq, m,, this v ~ i l l vary con- s i d e r a b l y with d i f f e r e n t kinds of i c e , The p a r t i c u l a r s cont- ained i n l i t e r a t u r e a r e very sparse, D i f f e r e n t i n v e s t i g a t i o n s show, however, t h a t t h e s t r e n g t h of t h e i c e i s l e s s with l o a d s

(21)

of long d u r a t i o n than with momentary l o a d s , Therefore t h e d i f f e r e n c e Letween t h e curves i n Figs.

9

and 1 0 i s sornev;hat u n r e l i a b l e on t h e a c t u a l c o n d i t i o n s .

The author i s s u e s a warning a g a i n s t t h e e m p l o p e n t of l o a d s , having t h e magnitude of those shown i n Figs.

9

and 10. Very high f a c t o r s of s a f e t y silould t e adopted, Loacls of l o n g d u r a t i o n on a s h e e t of i c e should be avoided a l t o g e t h e r , as a r e s u l t of t h e downward d e f l e c t i o n , melting of t h e i c e nay t a k e p l a c e from beneath,

I f t h e r e a r e h o l e s and c r a c k s i n t h e i c e i n t h e v i c i n i t y of t h e l o a d , high v a l u e s f o r t h e b e a r i n g c a p a c i t y

cannot be expected of course, s i n c e t h e water forced o u t f u r t h e r i n c r e a s e s t h e weight on t h e i c e sheet.

Conclusion

An i c e s h e e t can e x e r t a considerable f o r c e on con- s t r u c t i o n s which a r e f r o z e n i n , A s has been shown, t h e l i f t i n g f o r c e and t h e Lending-strength of i c e on a l o n g s t r a i g h t w a l l can Le derived with c e r t a i n approximations, t a k i n g i n t o account t h e t e ~ p e r a t u r e of t h e i c e and i t s p l a s t i c i t y a s w e l l a s a slowly r i s i n g water l e v e l , Then expressions (12) and (13) a r e obtained and t h e s e agree w e l l with c o n d i t i o n s observed i n t h e f i e l d ( c f , T a b l e ) ,

From equations (12) and. (13) a simple formula (14) f o r maximum l i f t i n g f o r c e i s obtained, This i s found t o Lie l a r g e l y independent of t h e modulus of e l a s t i c i s y of t h e i c e

(22)

and i t s c o e f S i c i e n t of p l a s t i c i t y . This formula i s shown p l o t t e d i n Fig,

4,

For i s o l a t e d c y l i n d r i c a l o b j e c t s , t h e l i f t i n g f o r c e may be c a l c u l a t e d apy;roxin;ately, i f t h e i c e i s assumed t o Le e l a s t i c and i f a low value i s introduced f o r t h e modulus of e l a s t i c i t y , The l i f t i n g f o r c e on an i s o l a t e d p i l e i s shown i n Fig,

6

and t h e l i f t i n g f o r c e a s a f u n c t i o n of t h e diameter f o r c o n s t r u c t i o n s of c y l i n d r i c a l form i n F i g , 8, For prisma- t i c bodies of r e c t a n g u l a r form, t h e l i f t i n g f o r c e may be c a l - c u l a t e d i n t h e same manner a s f o r bodies with s t r a i g h t s i d e s and semi-circular ends,

The bearing c a p a c i t y of i c e i s shown i n Fig,

9

f o r l o a d s a p p l i e d on a s t r a i g h t l i n e and i n Fig, 10 f o r l o a d s spread over a c i r c u l a r a r e a with diameter equal t o t h e t h i c k n e s s of t h e i c e ,

(23)

References

1. Barnes, H O T , "Ice Engineerin&", l,on-treal 192b,

2, Eoyen, 1 J i l s . "Ice P r e s s u r e due t o Temperature Rise", S-tocl:holm 1922,

11

3.

kiertz,H, '"E ber u a s i;leicl,,c;-,;icht sch-tlimrnenuer e l a s t i s c i ~ e r

Y l a L t ~ n ~ ~ , ='m.l, I h ~ s , 22 ( 1 8 ~ 4 ) 9.

445"

4.

S c h l e i c h e r , P, M i ~ r e i s p l a t t s n auf e l a s t i s c h e r U n t s r l a g e H , L e r l i n , 1926,

(24)

g u r e 1. D e f l e c t i o n c u r v e f o r t h e i c e s h e e t when

t h e w a t e r l e v e l

i s r a p i d l y r i s i n g t h e

d i s t a n c e

H a

(Reduced l e n g t h s c a l e

.)

Hours

F i g u r e

2.

Decrease of t h e r e l a t i v e l i f t i n g f o r c e

a f t e r a r a p i d r i s e of t h e w a t e r l e v e l

a c c o r d i n g t o e q u a t i o n

( 6 ) .

(25)

0

5

1

0

/5

20

Disfunce

from

+he

pier,

m r f r e ~

Figure 3, Observed deformation

of

an ice sheet

(26)
(27)

Figure 5 ,

Deformation

of an i c e s h e e t around a

c y l i n d r i c a l o b j e c t (Reduced l e n g t h s c a l e , )

?hckness

of

ice,

mefres

Figure 6 .

Maximum l i f t i n g f o r c e of an i s o l a t e d

p i l e o f

8"

diameter water l i n e and the

(28)

F i g u r e

7, A

l a n d i n g s t a g e , which has been l i f t e d

by

t h e i c e sheet., (Photo:

B ,

~ e l l e n i u s , ;

F i g u r e

8 ,

Maximum l i f t i n g f o r c e p e r u n i t of l e n g t h a s

a f u n c t i o n of t h e d i a m e t e r f o r c y l i n d r i c a l

c o n s t r u c t i o n ,

(29)

Figure

9 ,

Bearing c a p a c i t y of an i c e s h e e t f o r loads

applied on a s t r a i g h t l i n e .

Bending s t r e n g t h

of the i c e 100 t o n s per sq, m e

( a ) f o r

an

instantaneous load

(30)

0

0.4

0.6

08

60

Thickness

o f

I&,

mefms

Figure 1 0 ,

Bearing c a p a c i t y of an i c e s h e e t f o r

loads applied on a c i r c u l a r area with

diameter equal t o the t h i c k n e s s o f

the i c e ,

Bending s t r e n g t h o f the i c e

100

tons per s q , m,

( a ) f o r an instantaneous load

Figure

Figure  6 .   Maximum  l i f t i n g   f o r c e   of  an  i s o l a t e d   p i l e   o f   8"  diameter  water  l i n e   and  the  required  r i s e   i n  the  water  l e v e l
Figure  9 ,   Bearing  c a p a c i t y   of  an  i c e   s h e e t   f o r   loads  applied  on  a   s t r a i g h t   l i n e
Figure  1 0 ,   Bearing  c a p a c i t y   of  an  i c e   s h e e t   f o r   loads  applied  on  a  c i r c u l a r   area  with  diameter  equal  t o   the  t h i c k n e s s   o f   the  i c e ,   Bending  s t r e n g t h   o f   the  i c e   100  tons

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including