• Aucun résultat trouvé

"IMPURITY CONTRIBUTION TO THE LOW TEMPERATURE FMR LINEWIDTH OF Ag-DOPED CdCr2Se4 SINGLE CRYSTALS"

N/A
N/A
Protected

Academic year: 2021

Partager ""IMPURITY CONTRIBUTION TO THE LOW TEMPERATURE FMR LINEWIDTH OF Ag-DOPED CdCr2Se4 SINGLE CRYSTALS""

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00217923

https://hal.archives-ouvertes.fr/jpa-00217923

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

”IMPURITY CONTRIBUTION TO THE LOW TEMPERATURE FMR LINEWIDTH OF Ag-DOPED

CdCr2Se4 SINGLE CRYSTALS”

Jorge Ferreira, M. Coutinho-Filho

To cite this version:

Jorge Ferreira, M. Coutinho-Filho. ”IMPURITY CONTRIBUTION TO THE LOW TEMPERA-

TURE FMR LINEWIDTH OF Ag-DOPED CdCr2Se4 SINGLE CRYSTALS”. Journal de Physique

Colloques, 1978, 39 (C6), pp.C6-1007-C6-1009. �10.1051/jphyscol:19786445�. �jpa-00217923�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, supplément au n° 8, Tome 39, août 1978, page C6-1007

"IMPURITY CONTRIBUTION TO THE LOW TEMPERATURE FMR LINEWIDTH OF Ag-DOPED CdCr

2

Se

4

SINGLE CRYSTALS"*

J.M. Ferreira and M.D. Coutinho-Filho

Departamento de Fisiaa, UniveTsidade Federal de Pernambuao, SO 000 - Reoife, Bvasil

Résumé.- Nous analysons dans ce travail l'effet produit par des ions d'impureté Cr+I* sur la largeur de raies FMR (AH) de monocristaux de CdCr2Se4dopés avec Ag. En supposant que l'ion d'impureté a deux niveaux de basse énergie, nous démontrons que les mécanismes de relaxation lente ou rapide peuvent expliquer la dépendance en température de AH à basse température. Il faut faire des autres expériences au-dessous de 4,2 K pour savoir quel mé- canisme agit réellement.

Abstract.- In this paper x-;e analyse the effect of impurity Cr+l* ions on the FMR linewidth (AH) of Ag-doped CdC^Sei, single crystals. By assuming that the impurity ions has two low- lying energy levels, we show that the slow or the fast relaxation mechanisms can fit the temperature dependence of AH at low temperatures. Further experimental work below 4.2 K is needed to conclude which mechanism is effectively operating.

The effect of impurity paramagnetic ions on the anisotropy and ferromagnetic resonance (FMR) linewidth of ferromagnetic crystals, such as rare- earth ions in Yttrium Iron Garnet (YIG) /l/ and transition-metal ions in garnets /2/ and spinels /3/

has attracted the attention of many workers in the field of magnetism in the last twenty years. In these ferrites the presence of impuritites can in principle, be eliminated (consequently the conduc- tivity) and one can get single crystals with pro- perties close to those of ideal insulators. The situation is quite different in magnetic semicon- ductors where the electrical properties are to be regarded relevant both for applications and basic physical understanding of these materials.

The purpose of this paper is to analyse the effect of impurity paramagnetic ions on the FMR linewidth of the ferromagnetic semiconductor CdCr2Seif doped with Ag /4/. Two peculiar manifesta- tions characterize the observed / 4 / phenomena at liquid Helium temperature : giant anomalous peaks of the resonance field and FMR linewidth (AH) along some particular crystallographic directions. These anomalies have been attributed I hi to the presence of impurity Cr necessary to charge compensate for the Ag+*doping (susbstituting for C d+ 2) . To explain these phenomena we assume that the impurity ion has two low-lying energy levels so that the

anomalies would occur at crossover or nearcrosso- vers of those two levels. The ground state would result from a combined effect of crystalline field, spin-orbit coupling and exchange interaction bet- ween the magnetic moment of the inpurity ion and the crystal magnetization. We show that two diffe- rent mechanism can fit the temperature dependence of AH at low temperatures /4/ : the fast (or trans- verse) l\l and the slow (or longitudinal)/)/ rela- xation mechanism.

The slow or longitudinal relaxation mecha- nism is induced by the delay in establishing the thermal equilibrium values of the population of the impurity ion energy levels. These levels are modulated by the uniform precession via an aniso- tropic exchange coupling between the spin of the impurity ion and the crystal magnetization. For the two-level system the expression for the FMR linewidth reads /l/

AH = ^ £ f (e.« T ^ ^ s e c h * ( J ^ ) , (1)

where

Here u is the resonance frequency, N. is the imp density of impurity ions, AE is the separation between the energy levels, M is the saturation ma- gnetization, 0 and <|> are the angular coordinates of the magnetization with respect to the equili- brium positium, IC is Boltzman constant, T is the

temperature and x is the relaxation time associa- ted with restoring thermodynamic equilibrium in t Work supported by CNPq, CAPES and FINEP (Brazil-

lian Government).

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19786445

(3)

t h e p o p u l a t i o n o f t h e two e n e r g y l e v e l s . I t i s w o r t h n o t i c i n g t h a t AH i n E q u a t i o n (1) may have two maxima a s a f u n c t i o n of T .

The t e m p e r a t u r e dependence of T i s d e t e r - mined by t h e t h e r m a l b a t h which we can assume t o c o n s i s t of phonons o r magnons / I / . For d i r e c t pro- c e s s e s i n which a phonon ( o r magnon) i s absorved o r e m i t t e d , t h e r e l a x a t i o n time h a s t h e same tempe- r a t u r e dependence, namely

T = T O t a n h (

-

)

2 K ~ T

I n t h e t r a n s v e r s e o r f a s t r e l a x a t i o n me- chanism, t h e t r a n s v e r s e p a r t of t h e e f f e c t i v e f i e l d a c t i n g on t h e i m p u r i t y i o n e x c i t e s t h e p r e c e s s i o n of i t , a s i n a paramagnetic r e s o n a n c e e x p e r i m e n t , and e n e r g y i s t r a n s f e r r e d from t h e f e r r o m a g n e t i c system t o t h e t h e r m a l b a t h . I n t h e c a s e of two e n e r g y l e v e l s , and Mw << A E , t h e e x p r e s s i o n f o r t h e FMR l i n e w i d t h c o r r e s p o n d i n g t o t h i s p r o c e s s i s g i v e n by /

11

N . Imp w

AH = 4-- A E

t g h

-

w i t h No i s t h e d e n s i t y o f ~ ri o n s forming t h e + ~ m a g n e t i c a l l y o r d e r e d subsystem. We s h o u l d n o t i c e

t h a t A E i n E q u a t i o n ( 4 ) h a s a maximum a t T = 0 and d e c r e a s e s w i t h i n c r e a s i n g t e m p e r a t u r e .

I n F i g u r e 1 we p r e s e n t a f i t o f t h e A H peak u s i n g t h e mentioned mechanism. W e have sub- t r a c t e d t h e r e s u l t s o f AH f o r t h e d i r e c t i o n from t h e ones f o r t h e

fi

1

fl

d i r e c t i o n , t o i s o l a t e t h e c o n t r i b u t i o n form t h e i m p u r i t y i o n s ( s e e Figu- r e 5 i n t h e second p a p e r of R e f e r e n c e 1 4 1 ) . To produce t h e f i t of F i g u r e 1 t h e f o l l o w i n g r e s u l t s f o r h e and T O where o b t a i n e d :

A c = 24 K and-c0 = 3 . 3 ~ 1 0 - 1 3 s , a n d A e : 3.54 K and T O = 1 . 4 ~ 1 0 - 1 0 s , f o r t h e f a s t and t h e slow mecha- nism r e s p e c t i v e l y . We have u s e d M = 4480 Oe / 5 / and w = 6 . 2 8 ~ 1 0 ~ ~ s - ~ 141. On t h e o t h e r hand, t o j u s t i f y t h e magnitude of AH a t 4.2 K u s i n g t h e f a s t r e l a x a t i o n mechanism i t would r e q u i r e a doping of 1.5 % ( a g a i n s t t h e e x p e r i m e n t a l nominal doping of 1.34 % / 4 / ) , w h i c h i s a r e a s o n a b l e r e s u l t . The r e q u i r e d v a l u e of N imp £(@,I$) u s i n g t h e s l o w r e l a - x a t i o n mechanism f o r t h e same p u r p o s e would b e 8 x E n ( c m - ' ) ~ p e r c d

,

which i s of t h e o r d e r of t h e r e s u l t found f o r Mnx F 04 161.

eY

F u r t h e r e x p e r i m e n t a l i n v e s t i g a t i o n s f o r temperatu- r e s below 4.2 K a r e needed t o a c c o u n t f o r t h e b e h a v i o r of AH i n t h i s t e m p e r a t u r e r a n g e and con-

s e q u e n t l y a d e f i n i t e c o n c l u s i o n a b o u t which mecha- nism i s e f f e c t i v e l y o p e r a t i n g .

F i g . l a .

8 0 , . , , I I I I I

F i g . Ib.

F i g u r e 1 : S o l i d L i n e i s t h e f i t t o t h e d a t a ( d o t p o i n t s ) o f Bairamov e t a 1 ( R e f e r e n c e / 4 / ) u s i n g : a ) E q u a t i o n (4) f o r t h e f a s t r e l a x a t i o n mechanism, b) E q u a t i o n ( 1 ) f o r t h e slow r e l a x a t i o n mechanism.

(4)

R e f e r e n c e s

/ I / See e . g . , Gurevich

,

A.G., Ageev, A.N., and K l i n g e r , PI.T., J. Appl. Phys.

2

(1970) 1295; S p a r k s , M., J. Appl. Phys.

2

(1967) 1031; Van Vleck, J.H., J . Appl. Phys.

2

(1964) 882.

/ 2 / See e.g. S t u r g e , M.D., Gyorgy, E.M., Le Craw, R.C., and Remeika, J.P., Phys.

Rev.

180

(1969) 413.

/ 3 / See e.g. Gurevich, A.G., Karpovich, V . I . , R u b a l s k a y s , E.V., Bairamov, A . I . , Lapovok, B.L., and Emiryan, L.M., Phys. S t a t . S o l . (b)

69

(1975) 731.

/ 4 / Bairamov, A . I . , Gurevich, A.G., Emiryan, L.M., and P a r f e n o v a , N.N. Phys. L e t t . 62A (1977) 242; Bairamov, A . I . , Gurevich, A.G. Karpovich, V.I., Kalinni'hov,

-

V.T., Aminov, T . G . , and Emiryan, L.H., F i z Tverd. T e l a 18 (1976) 687 p o v . Phys.

-

S o l i d S t a t e 18 (1976) 3 9 a .

1 5 1 Le Craw, R.C., von P h i l i p s b o r n , H . , and S t u r g e , M.D., J . Appl. Phys.

2

(1967) 965.

161 C l a r k e , B.H., J . P h y s . Chem. S o l i d s 27 (1966) 353.

Références

Documents relatifs

The experimental NGR-spectra of all the samp- les under study a t the temperatures 80 and 30012 a r e similar; they are doublet's of asymmetric intensities with a

— The magnetization measurements on single crystals demonstrate that the magnetic moments are confined to the (111) direction, even in fields up to 90 kOe ; the saturated

The similarity of the vacuum annealed samples to the irradiated ones and a great tendency of CdCr2Se4 to p-type conductivity disagree with the usually accepted assurrp-ticc,

scattered radiation can usually be enhanced by choosing the exciting frequency to be close to an absorption line or band of the crystal. For scat- tering by

The aim of this study i~ to point out the magnetic behaviour of cobalt-based amorphous conductors from ferromagnetic resonance measurements1. From our data, linewidth AH, position

This implies that, because of the absence of magnetic broadening of the resonance lines and the finit fre- quency at T = T,, the determination of the sponta-

This sixfold degenerate term is split up by the local trigonal field, the spin-orbit coupling, and the exchange field, as shown in figure 1.. The exchange interaction

Further the study of magnetic properties such as anisotropy, line width, g-factor and some giant anisotropies associated with certain rare earth ions have