• Aucun résultat trouvé

Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at √SNN = 5.02TeV

N/A
N/A
Protected

Academic year: 2021

Partager "Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at √SNN = 5.02TeV"

Copied!
23
0
0

Texte intégral

(1)

Azimuthal anisotropy of charged particles with transverse

momentum up to 100 GeV/c in PbPb collisions at √SNN = 5.02TeV

The MIT Faculty has made this article openly available.

Please share

how this access benefits you. Your story matters.

Citation

Sirunyan, A. M., et al. “Azimuthal Anisotropy of Charged Particles

with Transverse Momentum up to 100 GeV/ c in PbPb Collisions at

√sNN = 5.02 TeV.” Physics Letters B, vol. 776, Jan. 2018, pp. 195–

216. © 2017 The Authors

As Published

http://dx.doi.org/10.1016/J.PHYSLETB.2017.11.041

Publisher

Elsevier BV

Version

Final published version

Citable link

http://hdl.handle.net/1721.1/115933

Terms of Use

Creative Commons Attribution 4.0 International License

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Azimuthal

anisotropy

of

charged

particles

with

transverse

momentum

up

to

100 GeV

/

c in

PbPb

collisions

at

s

NN

=

5

.

02 TeV

.TheCMS Collaboration

CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received2February2017

Receivedinrevisedform9November2017 Accepted18November2017

Availableonline24November2017 Editor:M.Doser Keywords: CMS QGP High-pT Flow

Partonenergyloss Jetquenching

TheFouriercoefficientsv2andv3characterizingtheanisotropyoftheazimuthaldistributionofcharged particlesproducedinPbPbcollisionsat√sNN=5.02 TeV aremeasuredwithdatacollectedbytheCMS experiment. Themeasurements coverabroadtransverse momentumrange, 1<pT<100 GeV/c.The analysisfocusesonthepT>10 GeV/c range,whereanisotropicazimuthaldistributionsshouldreflectthe path-lengthdependenceofpartonenergylossinthecreatedmedium.Resultsarepresentedinseveral binsofPbPbcollisioncentrality,spanningthe60%mostcentralevents.The v2coefficientismeasured with thescalarproductand themultiparticlecumulant methods,whichhavedifferent sensitivitiesto initial-statefluctuations.Thevaluesfrombothmethodsremainpositiveupto pT∼60–80 GeV/c,inall examinedcentralityclasses.Thev3coefficient,onlymeasuredwiththescalarproductmethod,tendsto zeroforpT20 GeV/c.Comparisonsbetweentheoreticalcalculationsanddataprovidenewconstraints onthepath-lengthdependenceofpartonenergylossinheavyioncollisionsandhighlighttheimportance oftheinitial-statefluctuations.

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

SeveralobservationsmadeatRHICinAuAucollisionsat center-of-mass energy per nucleon pair √sNN=200 GeV [1–4] and at the LHC in PbPb collisions at √sNN=2.76 and 5.02 TeV [5–10] establish that high-energy partons lose a significant fraction of their energywhiletraversing the hotanddense medium created inthesecollisions.Measurementsofthenuclearmodification fac-tor(RAA),aratiothatquantifiesthemodificationofparticlespectra betweenpp andheavy ioncollisions, showalargesuppressionof hightransverse-momentum(pT)chargedhadronsatRHIC[11–16] andat LHC [7–10]. Also, a strong asymmetry is observed in the energies of the two jets in dijet events in PbPb collisions [5,6]. These observations have triggered much progress in the under-standingofjetquenchingphenomena,butdonotprovidesufficient information fora detailed understanding of how the parton en-ergylossdependsonthedistancetraversed bythepartonsinthe medium.The studyof anisotropies inthe azimuthal angle distri-butionsofhigh-pThadronscanproviderevealinginformationthat is complementary to previous measurements. These anisotropies arecharacterized bythe vn coefficientsofa Fourierexpansion in

 E-mailaddress:cms-publication-committee-chair@cern.ch.

thedistributionsofazimuthalanglemeasuredwithrespecttothe eventplane,definedbythedirectionofmaximumparticledensity inthetransverseplane[17].Suchstudieshavebeenperformedat RHIC [18] andat the LHC [19–21] up to pT≈10 and 60 GeV/c, respectively. Mostjetquenchingmodels areunable to simultane-ouslyreproducetheRAAandv2 measurements[22–24]. Neverthe-less, recentattemptstosolve thispuzzlehaveshownpromiseby considering initial-statecollision geometryasymmetriesand fluc-tuations[25,26],whicharepredictedtostronglyaffectthehigh-pT

vn coefficients, butnot theRAA values. Inparticular, the fluctua-tionsgenerateoddharmonics[27]andthemeasurementofthev3 coefficientuptoveryhighpT isexpectedtoclarifytheimportance ofconsidering initial-statefluctuationsinthe modeling ofparton energyloss[25,26].

InthisLetter,theazimuthalanisotropyofchargedparticles pro-duced in PbPb collisions at√sNN=5.02 TeV is measured up to

pT≈100 GeV/c.The scalarproduct (SP) method [28,29] is used to determine the v2 and v3 coefficientsasa function of pT and collision centrality in the pseudorapidity range |η| <1. The un-precedentedstatisticalreachofthe√sNN=5.02 TeV PbPbsample for high-pT particles allows for the first precise measurement of thev2andv3coefficientsathighpT.Furthermore,v2isalso mea-suredwiththemultiparticlecumulantanalysismethod[30],using 4-,6- and8-particlecorrelations.

https://doi.org/10.1016/j.physletb.2017.11.041

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

2. TheCMSdetector

Thecentralfeature oftheCMSapparatusisasuperconducting solenoidof6 m internal diameterprovidinga 3.8 Tfield. Within thesolenoidvolumethereareasiliconpixelandstriptracker de-tector,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrass andscintillatorhadroncalorimeter(HCAL),each com-posedof abarrel andtwo endcapsections.Muonsare measured ingas-ionizationdetectorsembeddedinthesteelflux-returnyoke outsidethe solenoid. The silicon trackermeasures charged parti-cles within |η| <2.5 andprovides a pT resolution of about1.5% for100 GeV charged particles.Furthermore,the trackimpact pa-rameterresolutionisabout25–90(45–150)μm inthetransverse (longitudinal) dimension, depending on η and pT [31]. Iron and quartz-fiberCherenkovhadronforward(HF)calorimeterscoverthe range2.9<|η| <5.2 on eithersideoftheinteractionregion.The granularityoftheHFtowersisη× φ =0.175 ×0.175 radians, allowingan accurate reconstructionoftheheavy ioneventplane. A moredetaileddescription oftheCMSdetector,together witha definition of the coordinate system used and the relevant kine-maticvariables,canbefoundinRef.[32].ThedetailedMonteCarlo simulationoftheCMSdetectorresponseisbasedon Geant4[33].

3. Eventandtrackselections

The analysis of PbPb collisions is based on a data set cor-responding to an integrated luminosity of 404 μb−1, collected in 2015. Events were collected with several trigger algorithms, composed of a hardware-based level 1 (L1) trigger, followed by a software-based high-level trigger (HLT). The pT region up to 14 GeV/c iscoveredbyaminimum-biastrigger,whichrequires en-ergydepositsinbothHFcalorimetersaboveapredefinedthreshold ofapproximately1 GeV.Thisminimum-biastriggerwasprescaled duringdatataking.Toextendthemeasurementtohigherorder co-efficientsandhigherpT(e.g.,upto100 GeV/c),adedicatedtrigger thatselectseventscontainingahigh-pT particlewasused.TheL1 trigger requirement was based on the transverse energy (ET) of the highest ET calorimeterregion (η× φ =0.348 ×0.348) in thebarrelregion (|η| <1.044). IntheHLT farm,a fastversion of theoffline trackingalgorithms was employed andthe highest pT track was required to pass the strict selection criteria described hereafter,resultinginatriggerefficiencyofnearly100%.Different ET and pT thresholds[10] were usedatL1andHLT,respectively, toenrichthedatasamplewitheventsthatcontainhigh-pT tracks. Intheofflineanalysis,anadditionalselectionofhadronic colli-sionsisappliedbyrequiringatleastthreetowers withan energy depositofmorethan3 GeV pertowerineachoftheHFdetectors. The events are required to have a reconstructed primary vertex, formed by two or more tracks and required to have a distance fromthe nominalinteraction pointof lessthan 15 cm alongthe beamaxisandlessthan0.15 cminthetransverseplane.The col-lision centrality in PbPb events,i.e. the degree of overlap ofthe twocollidingnuclei,isdeterminedfromthe ETdepositedinboth HF calorimeters. Collisioncentrality bins are given in percentage rangesof thetotal hadroniccrosssection, 0–5%corresponding to the5%ofcollisionswiththelargestoverlapofthetwonuclei[34]. A standard CMShigh-purity track selection [31,35] isused to selectprimary tracks(tracks associatedwiththe primary vertex). Additionalrequirementsareappliedtoenhancethepurityofthese primarytracks.Thetrackmustbeconsistentwithoriginatingfrom the primary vertexby lessthan 3 standard deviations when es-timating both the longitudinal and transverse distances of clos-est approach. The relative uncertainty of the pT measurement,

σ(pT)/pT, must be less than 10%. To ensure high tracking effi-ciency and reduce the rate of misreconstructed tracks, primary

tracks are restricted to the |η| <1 and pT>1 GeV/c region. Furthermore, tracks with pT>20 GeV/c are required to match a compatible energydeposit in thecalorimeters (ECAL + HCAL). The trackingefficiencyanddetectoracceptanceinPbPbcollisions are evaluated usingsimulated hydjet 1.9[36] minimumbiasand hydjet-embedded pythia[37]dijetevents.Thecombined geomet-ricalacceptanceandefficiencyforprimarytrackreconstruction,for pT>1 GeV/c and|η| <1,is60–75%,depending oncentrality. Fi-nally, therateofmisreconstructedtracksreachesitsmaximumin themostcentralevents,whereitapproaches10%.

4. Analysistechnique

The anisotropies of the particle azimuthal angle distributions arecharacterizedbythevn Fouriercoefficients,determinedbythe

expansion dN/dφ∼1 +2nvncos[n(φ− n)], where N is the

numberofparticles andn is thenthharmonicsymmetryplane

angle.Event-by-eventvariationsintheinitialenergydensityofthe collision leadto themeasured eventplane fluctuationsaboutthe (experimentallyinaccessible)symmetryplane[38].TheSPmethod isused tomeasureazimuthal correlationsandextract Fourier co-efficients. Inthismethod,the vn coefficientscanbe expressedin

termsofQn-vectors, vn{SP} ≡  QnQn A∗   Qn AQnB∗ Qn AQnC∗ QnBQnC∗  , with Qn,Qn A,QnB,QnCM  k=1 ωkeinφk, (1)

where M representsthenumberoftracks orHFtowers with en-ergy abovea certainthresholdineach event, φk istheazimuthal

angle ofthe kth trackorHF tower, and ωk isa weighting factor

equalto unityfor Qn, pT forthetracks( QnC),and ET fortheHF towers ( Qn A and QnB). The angular brackets  denote averages

overallevents.TheQn vectorisbasedontheparticlesofinterest,

i.e.,trackswith |η| <1.The Qn A and QnB vectorsaredetermined

from the two HF calorimeters, covering the range 3<|η| <5, while the QnC vector is obtained using tracks with |η| <0.75.

If the particle of interest comes fromthe positive-η side of the tracker, then Qn A is calculated using the negative-η side of HF,

andviceversa.Thelarge ηgapimposedbetweenQn AandQn

sup-pressesfew-particlecorrelations,suchasthoseinducedbyhigh-pT jetsandparticledecays,whichdonotdependontheeventplane direction nEP.The realpart istakenforall averages of Q -vector

products over theevents.Azimuthal asymmetries thatarise from theacceptanceandotherdetector-relatedeffectsaretakeninto ac-countusingatwo-stepprocess,wherethe Q -vectorisfirst recen-teredandsubsequentlyflattened [39].Thesecorrectionsandtheir effectsontheresultsarenegligiblefortheCMSdetector.Sincethe measurementsincludecorrelationsbetweenlow- andhigh-pT par-ticles,therecentlyestablishedevent-planedecorrelationeffect[40] cannotbeneglected.Itisexpectedtoreducethevn valuesin

com-parison to those determinedifthe eventplanes wouldbe estab-lished exclusively usinghigh-pT particles. The modelcalculations that includefluctuationsintheinitial statetake intoaccountthis effect[26].

Themultiparticlecumulantmethod[30,41]isalsousedto mea-sure v2 from genuine 4-, 6-, and 8-particle correlations, with the advantage ofbeing lesssensitive to few-particlecorrelations, e.g., jet fragmentation. The cumulants are expressed in terms of the corresponding Qn vectors. We first define the2-, 4-,6-,and

(4)

2 =  ein(φ1−φ2)  , 4 =ein(φ12−φ3−φ4), 6 =  ein(φ123−φ4−φ5−φ6)  , 8 =  ein(φ1234−φ5−φ6−φ7−φ8)  , (2)

wherethedoubleaveragesymbol  indicatesthat theaverage istakenoverallparticlecombinationsandforallevents.The unbi-asedestimatorsofthereferencemultiparticlecumulants,cn{},are

definedas[41–43] cn{4} =4 −222, cn{6} =6 −942 +1223, cn{8} =8 −1662 −1842+144422 −14424. (3)

In order to perform a measurement differential in pT in the multiparticlecumulantframework, one oftheparticles inEq.(3) isrestrictedtobelongtoacertain pT bin.Denotingby 2 ,etc., themodifiedparticlecorrelators, thedifferentialmultiparticle cu-mulantsare definedinRef. [43]andcan be derived asdescribed inRef.[41], dn{4} =4  −22 2, dn{6} =6  −64 2 −32 4 +122 22, dn{8} =8  −126 2 −42 6 −184 4 +724 22+72422  −1442 23. (4)

Finally,with respectto the reference multiparticlecumulants, thedifferential4-,6-,and8-particle vn(pT, η)coefficientsare de-rivedas

vn{4}(pT,η)= −dn{4} (−cn{4})−3/4,

vn{6}(pT,η)= dn{6} (cn{6})−5/64−1/6,

vn{8}(pT,η)= −dn{8} (−cn{8})−7/833−1/8.

(5)

The statistical uncertainties are evaluated with a data-driven method,as previously employed in Ref. [42]. The dataset is di-videdinto10 subsetswithroughly equalnumbers ofeventsand thestandard deviationof the resultingdistribution ofthe cumu-lantisusedtoestimatetheuncertainties.

5. Systematicuncertainties

Atlow pT,therelative systematicuncertainties forv2{SP} and

v3{SP} are found to be similar. At high pT, the v3{SP} statistical uncertaintiesaretoolargetoproperlydisentanglestatistical fluctu-ationsfromsystematiceffects.Therefore,thev2 systematic uncer-tainties,expressedintermsofrelative valuesin%,are appliedto v3,withtheexceptionoftheuncertaintiesduetothefew-particle correlations,discussedbelow.The systematicuncertaintiesdueto the vertex position selection and to the pT dependence of the trackingefficiency correctionsare common to the SP and cumu-lantanalyses.Theyarefoundtobe lessthan1% andindependent ofpTandcentrality.Thesystematicuncertaintiesdueto misrecon-structedtracksarederivedbychangingthetrackselectioncriteria. Theresultsarefoundtodependon pT butnotcentrality,andare alsodifferentforthecumulantandSPmethods.Thetrackselection uncertaintieshavebeenfoundto graduallyincrease from ∼2% at

low pT to ∼50% for pT>60 GeV/c fortheSP method,andfrom

∼2% to ∼2% for the cumulant analysis. The SP results have an additional uncertaintyarising from few-particlecorrelations. This uncertainty is determined by varying the η gap and contributes differentlytothe v2 andv3 measurements.Itisfoundtodepend onboth pT andcentrality,andrangesinabsolutevaluefrom0to 0.022forv2 andfrom0to0.030forv3.

6. Results

Fig. 1showsthev2andv3resultsobtainedfromtheSPmethod asafunctionofpT,uptoabout100 GeV/c,insevencollision cen-trality ranges. From low- to high-pT, the v2 and v3 values first increasewithincreasing pT,uptoamaximumnearpT≈3 GeV/c, beforedecreasingagain.Inmostcentralityranges,v2 remains pos-itive up to pT∼60–80 GeV/c, becoming consistent withzero at higher pT.Positivev3 valuesarefoundup to pT≈20 GeV/c over the0–40%centralityrange.AthigherpT,themeasuredv3 valueis consistentwithzerowithin theexperimental uncertainties.Given the systematicuncertainties,the measured valuesare compatible with zero. Some negative v3 values are seen at high pT in the 40–50%centrality range,butsuchperipheral eventsare themost contaminated by back-to-back jet correlations. This is confirmed bystudyingthe ηgapdependenceoftheresultsinbothmeasured and simulated events, where the latter include dijets embedded into hydjet events with zero input anisotropy. In the centrality range 50–60%, v3 is only measured up to 20 GeV/c because of lackofeventscontaininghigherpT particles.

The v2 and v3 results arecompared totheCUJET3.0[44] and SHEE[25] modelsforseveralcentralitybins.A keydifference be-tween these two models is that the SHEE framework includes initial-stategeometry fluctuations, whileCUJET3.0uses a smooth hydrodynamic background. The CUJET3.0 model uses perturba-tivequantumchromodynamics(pQCD)calculationstodescribethe hardpartoninteractionsinthequark–gluonplasma(QGP), comple-mentedbyaperfect-fluidhydrodynamicexpansionofthemedium. TheSHEEcalculationsuseviscoushydrodynamicsincluding event-by-event fluctuationsin the softsector [26,45,46], in addition to an energyloss model [26,47,48]. Theyare performedwitha low shear viscosity to entropy densityratio (η/s), less than or equal to 0.12(althoughhighervaluesdonot affectthe high-pT predic-tions),a chemicalfreezouttemperatureof 160 MeV,anda linear path-lengthdependenceoftheenergylossinspiredbypQCD, sim-ilar to that in CUJET3.0. In addition, both model calculationsare onlyvalidforpT>10 GeV/c.

Overthefullcentralityrange,theCUJET3.0calculationsdescribe qualitativelythetrendobservedinthe v2 dataforpT>10 GeV/c, butfailtoquantitativelyreproducetheresults.Forinstance,inthe centralityrange0–30%andfor10<pT<40 GeV/c, v2 is overes-timated by 10–50%,whilethe modellargely underestimates it in theperipheral bins.The SHEEcalculationsofboth v2 and v3 are ingoodagreementwiththedatafor pT>10 GeV/c overthefull centralityrange.ThesuccessoftheSHEEframeworksuggeststhat modelingtheinitial-statefluctuationsmaybeacrucialingredient todescribetheexperimentaldatarelatedtopartonenergyloss. Al-thoughnotshowninthefigure,ascenariointheSHEEframework with a quadratic path-length dependence of the energy loss, in-spiredbygauge-gravityduality[49,50],wasalsotestedandseento disagreewiththedata.Asjustoneexample,thisalternative path-length dependence is found to overestimate the data by 30–40% forpT>20 GeV/c inthe20–30%centralityrange.

The v2 valuesarealsoobtainedfrom4-,6-,and8-particle cu-mulantanalyses, asshowninFig. 2,wherethe SP v2 resultsare alsoincludedforcomparison.For pT<3 GeV/c,theresultsfollow theexpectationfromBessel-Gaussianorellipticpowerv2

(5)

distribu-Fig. 1. Thev2andv3resultsfromtheSPmethodasafunctionofpT,insevencollisioncentralityrangesfrom0–5%to50–60%.Theverticalbars(shadedboxes)represent thestatistical(systematic)uncertainties.ThecurvesrepresentcalculationsmadewiththeCUJET3.0[44]andtheSHEEmodels[26](seetext).

Fig. 2. Comparisonbetweenthev2resultsfromtheSPandthe4-,6-,and8-particlecumulantmethods,asafunctionofpT,insixcentralityrangesfrom0–5%to50–60%. Theverticalbars(shadedboxes)representthestatistical(systematic)uncertainties.

tions, whichpredict v2{SP} >v2{4} ≈v2{6} ≈v2{8} [51–53].The observation that the multiparticle cumulant values remain simi-lar up to pT=100 GeV/c (v2{4} ≈v2{6} ≈v2{8}), further sug-gests that the azimuthal anisotropy is strongly affected by the initial-stategeometry andits event-by-event fluctuations[25,26]. Athigher pT,the differencebetweenSP andmultiparticle cumu-lant results shows a tendency to decrease.Nevertheless, the un-certainties are toolargetodrawa firmconclusion. Thistendency mightbedueto pT dependenceofflowvectorfluctuations,which dependson the shear viscosityover entropy densityratio ofthe medium[26,54].Therefore,theresultspresentedinFig. 2provide importantinformationtoconstraintheQGPshearviscosityinPbPb collisions.

Fig. 3 shows the correlation between high-pT and low-pT v2 values, for investigating the connection between the azimuthal anisotropies induced by hydrodynamic flow and the path-length dependence of parton energy loss [25,26]. The most peripheral v2{SP} and v2{4}data points arethe oneswiththe largesterror bars.Linearfitstothecentralitydependentv2correlationbetween thelow- andhigh-pT regionsareshowninthefigure.Hereazero intercept is assumed. The corresponding χ2 over the number of degree of freedom values are found to be near1–1.5, except for the 26<pT<35 GeV/c range,whereapositive interceptis indi-catedforthev2{SP}results.Thenon-zerointerceptmightreflecta centrality dependent event-planedecorrelation that increases go-ingtohigher pT.Theslopevaluesfor v2{SP}andv2{4}arefound

(6)

Fig. 3. Correlationbetweenthehigh-pTv2measuredinthe14–20(left),20–26(middle),and26–35 GeV/c (right)pTrangesandthelow-pTv2measuredinthe1<pT< 1.25 GeV/c range,withtheSP(closedcircles)andcumulant(opensquares)methods.Thepointsrepresentthecentralitybins0–5,5–10,10–15,15–20,20–30,30–40,40–50, and50–60%fortheSPresults.Forthecumulantmethod,thebin0–5%isnotshown.LinesrepresentalinearfittotheSPresults(red)andcumulantresults(dashedblue). (Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

to be compatible within statisticaluncertainties and to decrease whenselecting higher pT particles.This suggeststhatthe initial-state geometry andits fluctuations are likely to be the common causesoftheobservedparticleazimuthalanisotropiesatbothlow andhighpT.

7.Summary

The azimuthal anisotropy of charged particles produced in PbPb collisions at √sNN=5.02 TeV has beenstudied using data collected by the CMS experiment. The v2 and v3 coefficients are determined, as a function of collision centrality, over the widesttransversemomentumrangestudiedtodate(from1upto 100 GeV/c).Forthefirsttime,themultiparticlecumulantmethod is used for pT>20 GeV/c. Over the measured centrality range, positive v2 values are found up to pT ∼60–80 GeV/c, while the v3 values are consistent with zero for pT>20 GeV/c. For

pT<3 GeV/c, v2{SP} >v2{4} ≈v2{6} ≈v2{8},consistent with a collective behavior arising from the hydrodynamic expansion of aquark–gluonplasma.The similarityof v2{SP}, v2{4}, v2{6},and

v2{8}athighpT suggeststhat v2 originatesfromthepath-length dependenceofpartonenergylossassociatedwithan asymmetric initialcollisiongeometry.Inaddition,acommontrendinthe cen-tralitydependenceofv2isobservedoverthefullpTrange,further supportingacommonconnectiontotheinitial-stategeometryand its fluctuations. A model calculation (SHEE) incorporating initial-statefluctuationswithalinearpath-lengthdependenceofparton energylossisfound tobeingoodagreement withthedata,over thewide pTandcentralityrangesprobedinthisanalysis.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil);

MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy); MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOEandUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, andUASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON, RosAtom,RAS,RFBR andRAEP(Russia);MESTD (Serbia);SEIDI,CPAN, PCTIandFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEP-Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gram and the European Research Council and EPLANET (Euro-pean Union); the Leventis Foundation; the A.P. Sloan Founda-tion; the Alexander von Humboldt Foundation; the Belgian Fed-eral Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technolo-gie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) ofthe Czech Republic;the Council ofScience and Indus-trial Research, India; the HOMING PLUS program of the Foun-dation for Polish Science, cofinanced from European Union, Re-gional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa Clarín-COFUNDdelPrincipadode Asturias;theThalisandAristeia programscofinancedbyEU-ESFandtheGreekNSRF;the Rachada-pisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and theChulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Founda-tion,contractC-1845.

References

[1] K.Adcox, etal., PHENIX, Formation ofdensepartonicmatterinrelativistic nucleus–nucleus collisions atRHIC: experimentalevaluationbythePHENIX

(7)

collaboration,Nucl.Phys.A757(2005)184,https://doi.org/10.1016/j.nuclphysa. 2005.03.086,arXiv:nucl-ex/0410003.

[2] J.Adams,etal.,STAR,Experimentalandtheoreticalchallengesinthesearch forthequarkgluonplasma:theSTARCollaboration’scriticalassessmentofthe evidencefromRHICcollisions,Nucl.Phys.A757(2005)102,https://doi.org/ 10.1016/j.nuclphysa.2005.03.085,arXiv:nucl-ex/0501009.

[3] I.Arsene,etal.,BRAHMS,Quarkgluonplasmaandcolorglasscondensateat RHIC?TheperspectivefromtheBRAHMSexperiment,Nucl.Phys.A757(2005) 1,https://doi.org/10.1016/j.nuclphysa.2005.02.130,arXiv:nucl-ex/0410020. [4] B.B.Back,etal.,PHOBOS,ThePHOBOSperspectiveondiscoveriesatRHIC,Nucl.

Phys.A757(2005)28,https://doi.org/10.1016/j.nuclphysa.2005.03.084,arXiv: nucl-ex/0410022.

[5] ATLASCollaboration,Observationofacentrality-dependentdijetasymmetryin Pb-Pbcollisionsat√sNN=2.76 TeV withtheATLASdetectorattheLHC,Phys. Rev.Lett.105(2010)252303,https://doi.org/10.1103/PhysRevLett.105.252303, arXiv:1011.6182.

[6] CMSCollaboration,ObservationandstudiesofjetquenchinginPbPbcollisions atnucleon–nucleoncenter-of-massenergy=2.76 TeV,Phys.Rev.C84(2011) 024906,https://doi.org/10.1103/PhysRevC.84.024906,arXiv:1102.1957. [7] ALICECollaboration,Suppressionofchargedparticleproductionatlarge

trans-versemomentumincentralPb-Pbcollisionsat√sNN=2.76 TeV,Phys.Lett.B 696(2011)30,https://doi.org/10.1016/j.physletb.2010.12.020,arXiv:1012.1004. [8] CMSCollaboration,Studyofhigh-pTchargedparticlesuppressioninPbPb com-pared toppcollisions at√sNN=2.76 TeV,Eur.Phys.J. C72(2012)1945,

https://doi.org/10.1140/epjc/s10052-012-1945-x,arXiv:1202.2554.

[9] ATLAS Collaboration,Measurementofcharged-particlespectrainPb+Pb col-lisionsat √sNN=2.76 TeV withtheATLASdetectoratthe LHC,J. High En-ergyPhys.09(2015)050,https://doi.org/10.1007/JHEP09(2015)050,arXiv:1504. 04337.

[10]CMSCollaboration,Charged-particlenuclearmodificationfactorsinPbPband pPbcollisionsat√sNN=5.02 TeV,arXiv:1611.01664,2016.

[11] I.Arsene,etal.,BRAHMS,TransversemomentumspectrainAu+Auandd+Au

collisions at √sNN=200 GeV andthe pseudorapidity dependence ofhigh

pT suppression, Phys. Rev. Lett. 91 (2003) 072305, https://doi.org/10.1103/

PhysRevLett.91.072305,arXiv:nucl-ex/0307003.

[12] K.Adcox,etal.,PHENIX,Suppressionofhadronswithlargetransverse momen-tumincentralAu+Aucollisionsat√sNN=130 GeV,Phys.Rev.Lett.88(2002) 022301,https://doi.org/10.1103/PhysRevLett.88.022301,arXiv:nucl-ex/0109003. [13] S.S.Adler,et al.,PHENIX,Suppressedπ0production atlargetransverse mo-mentumincentral Au+Aucollisionsat √sNN=200 GeV,Phys.Rev.Lett.91 (2003) 072301, https://doi.org/10.1103/PhysRevLett.91.072301, arXiv:nucl-ex/ 0304022.

[14] B.B.Back,etal.,PHOBOS,Chargedhadrontransversemomentumdistributions inAu+Aucollisionsat√sNN=200 GeV,Phys.Lett.B578(2004)297,https://

doi.org/10.1016/j.physletb.2003.10.101,arXiv:nucl-ex/0302015.

[15] C.Adler,etal.,STAR,CentralitydependenceofhighpThadronsuppressionin Au+Aucollisionsat√sNN=130 GeV,Phys.Rev.Lett.89(2002)202301,https://

doi.org/10.1103/PhysRevLett.89.202301,arXiv:nucl-ex/0206011.

[16] J.Adams,etal.,STAR,Transversemomentumandcollisionenergydependence ofhigh-pT hadron suppressioninAu+Aucollisions at ultrarelativistic ener-gies,Phys.Rev.Lett.91(2003)172302,https://doi.org/10.1103/PhysRevLett.91. 172302,arXiv:nucl-ex/0305015.

[17] A.M.Poskanzer,S.A.Voloshin,Methodsforanalyzinganisotropicflowin rela-tivisticnuclearcollisions,Phys.Rev.C58(1998)1671,https://doi.org/10.1103/ PhysRevC.58.1671,arXiv:nucl-ex/9805001.

[18] A.Adare,etal.,PHENIX,Azimuthalanisotropyofπ0productioninAu+Au col-lisionsat√sNN=200 GeV:path-lengthdependenceofjetquenchingandthe role ofinitialgeometry,Phys.Rev.Lett. 105(2010) 142301, https://doi.org/ 10.1103/PhysRevLett.105.142301,arXiv:1006.3740.

[19] CMSCollaboration,Azimuthalanisotropyofchargedparticlesat high trans-verse momentainPbPbcollisionsat √sNN=2.76 TeV,Phys.Rev.Lett.109 (2012) 022301, https://doi.org/10.1103/PhysRevLett.109.022301, arXiv:1204. 1850.

[20] ATLASCollaboration,Measurementofflowharmonicswithmulti-particle cu-mulants inPb+Pb collisions at √sNN=2.76 TeV with the ATLAS detector, Eur.Phys.J.C74(2014)3157,https://doi.org/10.1140/epjc/s10052-014-3157-z, arXiv:1408.4342.

[21] ALICE Collaboration,AnisotropicflowofchargedparticlesinPb-Pbcollisionsat

sNN=5.02 TeV,Phys.Rev.Lett.116(2016)132302,https://doi.org/10.1103/

PhysRevLett.116.132302,arXiv:1602.01119.

[22] D.Molnar,M.Gyulassy,Saturationofellipticflowandthetransportopacity ofthegluonplasmaatRHIC,Nucl.Phys.A697(2002)495,https://doi.org/10. 1016/S0375-9474(01)01224-6,arXiv:nucl-th/0104073,Erratum:https://doi.org/ 10.1016/S0375-9474(02)00859-X.

[23] J.Noronha,M.Gyulassy,G.Torrieri,Conformalholographyofbulkellipticflow andheavyquarkquenchinginrelativisticheavyioncollisions,Phys.Rev.C82 (2010)054903,https://doi.org/10.1103/PhysRevC.82.054903,arXiv:1009.2286. [24] B.Betz,M.Gyulassy,Constraintsonthepath-lengthdependenceofjet

quench-inginnuclearcollisionsatRHICandLHC,J.HighEnergyPhys.08(2014)090,

https://doi.org/10.1007/JHEP10(2014)043, arXiv:1404.6378, Erratum: https:// doi.org/10.1007/JHEP08(2014)090.

[25] J.Noronha-Hostler, B.Betz, J. Noronha,M. Gyulassy, Event-by-event hydro-dynamics+ jetenergy loss:asolutiontothe RA Av2 puzzle,Phys.Rev. Lett.116(2016)252301,https://doi.org/10.1103/PhysRevLett.116.252301,arXiv: 1602.03788.

[26] B.Betz,M.Gyulassy,M.Luzum,J.Noronha,J.Noronha-Hostler,I.Portillo,C. Ratti,CumulantsandnonlinearresponseofhighpTharmonicflowat√sN N=

5.02 TeV,Phys.Rev.C95(2017)044901,https://doi.org/10.1103/PhysRevC.95. 044901,arXiv:1609.05171.

[27] B. Alver,G. Roland, Collision geometry fluctuations and triangularflow in heavy-ioncollisions,Phys. Rev.C81(2010) 054905,https://doi.org/10.1103/ PhysRevC.81.054905, arXiv:1003.0194, Erratum: https://doi.org/10.1103/ PhysRevC.82.039903.

[28] C.Adler,etal.,STAR,Ellipticflowfromtwoandfourparticlecorrelationsin Au+Aucollisionsat√sNN=130 GeV,Phys.Rev.C66(2002)034904,https://

doi.org/10.1103/PhysRevC.66.034904,arXiv:nucl-ex/0206001.

[29] M. Luzum,J.-Y. Ollitrault, Eliminatingexperimentalbias inanisotropic-flow measurementsofhigh-energynuclearcollisions,Phys.Rev.C87(2013)044907,

https://doi.org/10.1103/PhysRevC.87.044907,arXiv:1209.2323.

[30] A.Bilandzic,R.Snellings,S.Voloshin,Flowanalysiswithcumulants:direct cal-culations,Phys.Rev.C83(2011)044913,https://doi.org/10.1103/PhysRevC.83. 044913,arXiv:1010.0233.

[31] CMSCollaboration,Descriptionandperformanceoftrackandprimary-vertex reconstruction with the CMS tracker,J. Instrum. 9(2014) P10009, https:// doi.org/10.1088/1748-0221/9/10/P10009,arXiv:1405.6569.

[32] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[33] S. Agostinelli,et al., Geant4, Geant4—a simulationtoolkit, Nucl. Instrum. MethodsA506(2003)250,https://doi.org/10.1016/S0168-9002(03)01368-8. [34] M.L.Miller, K. Reygers,S.J. Sanders,P.Steinberg, Glaubermodelinginhigh

energynuclearcollisions,Annu.Rev.Nucl.Part.Sci.57(2007)205,https:// doi.org/10.1146/annurev.nucl.57.090506.123020,arXiv:nucl-ex/0701025. [35] CMSCollaboration,Measurementoftransversemomentumrelativetodijet

sys-temsinPbPbandppcollisionsat√sNN=2.76 TeV,J.HighEnergyPhys.01 (2016)006,https://doi.org/10.1007/JHEP01(2016)006,arXiv:1509.09029. [36] I.P.Lokhtin,A.M.Snigirev,Amodelofjetquenchinginultrarelativisticheavy

ioncollisionsand high-pThadronspectraatRHIC,Eur.Phys. J.C45(2006) 211,https://doi.org/10.1140/epjc/s2005-02426-3,arXiv:hep-ph/0506189. [37] T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,

Com-put.Phys.Commun.178(2008)852,https://doi.org/10.1016/j.cpc.2008.01.036, arXiv:0710.3820.

[38] S.Voloshin,Y.Zhang,FlowstudyinrelativisticnuclearcollisionsbyFourier expansionofazimuthalparticledistributions,Z.Phys.C70(1996)665,https:// doi.org/10.1007/s002880050141,arXiv:hep-ph/9407282.

[39] J. Barrette, et al., E877, Proton and pion production relative to the reac-tionplaneinAu+AucollisionsatAGSenergies,Phys.Rev.C56(1997)3254,

https://doi.org/10.1103/PhysRevC.56.3254,arXiv:nucl-ex/9707002.

[40] CMSCollaboration,Evidencefortransversemomentumandpseudorapidity de-pendenteventplanefluctuationsinPbPbandpPbcollisions,Phys.Rev.C92 (2015)034911,https://doi.org/10.1103/PhysRevC.92.034911,arXiv:1503.01692. [41] A. Bilandzic, C.H. Christensen,K. Gulbrandsen, A.Hansen, Y. Zhou,Generic

frameworkforanisotropicflow analyseswithmultiparticleazimuthal corre-lations,Phys. Rev.C 89(2014) 064904, https://doi.org/10.1103/PhysRevC.89. 064904,arXiv:1312.3572.

[42] CMS Collaboration, Evidence for collective multiparticle correlations in pPb collisions, Phys. Rev. Lett. 115 (2015) 012301, https://doi.org/10.1103/ PhysRevLett.115.012301,arXiv:1502.05382.

[43] N. Borghini,P.M. Dinh, J.-Y. Ollitrault, Flow analysisfrom multiparticle az-imuthalcorrelations,Phys.Rev.C64(2001)054901,https://doi.org/10.1103/ PhysRevC.64.054901,arXiv:nucl-th/0105040.

[44] J.Xu,J.Liao,M.Gyulassy,Bridgingsoft-hardtransportpropertiesofquark– gluonplasmaswithCUJET3.0,J.HighEnergyPhys.02(2016)169,https://doi. org/10.1007/JHEP02(2016)169,arXiv:1508.00552.

[45] J.Noronha-Hostler,G.S.Denicol,J.Noronha,R.P.G.Andrade,F.Grassi,Bulk vis-cosityeffects inevent-by-event relativistic hydrodynamics,Phys. Rev. C88 (2013)044916,https://doi.org/10.1103/PhysRevC.88.044916,arXiv:1305.1981. [46] J.Noronha-Hostler,J.Noronha,F.Grassi,Bulkviscosity-drivensuppressionof

shear viscosity effectson the flow harmonics at energies availableat the BNLRelativisticHeavyIon Collider,Phys. Rev.C90(2014)034907, https:// doi.org/10.1103/PhysRevC.90.034907,arXiv:1406.3333.

[47] B. Betz, M. Gyulassy, G. Torrieri, Fourier harmonics of high-pT particles probing the fluctuatinginitial condition geometries inheavy-ion collisions, Phys. Rev. C84 (2011) 024913, https://doi.org/10.1103/PhysRevC.84.024913, arXiv:1102.5416.

[48] B.Betz,M.Gyulassy,Examiningareducedjet-mediumcouplinginPb+Pb col-lisionsattheLargeHadronCollider,Phys.Rev.C86(2012)024903,https:// doi.org/10.1103/PhysRevC.86.024903,arXiv:1201.0281.

(8)

[49] S.S.Gubser,D.R.Gulotta,S.S.Pufu,F.D.Rocha,Gluonenergylossinthe gauge-stringduality,J.HighEnergyPhys.10(2008)052, https://doi.org/10.1088/1126-6708/2008/10/052,arXiv:0803.1470.

[50] F.Dominguez,C.Marquet, A.H. Mueller,B. Wu,B.-W. Xiao,Comparing en-ergylossandp⊥-broadeninginperturbativeQCDwithstrongcouplingN=4 SYMtheory,Nucl.Phys.A811(2008)197,https://doi.org/10.1016/j.nuclphysa. 2008.07.004,arXiv:0803.3234.

[51] L.Yan, J.-Y.Ollitrault,A.M. Poskanzer,Azimuthalanisotropydistributions in high-energycollisions,Phys. Lett.B742(2015)290,https://doi.org/10.1016/ j.physletb.2015.01.039,arXiv:1408.0921.

[52] S.A.Voloshin,A.M.Poskanzer,A.Tang,G.Wang,EllipticflowintheGaussian modelofeccentricityfluctuations,Phys.Lett.B659(2008)537,https://doi.org/ 10.1016/j.physletb.2007.11.043,arXiv:0708.0800.

[53] CMSCollaboration,Multiplicityandtransversemomentumdependenceof two-and four-particle correlations inpPband PbPbcollisions, Phys.Lett. B724 (2013)213,https://doi.org/10.1016/j.physletb.2013.06.028,arXiv:1305.0609. [54] ALICECollaboration,Searchesfortransversemomentumdependentflow

vec-torfluctuationsinPb-Pbandp-PbcollisionsattheLHC,JHEP09(2017)032,

https://doi.org/10.1007/JHEP09(2017)032,arxiv:1707.05690

.

TheCMSCollaboration

A.M. Sirunyan,A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,M. Flechl, M. Friedl,

R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec,M. Jeitler1,A. König, I. Krätschmer, D. Liko,

T. Matsushita,I. Mikulec, D. Rabady, N. Rad, B. Rahbaran,H. Rohringer, J. Schieck1,J. Strauss,

W. Waltenberger, C.-E. Wulz1

InstitutfürHochenergiephysik,Wien,Austria

O. Dvornikov,V. Makarenko, V. Mossolov,J. Suarez Gonzalez, V. Zykunov

InstituteforNuclearProblems,Minsk,Belarus

N. Shumeiko

NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus

S. Alderweireldt, E.A. De Wolf,X. Janssen,J. Lauwers, M. Van De Klundert, H. Van Haevermaet,

P. Van Mechelen,N. Van Remortel, A. Van Spilbeeck

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, N. Daci,I. De Bruyn, K. Deroover, S. Lowette,S. Moortgat, L. Moreels,

A. Olbrechts,Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck, P. Van Mulders, I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella,L. Favart, R. Goldouzian, A. Grebenyuk,

G. Karapostoli,T. Lenzi,A. Léonard, J. Luetic, T. Maerschalk,A. Marinov, A. Randle-conde,T. Seva,

C. Vander Velde, P. Vanlaer,D. Vannerom, R. Yonamine,F. Zenoni, F. Zhang2

UniversitéLibredeBruxelles,Bruxelles,Belgium

A. Cimmino,T. Cornelis, D. Dobur,A. Fagot, M. Gul, I. Khvastunov,D. Poyraz, S. Salva, R. Schöfbeck,

M. Tytgat,W. Van Driessche, E. Yazgan, N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,C. Beluffi3,O. Bondu, S. Brochet,G. Bruno, A. Caudron, S. De Visscher, C. Delaere,

M. Delcourt,B. Francois, A. Giammanco, A. Jafari,M. Komm, G. Krintiras,V. Lemaitre, A. Magitteri,

A. Mertens, M. Musich, K. Piotrzkowski,L. Quertenmont,M. Selvaggi, M. Vidal Marono, S. Wertz

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy

(9)

W.L. Aldá Júnior, F.L. Alves,G.A. Alves, L. Brito,C. Hensel,A. Moraes, M.E. Pol, P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato4,A. Custódio, E.M. Da Costa, G.G. Da Silveira5,

D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,

D. Matos Figueiredo, C. Mora Herrera,L. Mundim, H. Nogima,W.L. Prado Da Silva, A. Santoro,

A. Sznajder,E.J. Tonelli Manganote4, F. Torres Da Silva De Araujo,A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa, C.A. Bernardesa, S. Dograa,T.R. Fernandez Perez Tomeia,E.M. Gregoresb,P.G. Mercadanteb,

C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb,J.C. Ruiz Vargasa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria

A. Dimitrov, I. Glushkov,L. Litov, B. Pavlov,P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang6

BeihangUniversity,Beijing,China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, Y. Chen7,T. Cheng, C.H. Jiang, D. Leggat, Z. Liu,

F. Romeo,M. Ruan, S.M. Shaheen, A. Spiezia,J. Tao, C. Wang, Z. Wang, H. Zhang,J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban, G. Chen, Q. Li, S. Liu,Y. Mao, S.J. Qian, D. Wang,Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández,J.D. Ruiz Alvarez,

J.C. Sanabria

UniversidaddeLosAndes,Bogota,Colombia

N. Godinovic, D. Lelas, I. Puljak,P.M. Ribeiro Cipriano, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic, M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Finger8, M. Finger Jr.8

CharlesUniversity,Prague,CzechRepublic

E. Carrera Jarrin

(10)

A. Ellithi Kamel9,M.A. Mahmoud10,11, A. Radi11,12

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,J. Pekkanen, M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,T. Järvinen, V. Karimäki,R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti,T. Lindén,

P. Luukka, J. Tuominiemi,E. Tuovinen, L. Wendland

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour,

S. Ghosh,A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci,M. Machet,

J. Malcles,J. Rander, A. Rosowsky, M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam,I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon,C. Charlot,

O. Davignon,R. Granier de Cassagnac, M. Jo, S. Lisniak,P. Miné, M. Nguyen, C. Ochando, G. Ortona,

P. Paganini,P. Pigard, S. Regnard, R. Salerno,Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi,

A. Zghiche

LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3-CNRS,Palaiseau,France

J.-L. Agram13,J. Andrea, A. Aubin,D. Bloch, J.-M. Brom,M. Buttignol, E.C. Chabert,N. Chanon, C. Collard,

E. Conte13,X. Coubez, J.-C. Fontaine13, D. Gelé, U. Goerlach,A.-C. Le Bihan, P. Van Hove

InstitutPluridisciplinaireHubertCurien(IPHC),UniversitédeStrasbourg,CNRS-IN2P3,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,C.A. Carrillo Montoya, R. Chierici,D. Contardo, B. Courbon,

P. Depasse,H. El Mamouni, J. Fay, S. Gascon,M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh,

M. Lethuillier,L. Mirabito, A.L. Pequegnot, S. Perries,A. Popov14,D. Sabes, V. Sordini,M. Vander Donckt,

P. Verdier,S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

A. Khvedelidze8

GeorgianTechnicalUniversity,Tbilisi,Georgia

I. Bagaturia15

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann,S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten,C. Schomakers, J. Schulz,

T. Verlage

(11)

A. Albert, M. Brodski,E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann,S. Erdweg, T. Esch,

R. Fischer,A. Güth, M. Hamer, T. Hebbeker,C. Heidemann, K. Hoepfner, S. Knutzen,M. Merschmeyer,

A. Meyer, P. Millet,S. Mukherjee, M. Olschewski, K. Padeken,T. Pook,M. Radziej, H. Reithler, M. Rieger,

F. Scheuch,L. Sonnenschein, D. Teyssier, S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

V. Cherepanov, G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller,A. Nehrkorn,

A. Nowack,C. Pistone, O. Pooth,A. Stahl16

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, K. Beernaert,O. Behnke, U. Behrens,A.A. Bin Anuar,

K. Borras17,A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Dolinska,

G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18,J. Garay Garcia, A. Geiser, A. Gizhko,

J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb,J. Hauk, M. Hempel19,H. Jung,

A. Kalogeropoulos, O. Karacheban19, M. Kasemann,J. Keaveney, C. Kleinwort, I. Korol,D. Krücker,

W. Lange, A. Lelek, T. Lenz,J. Leonard, K. Lipka,A. Lobanov, W. Lohmann19, R. Mankel,

I.-A. Melzer-Pellmann,A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, D. Pitzl,R. Placakyte, A. Raspereza,

B. Roland, M.Ö. Sahin,P. Saxena, T. Schoerner-Sadenius,S. Spannagel, N. Stefaniuk,G.P. Van Onsem,

R. Walsh, C. Wissing

DeutschesElektronen-Synchrotron,Hamburg,Germany

V. Blobel, M. Centis Vignali, A.R. Draeger,T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann,

A. Junkes, R. Klanner, R. Kogler,N. Kovalchuk, T. Lapsien, I. Marchesini, D. Marconi,M. Meyer,

M. Niedziela, D. Nowatschin, F. Pantaleo16,T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt,

S. Schumann,J. Schwandt, H. Stadie,G. Steinbrück, F.M. Stober,M. Stöver, H. Tholen, D. Troendle,

E. Usai, L. Vanelderen,A. Vanhoefer, B. Vormwald

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,S. Baur, C. Baus, J. Berger,E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer,

A. Dierlamm, S. Fink,B. Freund,R. Friese, M. Giffels,A. Gilbert, P. Goldenzweig,D. Haitz, F. Hartmann16,

S.M. Heindl,U. Husemann, I. Katkov14, S. Kudella, H. Mildner,M.U. Mozer, Th. Müller, M. Plagge,

G. Quast, K. Rabbertz,S. Röcker, F. Roscher, M. Schröder,I. Shvetsov, G. Sieber, H.J. Simonis,R. Ulrich,

S. Wayand,M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou, G. Daskalakis,T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

NationalandKapodistrianUniversityofAthens,Athens,Greece

I. Evangelou, G. Flouris,C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,E. Paradas

UniversityofIoánnina,Ioánnina,Greece

N. Filipovic, G. Pasztor

MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath20,F. Sikler, V. Veszpremi,G. Vesztergombi21,A.J. Zsigmond

(12)

N. Beni,S. Czellar, J. Karancsi22,A. Makovec,J. Molnar, Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók21,P. Raics, Z.L. Trocsanyi, B. Ujvari

InstituteofPhysics,UniversityofDebrecen,Hungary

J.R. Komaragiri

IndianInstituteofScience(IISc),India

S. Bahinipati23,S. Bhowmik24, S. Choudhury25,P. Mal, K. Mandal, A. Nayak26, D.K. Sahoo23, N. Sahoo,

S.K. Swain

NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar, R. Chawla, U. Bhawandeep, A.K. Kalsi,A. Kaur, M. Kaur, R. Kumar,

P. Kumari,A. Mehta, M. Mittal, J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

Ashok Kumar,A. Bhardwaj, B.C. Choudhary, R.B. Garg,S. Keshri, S. Malhotra,M. Naimuddin, K. Ranjan,

R. Sharma,V. Sharma

UniversityofDelhi,Delhi,India

R. Bhattacharya,S. Bhattacharya, K. Chatterjee, S. Dey,S. Dutt, S. Dutta, S. Ghosh, N. Majumdar,

A. Modak, K. Mondal,S. Mukhopadhyay, S. Nandan,A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury,

S. Sarkar,M. Sharan, S. Thakur

SahaInstituteofNuclearPhysics,Kolkata,India

P.K. Behera

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama,D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar

BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida,N. Sur, B. Sutar

TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, R.K. Dewanjee,S. Ganguly, M. Guchait,Sa. Jain, S. Kumar, M. Maity24, G. Majumder,

K. Mazumdar,T. Sarkar24, N. Wickramage27

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani28, E. Eskandari Tadavani,S.M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi,

M. Naseri, S. Paktinat Mehdiabadi29,F. Rezaei Hosseinabadi, B. Safarzadeh30,M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b, C. Caputoa,b, A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia,G. Minielloa,b,S. Mya,b,S. Nuzzoa,b,

(13)

A. Pompilia,b,G. Pugliesea,c,R. Radognaa,b,A. Ranieria,G. Selvaggia,b,A. Sharmaa,L. Silvestrisa,16, R. Vendittia,b,P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilana, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b,

P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa,S.S. Chhibraa,b, G. Codispotia,b, M. Cuffiania,b,

G.M. Dallavallea,F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,P. Giacomellia,C. Grandia,L. Guiduccia,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b,A. Perrottaa, A.M. Rossia,b,T. Rovellia,b, G.P. Sirolia,b,N. Tosia,b,16

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,S. Costaa,b,A. Di Mattiaa,F. Giordanoa,b,R. Potenzaa,b,A. Tricomia,b,C. Tuvea,b aINFNSezionediCatania,Catania,Italy

bUniversitàdiCatania,Catania,Italy

G. Barbaglia, V. Ciullia,b,C. Civininia, R. D’Alessandroa,b,E. Focardia,b,P. Lenzia,b, M. Meschinia, S. Paolettia,L. Russoa,31, G. Sguazzonia, D. Stroma, L. Viliania,b,16

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo, F. Primavera16

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, M.R. Mongea,b,E. Robuttia, S. Tosia,b aINFNSezionediGenova,Genova,Italy

bUniversitàdiGenova,Genova,Italy

L. Brianzaa,b,16,F. Brivioa,b,V. Ciriolo, M.E. Dinardoa,b,S. Fiorendia,b,16,S. Gennaia,A. Ghezzia,b,

P. Govonia,b,M. Malbertia,b, S. Malvezzia, R.A. Manzonia,b,D. Menascea,L. Moronia,M. Paganonia,b,

D. Pedrinia,S. Pigazzinia,b,S. Ragazzia,b,T. Tabarelli de Fatisa,b aINFNSezionediMilano-Bicocca,Milano,Italy

bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, G. De Nardo, S. Di Guidaa,d,16, M. Espositoa,b, F. Fabozzia,c,F. Fiengaa,b,

A.O.M. Iorioa,b, G. Lanzaa,L. Listaa, S. Meolaa,d,16,P. Paoluccia,16, C. Sciaccaa,b, F. Thyssena aINFNSezionediNapoli,Napoli,Italy

bUniversitàdiNapoli’FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,16, N. Bacchettaa, L. Benatoa,b,D. Biselloa,b, A. Bolettia,b,M. Dall’Ossoa,b,

P. De Castro Manzanoa, T. Dorigoa,U. Dossellia, F. Gasparinia,b, U. Gasparinia,b,A. Gozzelinoa,

M. Gulminia,32,S. Lacapraraa, M. Margonia,b, G. Marona,32, A.T. Meneguzzoa,b,M. Michelottoa,

J. Pazzinia,b, N. Pozzobona,b,P. Ronchesea,b, F. Simonettoa,b,E. Torassaa, M. Zanettia,b,P. Zottoa,b,

G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,F. Fallavollitaa,b, A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

(14)

L. Alunni Solestizia,b, G.M. Bileia,D. Ciangottinia,b,L. Fanòa,b, P. Laricciaa,b, R. Leonardia,b,

G. Mantovania,b, V. Mariania,b,M. Menichellia,A. Sahaa,A. Santocchiaa,b

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,31,P. Azzurria,16,G. Bagliesia,J. Bernardinia,T. Boccalia,R. Castaldia, M.A. Cioccia,31, R. Dell’Orsoa,S. Donatoa,c,G. Fedi, A. Giassia,M.T. Grippoa,31,F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, F. Pallaa,A. Rizzia,b,A. Savoy-Navarroa,33, P. Spagnoloa,R. Tenchinia, G. Tonellia,b,

A. Venturia,P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b, F. Cavallaria,M. Cipriania,b, D. Del Rea,b,16, M. Diemoza, S. Gellia,b, E. Longoa,b, F. Margarolia,b, B. Marzocchia,b,P. Meridiania, G. Organtinia,b,R. Paramattia, F. Preiatoa,b, S. Rahatloua,b,C. Rovellia, F. Santanastasioa,b

aINFNSezionediRoma,Roma,Italy bUniversitàdiRoma,Roma,Italy

N. Amapanea,b,R. Arcidiaconoa,c,16,S. Argiroa,b,M. Arneodoa,c,N. Bartosika,R. Bellana,b, C. Biinoa, N. Cartigliaa,F. Cennaa,b, M. Costaa,b,R. Covarellia,b,A. Deganoa,b,N. Demariaa, L. Fincoa,b, B. Kiania,b,

C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,M.M. Obertinoa,b,

L. Pachera,b,N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b,F. Raveraa,b,A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa,A. Solanoa,b,A. Staianoa,P. Traczyka,b

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,M. Casarsaa, F. Cossuttia,G. Della Riccaa,b, A. Zanettia aINFNSezionediTrieste,Trieste,Italy

bUniversitàdiTrieste,Trieste,Italy

D.H. Kim,G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh,S. Sekmen, D.C. Son,Y.C. Yang

KyungpookNationalUniversity,Daegu,RepublicofKorea

A. Lee

ChonbukNationalUniversity,Jeonju,RepublicofKorea

H. Kim

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea

J.A. Brochero Cifuentes,T.J. Kim

HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go,D. Gyun, S. Ha,B. Hong, Y. Jo, Y. Kim, K. Lee,K.S. Lee,S. Lee,J. Lim, S.K. Park, Y. Roh

KoreaUniversity,Seoul,RepublicofKorea

J. Almond,J. Kim, H. Lee,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang,H.D. Yoo, G.B. Yu

SeoulNationalUniversity,Seoul,RepublicofKorea

M. Choi,H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

(15)

Y. Choi,J. Goh, C. Hwang, J. Lee,I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus

VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali34,F. Mohamad Idris35,W.A.T. Wan Abdullah, M.N. Yusli,

Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz36,A. Hernandez-Almada,

R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao,A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

UniversidadIberoamericana,MexicoCity,Mexico

S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico

D. Krofcheck

UniversityofAuckland,Auckland,NewZealand

P.H. Butler

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan, A. Saddique,M.A. Shah, M. Shoaib, M. Waqas

NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska, M. Bluj,B. Boimska, T. Frueboes,M. Górski, M. Kazana, K. Nawrocki,

K. Romanowska-Rybinska, M. Szleper,P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski,A. Byszuk37, K. Doroba,A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura,

M. Olszewski, M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli,P.G. Ferreira Parracho,

M. Gallinaro,J. Hollar, N. Leonardo,L. Lloret Iglesias, M.V. Nemallapudi,J. Rodrigues Antunes, J. Seixas,

O. Toldaiev, D. Vadruccio,J. Varela

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

S. Afanasiev,P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavin, A. Lanev,

A. Malakhov,V. Matveev38,39,V. Palichik, V. Perelygin, S. Shmatov, S. Shulha,N. Skatchkov, V. Smirnov,

N. Voytishin,A. Zarubin

(16)

L. Chtchipounov,V. Golovtsov, Y. Ivanov, V. Kim40, E. Kuznetsova41,V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov,

A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov, M. Toms,

E. Vlasov,A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia

T. Aushev,A. Bylinkin39

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

M. Chadeeva42, E. Popova,E. Tarkovskii

NationalResearchNuclearUniversity’MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin39,I. Dremin39, M. Kirakosyan, A. Leonidov39,A. Terkulov

P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Baskakov,A. Belyaev, E. Boos,A. Demiyanov,A. Ershov, A. Gribushin, O. Kodolova,V. Korotkikh,

I. Lokhtin,I. Miagkov, S. Obraztsov,S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

V. Blinov43, Y. Skovpen43,D. Shtol43

NovosibirskStateUniversity(NSU),Novosibirsk,Russia

I. Azhgirey,I. Bayshev,S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov,

V. Krychkine, V. Petrov, R. Ryutin, A. Sobol,S. Troshin, N. Tyurin,A. Uzunian, A. Volkov

StateResearchCenterofRussianFederation,InstituteforHighEnergyPhysics,Protvino,Russia

P. Adzic44,P. Cirkovic, D. Devetak,M. Dordevic, J. Milosevic,V. Rekovic

UniversityofBelgrade,FacultyofPhysicsandVincaInstituteofNuclearSciences,Belgrade,Serbia

J. Alcaraz Maestre,M. Barrio Luna, E. Calvo,M. Cerrada,M. Chamizo Llatas, N. Colino, B. De La Cruz,

A. Delgado Peris,A. Escalante Del Valle, C. Fernandez Bedoya,J.P. Fernández Ramos, J. Flix, M.C. Fouz,

P. Garcia-Abia,O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa,E. Navarro De Martino,

A. Pérez-Calero Yzquierdo,J. Puerta Pelayo, A. Quintario Olmeda,I. Redondo, L. Romero,M.S. Soares

CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain

J.F. de Trocóniz,M. Missiroli, D. Moran

UniversidadAutónomadeMadrid,Madrid,Spain

J. Cuevas,J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández,E. Palencia Cortezon,

S. Sanchez Cruz,I. Suárez Andrés, P. Vischia, J.M. Vizan Garcia

(17)

I.J. Cabrillo, A. Calderon, E. Curras, M. Fernandez,J. Garcia-Ferrero, G. Gomez, A. Lopez Virto,J. Marco,

C. Martinez Rivero,F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno,L. Scodellaro, N. Trevisani,

I. Vila, R. Vilar Cortabitarte

InstitutodeFísicadeCantabria(IFCA),CSIC-UniversidaddeCantabria,Santander,Spain

D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, P. Bloch,A. Bocci, C. Botta,

T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, D. d’Enterria, A. Dabrowski,V. Daponte,

A. David,M. De Gruttola, A. De Roeck, E. Di Marco45, M. Dobson, B. Dorney,T. du Pree, D. Duggan,

M. Dünser, N. Dupont, A. Elliott-Peisert,P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher,W. Funk, D. Gigi,

K. Gill,M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, P. Harris,J. Hegeman, V. Innocente,

P. Janot, J. Kieseler, H. Kirschenmann,V. Knünz, A. Kornmayer16, M.J. Kortelainen, K. Kousouris,

M. Krammer1,C. Lange, P. Lecoq, C. Lourenço,M.T. Lucchini,L. Malgeri, M. Mannelli,A. Martelli,

F. Meijers, J.A. Merlin, S. Mersi, E. Meschi,P. Milenovic46,F. Moortgat, S. Morovic, M. Mulders,

H. Neugebauer,S. Orfanelli, L. Orsini, L. Pape,E. Perez, M. Peruzzi,A. Petrilli, G. Petrucciani, A. Pfeiffer,

M. Pierini,A. Racz, T. Reis,G. Rolandi47, M. Rovere,H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick,

M. Seidel,A. Sharma, P. Silva,P. Sphicas48,J. Steggemann, M. Stoye,Y. Takahashi, M. Tosi, D. Treille,

A. Triossi,A. Tsirou, V. Veckalns49,G.I. Veres21,M. Verweij, N. Wardle, H.K. Wöhri, A. Zagozdzinska37,

W.D. Zeuner

CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland

W. Bertl,K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,U. Langenegger,

T. Rohe, S.A. Wiederkehr

PaulScherrerInstitut,Villigen,Switzerland

F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger,

D. Hits, J. Hoss,G. Kasieczka, W. Lustermann,B. Mangano,M. Marionneau, P. Martinez Ruiz del Arbol,

M. Masciovecchio, M.T. Meinhard,D. Meister, F. Micheli,P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata,

F. Pauss,G. Perrin, L. Perrozzi,M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov50,

V.R. Tavolaro, K. Theofilatos, R. Wallny

InstituteforParticlePhysics,ETHZurich,Zurich,Switzerland

T.K. Aarrestad, C. Amsler51, L. Caminada,M.F. Canelli, A. De Cosa, C. Galloni,A. Hinzmann, T. Hreus,

B. Kilminster, J. Ngadiuba,D. Pinna,G. Rauco, P. Robmann, D. Salerno, C. Seitz,Y. Yang, A. Zucchetta

UniversitätZürich,Zurich,Switzerland

V. Candelise,T.H. Doan, Sh. Jain,R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, A. Pozdnyakov,S.S. Yu

NationalCentralUniversity,Chung-Li,Taiwan

Arun Kumar, P. Chang, Y.H. Chang,Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu,

R.-S. Lu, M. Miñano Moya,E. Paganis, A. Psallidas, J.f. Tsai

NationalTaiwanUniversity(NTU),Taipei,Taiwan

B. Asavapibhop, G. Singh, N. Srimanobhas,N. Suwonjandee

ChulalongkornUniversity,FacultyofScience,DepartmentofPhysics,Bangkok,Thailand

A. Adiguzel, M.N. Bakirci52, S. Cerci53,S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis,

G. Gokbulut, Y. Guler, I. Hos54, E.E. Kangal55, O. Kara, A. Kayis Topaksu,U. Kiminsu,M. Oglakci,

G. Onengut56,K. Ozdemir57,B. Tali53,S. Turkcapar,I.S. Zorbakir, C. Zorbilmez

CukurovaUniversity- PhysicsDepartment,ScienceandArtFaculty,Turkey

B. Bilin, S. Bilmis, B. Isildak58, G. Karapinar59, M. Yalvac, M. Zeyrek

(18)

E. Gülmez,M. Kaya60,O. Kaya61, E.A. Yetkin62, T. Yetkin63

BogaziciUniversity,Istanbul,Turkey

A. Cakir,K. Cankocak, S. Sen64

IstanbulTechnicalUniversity,Istanbul,Turkey

B. Grynyov

InstituteforScintillationMaterialsofNationalAcademyofScienceofUkraine,Kharkov,Ukraine

L. Levchuk,P. Sorokin

NationalScientificCenter,KharkovInstituteofPhysicsandTechnology,Kharkov,Ukraine

R. Aggleton,F. Ball, L. Beck, J.J. Brooke, D. Burns,E. Clement, D. Cussans, H. Flacher,J. Goldstein,

M. Grimes, G.P. Heath, H.F. Heath,J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold65, S. Paramesvaran,

A. Poll, T. Sakuma,S. Seif El Nasr-storey, D. Smith,V.J. Smith

UniversityofBristol,Bristol,UnitedKingdom

A. Belyaev66, C. Brew, R.M. Brown, L. Calligaris,D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder,

S. Harper, E. Olaiya,D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

RutherfordAppletonLaboratory,Didcot,UnitedKingdom

M. Baber,R. Bainbridge, O. Buchmuller, A. Bundock,D. Burton, S. Casasso,M. Citron, D. Colling, L. Corpe,

P. Dauncey,G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan,Y. Haddad,

G. Hall,G. Iles, T. James, R. Lane, C. Laner, R. Lucas65,L. Lyons, A.-M. Magnan,S. Malik, L. Mastrolorenzo,

J. Nash, A. Nikitenko50,J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards,A. Rose,E. Scott,

C. Seez,S. Summers,A. Tapper, K. Uchida, M. Vazquez Acosta67,T. Virdee16,J. Wright, S.C. Zenz

ImperialCollege,London,UnitedKingdom

J.E. Cole, P.R. Hobson,A. Khan, P. Kyberd,I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

BrunelUniversity,Uxbridge,UnitedKingdom

A. Borzou,K. Call,J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

BaylorUniversity,Waco,USA

R. Bartek,A. Dominguez

CatholicUniversityofAmerica,UnitedStates

A. Buccilli, S.I. Cooper,C. Henderson, P. Rumerio, C. West

TheUniversityofAlabama,Tuscaloosa,USA

D. Arcaro, A. Avetisyan, T. Bose,D. Gastler, D. Rankin, C. Richardson,J. Rohlf, L. Sulak,D. Zou

BostonUniversity,Boston,USA

G. Benelli, D. Cutts, A. Garabedian,J. Hakala, U. Heintz, J.M. Hogan,O. Jesus, K.H.M. Kwok,E. Laird,

G. Landsberg, Z. Mao,M. Narain, S. Piperov,S. Sagir, E. Spencer, R. Syarif

BrownUniversity,Providence,USA

R. Breedon,D. Burns, M. Calderon De La Barca Sanchez,S. Chauhan, M. Chertok, J. Conway,R. Conway,

P.T. Cox,R. Erbacher, C. Flores, G. Funk, M. Gardner,W. Ko, R. Lander, C. Mclean,M. Mulhearn, D. Pellett,

J. Pilot, S. Shalhout, M. Shi,J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi

Figure

Fig. 1. The v 2 and v 3 results from the SP method as a function of p T , in seven collision centrality ranges from 0–5% to 50–60%
Fig. 3. Correlation between the high-p T v 2 measured in the 14–20 (left), 20–26 (middle), and 26–35 GeV / c (right) p T ranges and the low-p T v 2 measured in the 1 &lt; p T &lt;

Références

Documents relatifs

116 National Research Nuclear University ’ Moscow Engineering Physics Institute ’ (MEPhI), Moscow, Russia.

115 National Research Nuclear University ’ Moscow Engineering Physics Institute ’ (MEPhI), Moscow, Russia.

105 National Research Nuclear University ’ Moscow Engineering Physics Institute ’ (MEPhI), Moscow, Russia.

113 National Research Nuclear University ‘ Moscow Engineering Physics Institute ’ (MEPhI), Moscow, Russia.

The results of this collaboration are not only computer software program, but theoretical studies in modern scientific visualization field trends as

The MIRAS grille spectrometer will establish during a one year flight a complete monitoring of the neutral atmospheric composition using infrared absorption

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.. Lebedev Physical Institute,

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.. Lebedev Physical Institute,