• Aucun résultat trouvé

Attenuating creep of piles in frozen soils

N/A
N/A
Protected

Academic year: 2021

Partager "Attenuating creep of piles in frozen soils"

Copied!
17
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Foundations in permafrost and seasonal frost: proceedings of a session, pp.

16-28, 1985

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=016170d4-9746-4541-90ae-aa7be59a8f5f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=016170d4-9746-4541-90ae-aa7be59a8f5f

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Attenuating creep of piles in frozen soils

(2)

/

Ser

I

-2 / L T rl v

THI

W23d

National Research

Conseil national

lo. 1289

b

Council Canada

de recherches Canada

c * 2

BLDG

ATTENUATING CREEP OF PILES I N FROZEN SOILS

by

V.R. Parameswaran

ANALYZEQ

Reprinted from

Proceedings of a Session, "Foundations

in Permafrost and Seasonal Frost", p. 16

-

28

ASCE Spring Convention

Denver, CO, April 29

-

May 2, 1985.

l

!

85-

, I & -

3

3

B

DBR Paper No. 1289

!

r

Division of Building Research

I

+

. - 3 # ~ ! -

t.

1

i

:

$tq:

&%-,-t- L

'W

-

2

I

r

4.-,,%

*-.a--

--

---

Price $1.25

OTTAWA

NRCC 24534

(3)

C e t t e communication a n a l y s e l e s r e s u l t a t s de p l u s i e u r s e s s a i s d e f l u a g e 2 l o n g t e r m e s u r d e s p i e u x dans l e s g e l i s o l s . L ' a u t e u r y c o n s t a t e que c ' e s t l e f l u a g e 2 v i t e s s e d e c r o i s s a n t e

qui prsdomine d a n s l a p l u p a r t d e s c a s . Pour une c o n c e p t i o n r a t i o n n e l l e d e s f o n d a t i o n s s u r p i e u x d a n s l e s zones de p e r g s l i s o l , c e t t e c a r a c t s r i s t i q u e d o i t t t r e p r i s e e n c o n s i d e ' r a t i o n .

(4)

Reprinted from Proceedings o f

a Session

Sponsored by TCRR Council,

spri spring

Convention,

Denver, CO, April

29,1985

ATTENUATING CREEP OF PILES I N FROZEN SOILS V.R. Parameswaran*

ABSTRACT

R e s u l t s of s e v e r a l long-term c r e e p t e s t s of p i l e s i n f r o z e n s o i l s a r e analyzed; t h e primary o r a t t e n u a t i n g c r e e p i s predominant i n most c a s e s . For e f f e c t i v e d e s i g n of p i l e f o u n d a t i o n s i n permafrost a r e a s , t h i s a s p e c t should be t a k e n i n t o c o n s i d e r a t i o n .

INTRODUCTION

P i l e f o u n d a t i o n s a r e used e x t e n s i v e l y i n p e r m a f r o s t a r e a s t o i s o l a t e b u i l d i n g s from t h e f r o z e n ground by p r o v i d i n g a n a i r s p a c e between t h e two, t h e r e b y p r e s e r v i n g t h e f r o z e n s t a t e of t h e ground. Timber p i l e s a r e most commonly used, s i n c e t h e y a r e u s u a l l y r e a d i l y a v a i l a b l e and a r e r e l a t i v e l y simple t o i n s t a l l compared t o o t h e r f o u n d a t i o n s . For s p e c i a l p u r p o s e s , s t e e l and c o n c r e t e p i l e s a r e a l s o used i n some i n s t a n c e s .

A p i l e f o u n d a t i o n b e a r s t h e superimposed l o a d s ( s t a t i c due t o t h e weight of t h e s t r u c t u r e , and dynamic due t o moving l o a d s and v i b r a t i n g machinery w i t h i n t h e s t r u c t u r e ) by two mechanisms: a d f r e e z e bond between t h e p i l e and f r o z e n s o i l , and end bearing. I n i c e - r i c h s o i l s , end b e a r i n g i s u s u a l l y n e g l e c t e d and d e s i g n of p i l e f o u n d a t i o n s i s based mainly on t h e s t a t i c a d f r e e z e s t r e n g t h . The e f f e c t of dynamic l o a d s i s a l s o n e g l e c t e d ; i t is probably compensated f o r by t h e f a c t o r of s a f e t y u s u a l l y i n c o r p o r a t e d i n t h e design.

The s o i l a d j a c e n t t o t h e p i l e i n f r o z e n ground i s s u b j e c t e d t o a c o n s t a n t mean s t r e s s and undergoes long-term c r e e p . Design of p i l e f o u n d a t i o n s i s based on an a l l o w a b l e s e t t l e m e n t f o r a s t r u c t u r e d u r i n g i t s l i f e , from which an a v e r a g e a l l o w a b l e s e t t l e m e n t r a t e c a n be c a l c u l a t e d . The o b j e c t i v e of any good d e s i g n i s t o a r r i v e a t a v a l u e of a l l o w a b l e s t r e s s t h a t can be borne by t h e p i l e f o u n d a t i o n , w i t h o u t exceeding t h e t o t a l a l l o w a b l e s e t t l e m e n t d u r i n g t h e l i f e span of t h e s t r u c t u r e . S e v e r a l methods have been used t o c a l c u l a t e s u c h an a l l o w a b l e d e s i g n s t r e s s .

Adfreeze s t r e n g t h from short-term t e s t s

A few quick t e s t s a r e c a r r i e d out i n t h e l a b o r a t o r y on p i l e s f r o z e n i n t o d i f f e r e n t s o i l s , by l o a d i n g them a t d i f f e r e n t r a t e s , and d e t e r m i n i n g t h e peak a d f r e e z e s t r e n g t h v a l u e s (15). By p l o t t i n g t h e peak a d f r e e z e s t r e n g t h v e r s u s t h e displacement r a t e and e x t r a p o l a t i n g *Research O f f i c e r , D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research

(5)

AITENUATING CREEP OF PILES 17

the curves back to the desired (alloyable) settlement rate for a structure, an allowable peak adfreeze strength is obtained. Previously this value was used together with a suitable factor of

safety (9.24). Black and Thomas (3) described prototype pile tests of

72 hours' duration in permafrost soils, and calculated an ultimate bearing strength as that stress at which the test pile attained a displacement of 0.5 mm (0.02 in) in the last third of the test period.

This corresponds to a displacement rate of 3.47 x mmfmin

(8.2 x 10-4 inlhr), which is much larger than the usual allowed

settlement rate of about 25.4 mm (1 in) during the life of a

structure. If the anticipated life of a structure is 25 years, the

allowable settlement rate will be about 2 x mmfmin

(4.72 x inlhr). [For calculations based on such allowable

settlements see (1,14,22)].

The danger in this method,of extrapolation of data from

short-term high-rate tests is that the allowable stress obtained by extrapolation to the desired settlement rate is always much higher than the stress that the pile foundation can withstand under long-term constant load creep conditions. Thus, the allowable stress is

overestimated by this technique and this could lead to premature failure. This was shown by comparing the results from long- and

short-term tests carried out in the laboratory

(17).

However, in

winter when the ground temperature of the active layer is much colder than that of the perennially frozen ground underneath, the piles have a much higher bearing capacity than the allowable design values. Long-term creep tests

A

logical alternative to the previous method is constant load

creep tests carried out in the laboratory or in the field for sufficiently long periods that a rate comparable to the desired settlement rate in the field is obtained. From a plot of stress versus steady-state creep rate, the allowable stress for a desired settlement rate is obtained.

This technique is normally used by designers, but the design is based entirely on the secondary or steady-state creep rate. The instantaneous creep or settlement and the primary stage, where the rate of settlement decreases with time, are neglected. These are assumed to be very small compared to the total creep in the

steady-state regime (11,13), based on the assumption that long-term pile behaviour under static load is analogous to the behaviour of

viscoelastic materials (10). However, the primary creep regime

continues for a considerable period of time, especially under low loads. This has also been observed in field situations (3,12,20,23). Failure time

In the method suggested by Vyalov (25), the difficulties of the two previous methods are somewhat eliminated by considering a "failure time" defined as the time required for the onset of tertiary or accelerating creep at the end of the steady-state regime. For frozen soils at a particular temperature this time (tf) is a function of stress ( 0 ) :

(6)

18 FOUNDATIONS

IN

PERMAFROST

w i t h B and 0 c h a r a c t e r i s t i c c o n s t a n t s f o r a m a t e r i a l . Thus, from a p l o t of ILn(tf) vs 110 f o r v a r i o u s t e m p e r a t u r e s , t h e s t r e s s

c o r r e s p o n d i n g t o a d e s i r e d l i f e s p a n can be o b t a i n e d ( s e e a l s o S a y l e s , 21). Vyalov's method t h u s t a k e s i n t o account t h e i n s t a n t a n e o u s d i s p l a c e m e n t , and t h e primary and secondary c r e e p regimes; hence, it could be t h e most s u i t a b l e model t o p r e d i c t t h e d e s i g n l i f e under a p a r t i c u l a r l o a d o r v i c e v e r s a . However, t h e e m p i r i c a l parameters B and 0 have t o be determined from many t e s t s

c a r r i e d o u t i n d i f f e r e n t s o i l s .

It would be convenient t o have an a n a l y t i c a l model t o p r e d i c t t h e t o t a l c r e e p behaviour of t h e s o i l a t t h e p i l e l s o i l i n t e r f a c e .

However, simple c r e e p laws a s a p p l i e d t o pure m a t e r i a l s such a s m e t a l s o r i c e cannot be a p p l i e d t o f r o z e n s o i l f o r t h e f o l l o w i n g reasons: ( a ) t h e nonhomogeneous n a t u r e of f r o z e n s o i l and t h e nonuniform d i s t r i b u t i o n of i c e l e n s e s i n t h e m a t e r i a l , and ( b ) v a r i o u s p r o c e s s e s such a s v i s c o e l a s t i c behaviour of i c e , d i s l o c a t i o n p l a s t i c i t y w i t h i n each i c e g r a i n , g r a i n boundary v i s c o u s flow o r r i g i d body r o t a t i o n of g r a i n s , d i f f u s i o n through t h e unfrozen w a t e r i n t h e s o i l , and

i n t e r g r a n u l a r s o i l f r i c t i o n . [For a g e n e r a l review of t h e physico-mechanical p r o c e s s e s o c c u r r i n g i n f r o z e n s o i l s , s e e ( 2 ) l . LABORATORY STUDIES ON THE BEHAVIOUR OF PILES I N FROZEN SOILS

The e x p e r i m e n t a l a p p a r a t u s and procedure used t o measure t h e d i s p l a c e m e n t of p i l e s i n f r o z e n s o i l s i n t h e l a b o r a t o r y under s t a t i c and dynamic l o a d s a r e g i v e n by Parameswaran (16,181.

T y p i c a l c r e e p c u r v e s show t h e displacement of v a r i o u s p i l e s i n d i f f e r e n t f r o z e n s o i l s ( f i g u r e s l ( a ) t o 3 ( a ) ) . I n a l l t h e s e f i g u r e s , t h e primary o r d e c e l e r a t i n g c r e e p regime e x t e n d s over more t h a n h a l f t h e p e r i o d r e q u i r e d f o r t h e o n s e t of t e r t i a r y c r e e p o r f a i l u r e . I n some c a s e s , t h e p i l e s were e n t i r e l y i n t h e primary c r e e p regime w i t h o u t e v e r a t t a i n i n g a s t e a d y - s t a t e regime.

F i g u r e s l ( b ) t o 3(b) show t h e v a r i a t i o n of displacement r a t e s w i t h time, c o r r e s p o n d i n g t o t h e c r e e p c u r v e s i n f i g u r e s l ( a ) t o 3(a). Again, primary c r e e p is dominant f o r v e r y long t i m e s , a s i n d i c a t e d by t h e c o n t i n u o u s d e c r e a s e i n c r e e p r a t e s d u r i n g t h e t e s t period. The a b r u p t peaks s e e n i n some of t h e s e c u r v e s correspond t o an i n c r e a s e i n t h e s t a t i c l o a d on t h e p i l e , hence, a n i n c r e a s e i n t h e s t r e s s a t t h e p i l e l s o i l i n t e r f a c e . These a r e a l s o i n d i c a t e d on t h e c r e e p c u r v e s .

For v a r i o u s p i l e s t e s t e d i n t h e l a b o r a t o r y , t h e t o t a l

d i s p l a c e m e n t ( i n c l u d i n g i n s t a n t a n e o u s ) i n t h e primary c r e e p r e g i o n was much l a r g e r t h a n t h a t i n t h e secondary c r e e p r e g i o n , e s p e c i a l l y f o r wood p i l e s . S i m i l a r behaviour of t h e dominant primary c r e e p regime f o r p i l e s i n f r o z e n s o i l s was observed by p r e v i o u s workers, from p i l e l o a d t e s t s c a r r i e d o u t i n t h e f i e l d (3,12,20,23). /'

(7)

ATTENUATING CREEP OF PILES 19 25.

,

,

I I I - - 3 I I I 111 C 0 CI 1 I I / , 1 I ' 9 '

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 I000 I200 I400

TIME h TIME. h

F i g u r e I ( a ) Creep curve showing displacement w i t h time f o r a n uncoated B.C. f i r p i l e i n f r o z e n sand ( a v e r a g e g r a i n s i z e : 0.2-0.6 mm (0.008-0.02 i n ) ; m o i s t u r e c o n t e n t : 14% by weight of d r y sand; T = -Z°C (28.4OF). S t r e s s ( T ) a t p i l e / s o i l i n t e r f a c e was 0.238 MPa (34.52 p s i ) , e x c e p t i n r e g i o n A t o B of t h e c u r v e , where T was 0.27 MPa

(39.16 p s i ) . At C and D, t e m p e r a t u r e f l u c t u a t i o n s o c c u r r e d i n t h e c o l d room. ( b ) V a r i a t i o n of d i s p l a c e m e n t r a t e w i t h t i m e f o r c r e e p c u r v e i n F i g u r e 1 ( a ) . 0.12 I , \ ,

:

0 I I I I I 1 , - 4 = +

z

2

- 6 - m - m 0 S

;.5L

-

,

,

,

I 1 I 0 100 200 300 400 500 600 700 800 - 7 - ' 1 1 r 1 1 ~ ~ 0 100 200 300 400 500 600 700 800 900 TIME. h IIME, h F i g u r e 2 ( a ) Creep curve f o r c r e o s o t e d B.C. f i r p i l e i n s i l t y s o i l from Northwest T e r r i t o r i e s ( m o i s t u r e c o n t e n t : 20%; T = -2.5OC (27.5"F); T = 0.1903 MPa (27.60 p s i ) ; t e m p e r a t u r e f l u c t u a t i o n s a t A and B). ( b ) V a r i a t i o n of d i s p l a c e m e n t r a t e w i t h t i m e f o r c r e e p c u r v e i n f i g u r e 2 ( a ) . D i s c u s s i o n Analogous t o t h e t o t a l c r e e p s t r a i n of a m a t e r i a l , t h e t o t a l d i s p l a c e m e n t (A%) of a loaded p i l e i n f r o z e n s o i l c a n be r e p r e s e n t e d by a n e q u a t i o n :

(8)

20 FOUNDATIONS IN PERMAFROST

where t h e f o u r terms on t h e r i g h t s i d e r e p r e s e n t t h e i n s t a n t a n e o u s d i s p l a c e m e n t , and t h e d i s p l a c e m e n t s i n t h e primary, secondary and t e r t i a r y c r e e p r e g i o n s , r e s p e c t i v e l y . I n t h i s d i s c u s s i o n o n l y t h e primary o r a t t e n u a t i n g c r e e p behaviour of p i l e s i n f r o z e n s o i l s w i l l be c o n s i d e r e d .

S e v e r a l e q u a t i o n s r e l a t i n g t h e s t r a i n ( E ) and time ( t ) have been used t o d e s c r i b e t h e primary c r e e p behaviour of v i s c o e l a s t i c m a t e r i a l s such a s m e t a l s , r o c k s , c o n c r e t e , and ceramics ( s e e Pomeroy, 15, f o r a review). Some of t h e s e e q u a t i o n s a r e g i v e n below:

Power law: E = Atn ( 3 )

Logarithmic law: E = B1 + B2 L n ( t ) ( 4 )

Hyperbolic law:

E = L

a t

+

b

Exponential law: E = C [ I

-

exp. ( - ~ t ) ]

I n t h e s e e q u a t i o n s t h e c o n s t a n t s A, n , B1, B2, a , b, C and D a r e c h a r a c t e r i s t i c of t h e m a t e r i a l .

The d a t a from t h e p r e s e n t p i l e c r e e p t e s t s i n f r o z e n s o i l s were f i t t e d t o e q u a t i o n s ( 3 ) t o (61, w i t h t h e s t r a i n ( E ) r e p l a c e d by t h e p i l e displacement (AL), u s i n g a s t a n d a r d programme a v a i l a b l e w i t h a desk t o p computer. B e s i d e s t h e s e f o u r e q u a t i o n s , a polynomial of t h e type:

was a l s o f i t t e d t o t h e d a t a .

Once a curve f i t was s e l e c t e d , t h e r e g r e s s i o n v a l u e s were c a l c u l a t e d . The q u a l i t y of f i t achieved by r e g r e s s i o n was g i v e n by t h e v a l u e of t h e ' c o e f f i c i e n t of d e t e r m i n a t i o n ' r 2 , given by: where r i s t h e sample c o r r e l a t i o n c o e f f i c i e n t ( f o r d e t a i l s s e e Crow e t a l . , 6 ) . T h e o r e t i c a l l y , t h e c l o s e r t h e v a l u e of r 2 i s t o 1, t h e b e t t e r t h e f i t . Valuea of r2 ( t h e c o e f f i c i e n t of d e t e r m i n a t i o n ) o b t a i n e d by f i t t i n g t h e d a t a from s e v e r a l t e s t s t o t h e f i v e e q u a t i o n s

( 3

t o 7)

showed t h a t , a l t h o u g h t h e polynomial e q u a t i o n gave t h e h i g h e s t value

of r2 f o r most of t h e t e s t s , t h e r e was a tendency f o r t h e polynomial curve t o o s c i l l a t e a b o u t t h e a c t u a l c r e e p curve; hence, it was not

conmidered a good f i t . For most of t h e t e s t s , t h e power law ( e q u a t i o n 3 ) f i t q u i t e w e l l and f o r s o w t e s t s t h e h y p e r b o l i c l a w

(9)

ATTENUATING CREEP OF PILES 21

TIME, h

- 7

100 200 300 400

TIME, h

F i g u r e 3 ( a ) Creep c u r v e f o r uncoated B.C. f i r p i l e i n c l a y from Thompson, Manitoba ( m o i s t u r e c o n t e n t : 50% by weight of d r y s o i l ; T = -2.5'C (27.5OF); T = 0.0474 MPa (6.87 p s i ) . A t A t h e d i s p l a c e m e n t r a t e i n c r e a s e d due t o superimposed dynamic l o a d s . ) ( b ) V a r i a t i o n of d i s p l a c e m e n t r a t e w i t h t i m e f o r c r e e p c u r v e i n f i g u r e 3 ( a ) . 0 . 0 7 O.Ob E 0 . 0 5

--

5 0.04 E

-

0.03 2

:

0.02 - a 0 . 0 1

-

D A T A I 1 100 200 300 400 TIME. h F i g u r e 3 ( c ) Curve f i t t i n g of t h e d a t a of f i g u r e 3 ( a ) u s i n g e q u a t i o n s ( 3 ) t o ( 7 ) . Thick l i n e shows a c t u a l d a t a . o b s e r v a t i o n s r e a s o n a b l y w e l l , t h e maximum d e v i a t i o n s b e i n g l e s s t h a n 25%. The v a l u e s of v a r i o u s c o n s t a n t s u s e d i n e q u a t i o n s ( 3 ) t o ( 6 ) o b t a i n e d from t h e t e s t d a t a a r e g i v e n i n T a b l e I. F i g u r e 3 ( c ) shows t h e r e s u l t of t h e c r e e p t e s t p r e s e n t e d i n f i g u r e 3 ( a ) , and t h e b e s t f i t o f t h e primary c r e e p e q u a t i o n s ( 3 t o 7).

F i g u r e s 4 and 5 ( a ) show two t y p i c a l long-term c r e e p t e s t s w i t h l o a d i n c r e m e n t s a t i n t e r v a l s , and f i g u r e 5 ( b ) shows t h e d i s p l a c e m e n t r a t e s a s a f u n c t i o n of time c o r r e s p o n d i n g t o 5 ( a ) . The p i l e s a r e under primary o r a t t e n u a t i n g c r e e p regime throughout t h e d u r a t i o n of t h e t e s t s . The s p i k e s (A', B ' , C') i n 5 ( b ) c o r r e s p o n d t o t h e l o a d

(10)

TABLE I. Values of r 2 and t h e c o n s t a n t s i n e q u a t i o n s ( 3 ) t o ( 6 ) f o r v a r i o u s t e s t s r~ N Mean Value s t r e s s o f r 2 a t p i l e / f o r t h e s o i l power V a l u e s of t h e c o n s t a n t s i n e q u a t i o n s ( 3 ) t o ( 6 ) T e s t i n t e r f a c e law

P i l e and s o i l t y p e No. MPa ( p s i ) (Eq. 3 ) A n B1 B2 a h C D Uncoated BC f i r i n f r o z e n s a n d ( S e e f i g . l a ) S t e e l H - s e c t i o n i n f r o z e n s a n d (-6OC) (21.2"F) C r e o s o t e d BC f i r i n s i l t y s o i l (See f i g . 2 a ) Uncoated BC f i r i n s a n d C o n c r e t e i n nand C o n c r e t e i n s a n d Uncoated s t e e l p i p e

i n

s a n d (-6'C) (21.2"F) Uncoated BC f i r i n Thompson c l a y (See f i g . 3 a ) Dense t r o p i c a l wood i n Thompson c l a y (-2.5'C) (27.5"F)

(11)

ATTENUATING CREEP OF PILES 23

TIME. h

F i g u r e 4 R e s u l t of long-term c r e e p t e s t of uncoated B.C. f i r p i l e i n f r o z e n sand a t -2.5OC (27..5"F), w i t h l o a d i n c r e m e n t s a t p o i n t s shown by arrows. S t r e s s e s i n d i f f e r e n t r e g i o n s shown i n T a b l e 11.

increments. E q u a t i o n s (3) t o ( 7 ) were a g a i n f i t t e d t o t h e data along

t h e segments o f t h e c r e e p c u r v e s f o r d i f f e r e n t l o a d s , by e h i f t i n g t h e c o o r d i n a t e a x e s t o t h e p o i n t of t h e l o a d increments. The power law

e q u a t i o n gave the b e a t values of r2. (The polynomial was a g a i n excluded because of o s c i l l a t i o n s about t h e measured creep.) The v a l u e s of the exponent (n) a s w e l l a s t h e s t r e s s corresponding t o e a c h segment of the c r e e p c u r v e s i n f i g u r e s 4 and 5(a) are g i v e n i n

Table 11.

Since t h e power law ( e q u a t i o n 3) f i t t h e primacy creep r e g i o n

well, t h e values of t h e exponent ( a ) o b t a t n e d f o r various t e s t s were

plotted a g a i n s t s t r e s s ( f i m r e 61, t o determine any a t r e s e dependence of this parameter. The ~ c a t t e r in t h e d a t a i e large, e s p e c i a l l y i n

the Lou s t r e s s r e g i o n , and t h e exponent ( n ) does n o t seem t o depend on t h e s h e a r s t r e s s ( T ) a t t h e p i l e / s o i l i n t e r f a c e . An a v e r a g e v a l u e of n wae about 0.46, w i t h a s t a n d a r d d e v i a t i o n of T0.125.

fn the c l a s s i c a l power law c r e e p e q u a t i o n proposed by Andrade, and a p p l i e d t o c r e e p of m e t a l s , r o c k s , e t c . (191, t h e valr-e of the

exponent ( n ) i s 0.33. F o r i c e a l s o , Glen (7) found a v a l u e o f

n = 0.33 t o f i t h i s c r e e p d a t a . S e v e r a l o t h e r workera ( 4 , 5 , 8 ) found, however. t h a t a v a l u e of n

*

0.5 gave a b e t t e r f i t t o t h e prfmary c r e e p f o r g r a n u l a r i c e , columnar g r a i n e d

ice

and f o r s i n g l e c r y s t a l 8 of i c e o r i e n t e d f o r n o n b a s a l g l i d e . The v a l u e of 0.46 observed from

the p r e s e n t c r e e p d a t a on f r o z e n s o i l s is c l o s e t o t h i s l a t t e r v a l u e , which i n d i c a t e s that: the c r e e p of i c e r i c h f r o z e n s o i l a t t e m p e r a t u r e s c l o s e t o t h e m e l t i n g p o i n t of i c e i s governed e s s e n t i a l l y by t h e c r e e p of ice.

The s c a t t e r of t h e r e s u l t s shown i n f i g u r e 6 and t h e wide v a r i a b i l i t y of t h e v a l u e s of o t h e r c o n s t a n t s shown i n T a b l e s 1 and 11

(12)

24 FOUNDATIONS IN PERMAFROST

TABLE 11. Values of s t r e s s and t h e power law exponent ( n ) f o r v a r i o u s segments of c r e e p c u r v e s i n f i g u r e s 4 and 5 ( a ) Segment of c u r v e 4(A) 4(B) 4(C) 4(D) 4(E) 4 ( F ) S t r e s s (T) a t p i l e l s o i l i n t e r f a c e 0.523 0.604 0.644 0.682 0.722 0.762 MPa ( p s i ) (75.86) (87.60) (93.41) (98.92) (104.72) (110.52) Segment of c u r v e S t r e s s (T) a t p i l e / s o i l i n t e r f a c e 0.802 0.121 0.152 U.181 0.243 MPa ( p s i ) (116.32) (17.55) (22.05) (26.25) (35.24)

(13)

A'ITENUATING CREEP OF PILES

TIME. h

Figure 5(a)

Long-term creep curve for uncoated B.C. fir pile in

Thompson clay at -2.5OC (27.5OF).

Arrows indicate load

increments. Stresses in regions

A to D shown in

Table

11.

. b l I I 1 l l l I I I I 0 ZOO 400 600 800 1000 1200 1400 1600 LBO0 2000

TIME, h

Figure 5(b)

Variation of displacement rate with time for creep curve

in figure 5(a).

point out the variability of parameters in nonhomogeneous frozen

soils. It appears that a general creep equation cannot be obtained

that will predict with accuracy the behaviour of pile foundations in

frozen soils. Each test gives its own characteristic values; thus

large safety factors become imperative in designing foundations in

frozen ground. In spite of the scatter and variability in the values

of the creep parameters, the results presented here show that primary

or attenuating creep is the dominant regime to be considered in the

design of pile foundations in frozen ground for the long-term support

of structures.

(14)

26 FOUNDATIONS IN PERMAFROST

F i g u r e 6 V a r i a t i o n of power law exponent (n) w i t h s t r e s s .

(0.

0 , 0 ) d a t a from t h r e e d i f f e r e n t t e s t s w i t h s t e p l o a d i n g

( e )

i n d i v i d u a l c o n s t a n t l o a d c r e e p t e s t s Conclusions Long-term c r e e p t e s t s c a r r i e d o u t i n t h e l a b o r a t o r y u s i n g d i f f e r e n t p i l e s embedded i n v a r i o u s f r o z e n s o i l s showed t h a t , f o r s t r e s s e s i n t h e range 0-1 MPa a t t h e p i l e f s o i l i n t e r f a c e , t h e dominant regime i a primary o r a t t e n u a t i n g c r e e p , where t h e d i s p l a c e m e n t r a t e d e c r e a s e s c o n t i n u o u s l y w i t h time. D i f f e r e n t primary c r e e p e q u a t i o n s proposed t o d e s c r i b e t h e a t t e n u a t i n g c r e e p of v i s c o e l a s t i c m a t e r i a l s , such a s power law, l o g a r i t h m i c , h y p e r b o l i c , e x p o n e n t i a l , and

polynomial e q u a t i o n s , were f i t t e d t o t h e d a t a from t h e p r e s e n t p i l e c r e e p t e s t e . Although no unique parameters could be d e r i v e d by c u r v e f i t t i n g , t h e power law e q u a t i o n c l o s e l y f i t most of t h e o b s e r v a t i o n s . The average v a l u e of t h e power law exponent ( n ) o b t a i n e d was 0.46.

For proper d e s i g n of p i l e f o u n d a t i o n s i n permafrost a r e a s , t h e primary c r e e p regime h a s t o be c o n s i d e r e d i n d e t a i l , and n o t t h e s t e a d y - s t a t e regime only.

Acknowledgements

The a u t h o r wishes t o e x p r e s s h i s s i n c e r e thanks t o C o l i n Hubbs f o r c o n d u c t i n g t h e e x p e r i m e n t s , and t o Douglas B r i g h t f o r computation and p l o t t i n g . T h i s paper is a c o n t r i b u t i o n from t h e D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research Council of Canada, and i s

p u b l i s h e d with t h e a p p r o v a l of t h e D i r e c t o r of t h e D i v i s i o n . References

1. Andersland, O.B. and Alwahhab, M.R.M., "Load c a p a c i t y of model p i l e s i n f r o z e n ground", Proceedings T h i r d I n t e r n a t i o n a l

S p e c i a l t y Conference Cold Regions Engineering, "Northern Resource Development", Vol. I , 1984, pp. 29-39

(15)

ATTENUATING CREEP OF PILES 27

Anderson, D.M. and Morgenstern, N.R., "Physics, chemistry and mechanics of frozen ground: A review", Permafrost, Proceedings of the Second International Conference, National Academy of Science, Washington, D.C., 1973, pp. 257-258.

Black, W.T. and Thomas, H.P., "Prototype pile tests in permafrost soils," Pipelines in Adverse Environments, Proceedings of the ASCE Pipeline Division Specialty Conference, New Orleans, Louisiana, Vol. 1, 1978, pp. 372-383.

Butkovich, T.R. and Landauer, J.K., "The flow law for ice," International Association of Scientific Hydrology of the International Union of Geodesy and Geophysics, Publication No. 47, 1958. pp. 318-327.

Butkovich, T.R. and Landauer, J.K., "The flow law for ice," Snow, Ice and Permafrost Research Establishment Report No. 56, 1959, 7 p. '

Crow, E.L., Davis, F.A. and Maxfield, M.W., Statistics Manual. Dover Publications Inc.. New York. 1960.

Glen, J.W., "The creep of polycrystalline ice," Proceedings of the Royal Society, Ser. A., Vol. 228, No. 1175, 1955,

pp. 519-538.

Gold, L.W., "The initial creep of columnar-grained ice. Part I: Observed behaviour, and Part 11: Analysis," Canadian Journal of Physics, Vol. 43, 1965, pp. 1414-1434.

Handbook for the Design of Bases and Foundations of Buildings and other Structures on Permafrost, (Editors: Vyalov, S.S. and Porkhaev, G.V.) National Research Council of Canada, Technical Translation 1865, 1976.

Hult. J.A.H., Creep in Engineering Structures, Blaisdell Publishing Co., Waltham, Mass., 1966.

Ladanyi. B.. "An engineering theory of creeD in frozen soils." . . ~anadian ~eotechnical Journal, ~ol: 9, 1972; pp. 63-80.

Melnikov, P.I., Vyalov, S.S., Snezhko. O.V., and

Shishkanov, G.F., "Pile foundations in permafrost," Permafrost, Proceedings of the First International Conference, Lafayette, Indiana, 1963, pp. 542-547.

Nixon, J.F. and McRoberts, E.C., "A design approach for pile foundations in permafrost," Canadian Geotechnical Journal, Vol. 14, 1976, pp. 40-57.

Nottingham, D. and Christopherson, A.P., "Design criteria for driven piles in permafrost", Report prepared by Peratrovich, Nottingham and Drage Inc. for State of Alaska Department of Transportation and Public Facilities, January 1983, 33 p.

Parameswaran, V.R., "Adfreeze strength of frozen sand to model piles," Canadian Geotechnical Journal, Vol. 15, 1978,

pp. 494-500.

Parameswaran, V.R., "Creep of model piles in frozen soils," Canadian Geotechnical Journal, Vol. 16, 1979, pp. 69-77.

Parameswaran, V.R., "Adfreeze strength and creep of frozen soils measured by model pile tests," Proceedings, Second International

Symposium on Ground Freezing, Trondheim, Norway, 1980,

(16)

FOUNDATIONS IN PERMAFROST

Parameswaran, V.R., "Displacement of p i l e s under dynamic l o a d s i n f r o z e n s o i l s , " The Roger J.E. Brown Memorial Volume, P r o c e e d i n g s , F o u r t h Canadian Permafrost Conference, Calgary, A l b e r t a , 1982, pp. 555-559.

Pomeroy, C.D. (Ed.), Creep of E n g i n e e t i n u M a t e r i a l s , Mechanical Engineering P u b l i c a t i o n s Ltd., London, 1978.

Rowley, R.K., Watson G.H., and Ladanyi, B., " V e r t i c a l and l a t e r a l p i l e l o a d t e s t s i n p e r m a f r o s t , " P e r m a f r o s t , Proceedings of t h e Second I n t e r n a t i o n a l Conference, N a t i o n a l Academy of S c i e n c e s , Washington. D.C., 1973, pp. 712-721.

S a y l e s , F.H., "Creep of f r o z e n sands," U.S. Army CRREL T e c h n i c a l Report 190, 1968, 56 p.

S a y l e s , F.H., "Design of f o o t i n g s i n permafrost", U.S. Army CRREL T e c h n i c a l Note, March 1974, 21 p.

Sivanbayev,

A.V.,

S h i l i n , N.A., Nikhotin, N.I., and Neklyudov, V.S., " R e s u l t s of f i e l d t e s t s of p i l e s i n permanently f r o z e n ground, " S o i l Mechanics and ~ o u n d a t i o n ~ n ~ i n e e r i n ~ , ~ o l . 14, No. 5, 1978. 0 0 . 345-347.

~ s ~ t o v i c h , N.A; and Sumgin, M.I., " P r i n c i p l e s of mechanics of f r o z e n ground", U.S. Army Snow, I c e and Permafrost Research E s t a b l i s h m e n t ( p r e s e n t l y CRREL)

,

T r a n s l a t i o n 19, A p r i l 1959,

288 p.

Vyalov, S.S., "Rheological p r o p e r t i e s and b e a r i n g c a p a c i t y of f r o z e n s o i l s , " Academy of S c i e n c e s , U.S.S.R., U.S. Army CRREL T r a n s l a t i o n 74. 1965.

(17)

This paper, while being distributed in reprint form by the Division of Building Research, remains the copyright of the

original publisher. It should not be

reproduced in whole or in part without the permission of the publisher.

A list of all publications available from the Division may be obtained by writing to the Publications Section, Division of Building Research, National Research Council of Canada. Ottawa, Ontario,

K1A OR6.

Ce document est distribuC sous forme de t irQ-a-part par la Division des recherches

en batiment. Les droits de reproduction

sont toutefois la propri6td de 1'Cditeur

original. Ce document ne peut etre

reproduit en totalitd ou en partie sans le consentement de 1'Qditeur.

Une liste des publications de la Division peut Stre obtenue en 6crivant

a

la Section des publications, Division des recherches en batiment. Conseil national de recherches Canada. Ottawa, Ontario, KIA OR6.

Figure

TABLE  I.  Values  of  r 2   and  t h e   c o n s t a n t s   i n  e q u a t i o n s   ( 3 )   t o   ( 6 )   f o r   v a r i o u s   t e s t s   r~  N  Mean  Value  s t r e s s   o f   r 2   a t   p i l e /   f o r   t h e   s o i l   power  V a l u e s
TABLE  11.  Values  of  s t r e s s   and  t h e   power  law  exponent  ( n )   f o r   v a r i o u s   segments  of  c r e e p   c u r v e s   i n   f i g u r e s   4  and  5 ( a )   Segment  of  c u r v e   4(A)  4(B)  4(C)  4(D)  4(E)  4 ( F )   S t r

Références

Documents relatifs

In Section III we show that the naive distributed version of ellipsoid-type algorithms leads to protocols with O(n 2 log(1/e)(logn + log(l/E)) communication requirements and

New constraints on the timing, evolution and characteristics of the poorly documented volcanic activity of the Dilo and Mega volcanic fields (VF), near the Kenya-Ethiopia border

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For

uniform vertical pressure, (I, of infinite areal extent that causes consolidation of the underlying clay. If the pile is floating, the consolidating clay imposes

If we consider that nearby sfr s are good representatives of the current metallicity in the solar circle, the small scatter and slightly lower than solar abundances observed

Figure 5.7 Effect of temperature on the effective stress-strain curve and excess pore water pressure at strain rate of 0.01%/min for lightly and heavily over-consolidated clay

chemical potential A p may be brought about by applying an external stress (as in diffusional creep, grain boundary sliding, or creep cavity growth), by capillary

As reported we studied the acylation of compound 71 as model compound containing the same array of a pyrrole and an adjacent pyrrolidine ring as in our