• Aucun résultat trouvé

Computational Methods for Systems and Synthetic Biology

N/A
N/A
Protected

Academic year: 2022

Partager "Computational Methods for Systems and Synthetic Biology"

Copied!
18
0
0

Texte intégral

(1)

20/01/2017 François Fages C2-19 MPRI 1

Computational Methods for Systems and Synthetic Biology

François Fages

Inria Saclay – Ile de France

Lifeware project-team

http://lifeware.inria.fr/

(2)

Chemical Master Equation (CME)

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt p(t) = ~ p(t)Q(~ ~ x(t))

x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C !

c3

E + P R

j

(0, t) = Y

j

✓Z

t

0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) d

dt E [X (t)] = X

j

v

j

E [↵

j

(X (t))]

d

dt E [X (t)] ⇡ X

j

v

j

j

(E [X (t)]) p

i

(x, t) =

@

@ t p(x, t) + @

@ x p(x, t)R(x) = p(x, t)Q(x)

probability of being in state x at time t

Differential equation as the probability of entering in state x minus the probability of leaving state x

x is the vector of molecule numbers is propensity of jth reaction is change vector of jth reaction

The movie shows the distributions of the enzyme and the product In one enzymatic reaction

over time

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = ~ p(t)Q(~ x(t))

x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) d

dt E [X (t)] = X

j

v

j

E [↵

j

(X (t))]

d

dt E [X (t)] ⇡ X

j

v

j

j

(E [X (t)]) p

i

(x, t) =

@

@ t p(x, t) + @

@ x p(x, t)R(x) = p(x, t)Q(x)

d

dt p (t) (x) = X

j :x v

j

0

j (x v j ) · p (t) (x ~ v j ) X

j

j (x) · p (t) (x) p (t) (x) = P ( X ~ (t) = ~ x)

k · [S 1 ](t) · [S 2 ](t) R(t) = k · Y

i

([S i ](t)) l

i

d

dt [S i ](t) = X

j

(m j l j ) · R j (t) d

dt x i (t) = X

j :R

j

kont.

v ij r ij (~ x(t)) + X

k 6 =i

x k (t) p k (t)q ki (~ x(t)) p i (t)

d

dt ~ p(t) = p(t)Q(~ ~ x(t))

x i (t) := E [X (t) | M (t) = i]

X i (t + h) = X i (t) + X

j

R j (t, t + h)

| {z } · v ij

|{z}

E + S ) c *

1

c

2

C ! c

3

E + P R j (0, t) = Y j

✓Z t 0

j (X (s))

X 3 (t + h) = X 3 (t) + R 1 (t, t + h) · (+1) +R 2 (t, t + h) · ( 1)

d

dt p(x, t) = X

j

j (x v j )p(x v j , t) ↵ j (x)p(x, t) d

dt E [X (t)] = X

j

v j E [↵ j (X (t))]

d

dt E [X (t)] ⇡ X

j

v jj (E [X (t)]) p i (x, t) =

@

@ t p(x, t) + @

@x p(x, t)R(x) = p(x, t)Q(x)

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = ~ p(t)Q(~ x(t)) x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) d

dt E [X (t)] = X

j

v

j

E [↵

j

(X (t))]

d

dt E [X (t)] ⇡ X

j

v

j

j

(E [X (t)]) p

i

(x, t) =

@

@ t p(x, t) + @

@x p(x, t)R(x) = p(x, t)Q(x)

(3)

Moment Equation for the Mean

Consider the time evolution of the mean:

by posing x’=x+vj

involves higher moments if jth reaction is at least bimolecular,

e.g.

j

(X ) = c

j

· X

1

· X

2

d

dt E [X (t)] = d dt

X

x

x · p

(t)

(x) = X

x

x · d

dt p

(t)

(x) d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = ~ p(t)Q(~ x(t)) x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) d

dt E [X (t)] = X

j

v

j

E [↵

j

(X (t))]

next: replace by a Taylor series about the mean

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = p(t)Q(~ ~ x(t))

x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) d

dt E [X (t)] = X

j

v

j

E[↵

j

(X (t))]

d

dt E [X (t)] ⇡ X

j

v

j

j

(E [X (t)]) p

i

(x, t) =

@

@ t p(x, t) + @

@ x p(x, t)R(x) = p(x, t)Q(x)

j

(X ) = c

j

· X

1

· X

2

d

dt µ(t) = d

dt E [X (t)] = d dt

X

x

x · p

(t)

(x) = X

x

x · d

dt p

(t)

(x) d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = ~ p(t)Q(~ x(t))

x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) d

dt µ(t) = X

j

v

j

E [↵

j

(X (t))]

j (X ) = c j · X 1 · X 2 d

dt µ(t) = d

dt E [X (t)] = d dt

X

x

x · p (t) (x) = X

x

x · d

dt p (t) (x) d

dt p (t) (x) = X

j :x v

j

0

j (x v j ) · p (t) (x ~ v j ) X

j

j (x) · p (t) (x) p (t) (x) = P ( X ~ (t) = ~ x)

k · [S 1 ](t) · [S 2 ](t) R(t) = k · Y

i

([S i ](t)) l

i

d

dt [S i ](t) = X

j

(m j l j ) · R j (t) d

dt x i (t) = X

j :R

j

kont.

v ij r ij (~ x(t)) + X

k 6 =i

x k (t) p k (t)q ki (~ x(t)) p i (t)

d

dt ~ p(t) = p(t)Q(~ ~ x(t))

x i (t) := E [X (t) | M (t) = i]

X i (t + h) = X i (t) + X

j

R j (t, t + h)

| {z } · v ij

|{z}

E + S ) c *

1

c

2

C c !

3

E + P R j (0, t) = Y j

✓Z t 0

j (X (s))

X 3 (t + h) = X 3 (t) + R 1 (t, t + h) · (+1) +R 2 (t, t + h) · ( 1)

d

dt p(x, t) = X

j

j (x v j )p(x v j , t) ↵ j (x)p(x, t) d

dt µ(t) = X

j

v j E [↵ j (X (t))]

After Verena Wolf, U. Saarbrucken

(4)

Moment Closures for the Mean

time evolution of the mean:

Taylor series (one-dimensional case) about the mean:

and thus

E [↵

j

(X )] = ↵

j

(µ) + E [(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt µ(t) = d

dt E [X (t)] = d dt

X

x

x · p

(t)

(x) = X

x

x · d

dt p

(t)

(x) d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = ~ p(t)Q(~ x(t)) x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) E [↵

j

(X )] = ↵

j

(µ) + E [(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@x

2

j

(µ) + . . . d

dt µ(t) = d

dt E [X (t)] = d dt

X

x

x · p

(t)

(x) = X

x

x · d

dt p

(t)

(x) d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = ~ p(t)Q(~ x(t)) x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C !

c3

E + P R

j

(0, t) = Y

j

✓Z

t

0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t)

d

dt µ = X

j

v

j

E [↵

j

(X )]

E [↵

j

(X )] = ↵

j

(µ) + E [(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt µ(t) = d

dt E [X (t)] = d dt

X

x

x · p

(t)

(x) = X

x

x · d

dt p

(t)

(x) d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = ~ p(t)Q(~ x(t))

x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

=0 in general: (co-)variances appear here and give more detailed description of the time evolution of the mean

if law of mass action and at most bimolecular reactions, terms of order >2 are zero

order 1 approx

After Verena Wolf, U. Saarbrucken

(5)

Michaelis-Menten Example

Example:

d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = ~ p(t)Q(~ x(t))

x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) d

dt µ(t) = X

j

v

j

E [↵

j

(X (t))]

d

dt µ(t) ⇡ X

j

v

j

j

(E [X (t)]) p

i

(x, t) =

@

@ t p(x, t) + @

@ x p(x, t)R(x) = p(x, t)Q(x) X = (X

E

, X

S

, X

C

, X

P

)

1

(X ) = c

1

X

E

X

S

2

(X ) = c

2

X

C

3

(X ) = c

3

X

C

E [↵

j

(X )] ⇡ ↵

j

(µ)

f (x) = ↵

j

(x) · x f (x) = f (µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . E [f (X )] = f (µ) + E [(X µ)]

1! · @

@ x f (µ) + E [(X µ)

2

]

2! · @

2

@ x

2

f (µ) + . . . d

dt µ(t) = X

j

v

j

j

(µ(t))

2µ d dt µ d

dt E [X

2

] = X

j

2v

j

E [↵

j

(X ) · X ] + v

j2

E [↵

j

(X )]

d

dt µ = X

j

v

j

E [↵

j

(X )]

E [↵

j

(X )] = ↵

j

(µ) + E [(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt

2

= d

dt (E [X

2

] µ

2

) = d

dt E [X

2

] d dt µ

2

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) X = (X

E

, X

S

, X

C

, X

P

)

1

(X ) = c

1

X

E

X

S

2

(X ) = c

2

X

C

3

(X ) = c

3

X

C

E [↵

j

(X )] ⇡ ↵

j

(µ)

f (x) = ↵

j

(x) · x f (x) = f (µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . E [f (X )] = f (µ) + E[(X µ)]

1! · @

@ x f (µ) + E [(X µ)

2

]

2! · @

2

@ x

2

f (µ) + . . . d

dt µ(t) = X

j

v

j

j

(µ(t))

2µ d dt µ d

dt E [X

2

] = X

j

2v

j

E [↵

j

(X ) · X ] + v

j2

E [↵

j

(X )]

d

dt µ = X

j

v

j

E [↵

j

(X )]

E [↵

j

(X )] = ↵

j

(µ) + E[(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt

2

= d

dt (E [X

2

] µ

2

) = d

dt E [X

2

] d dt µ

2

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t)

order 1 approximation:

X = (X

E

, X

S

, X

C

, X

P

)

1

(X ) = c

1

X

E

X

S

2

(X ) = c

2

X

C

3

(X ) = c

3

X

C

E [↵

j

(X )] ⇡ ↵

j

(µ)

f (x) = ↵

j

(x) · x f (x) = f (µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . E [f (X )] = f (µ) + E [(X µ)]

1! · @

@ x f (µ) + E [(X µ)

2

]

2! · @

2

@ x

2

f (µ) + . . . d

dt µ(t) = X

j

v

j

j

(µ(t))

2µ d dt µ d

dt E [X

2

] = X

j

2v

j

E [↵

j

(X ) · X ] + v

j2

E [↵

j

(X )]

d

dt µ = X

j

v

j

E [↵

j

(X )]

E [↵

j

(X )] = ↵

j

(µ) + E [(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt

2

= d

dt (E [X

2

] µ

2

) = d

dt E [X

2

] d dt µ

2

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t)

d

dt

µ

E

= c

1

µ

E

µ

S

+ (c

2

+ c

3

C

d

dt

µ

S

= c

1

µ

E

µ

S

+ c

2

µ

C

d

dt

µ

C

= +c

1

µ

E

µ

S

(c

2

+ c

3

C

d

dt

µ

S

= + c

3

µ

C

X = (X

E

, X

S

, X

C

, X

P

)

1

(X ) = c

1

X

E

X

S

2

(X ) = c

2

X

C

3

(X ) = c

3

X

C

E [↵

j

(X )] ⇡ ↵

j

(µ)

f (x) = ↵

j

(x) · x f (x) = f (µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . E [f (X )] = f (µ) + E [(X µ)]

1! · @

@ x f (µ) + E [(X µ)

2

]

2! · @

2

@ x

2

f (µ) + . . . d

dt µ(t) = X

j

v

j

j

(µ(t))

2µ d dt µ d

dt E [X

2

] = X

j

2v

j

E [↵

j

(X ) · X ] + v

j2

E [↵

j

(X )]

d

dt µ = X

j

v

j

E [↵

j

(X )]

E [↵

j

(X )] = ↵

j

(µ) + E [(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt

2

= d

dt (E [X

2

] µ

2

) = d

dt E [X

2

] d dt µ

2

After Verena Wolf, U. Saarbrucken

(6)

Michaelis-Menten 2 nd order approximation

Example:

d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = p(t)Q(~ ~ x(t))

x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

d

dt p(x, t) = X

j

j

(x v

j

)p(x v

j

, t) ↵

j

(x)p(x, t) d

dt µ(t) = X

j

v

j

E [↵

j

(X (t))]

d

dt µ(t) ⇡ X

j

v

j

j

(E [X (t)]) p

i

(x, t) =

@

@ t p( x, t) + @

@ x p(x, t)R(x) = p(x, t)Q(x)

X = (X

E

, X

S

, X

C

, X

P

)

1

(X ) = c

1

X

E

X

S

2

(X ) = c

2

X

C

3

(X ) = c

3

X

C

E [↵

j

(X )] ⇡ ↵

j

(µ)

f (x) = ↵

j

(x) · x f (x) = f (µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . E [f (X )] = f (µ) + E[(X µ)]

1! · @

@ x f (µ) + E [(X µ)

2

]

2! · @

2

@ x

2

f (µ) + . . . d

dt µ(t) = X

j

v

j

j

(µ(t))

2µ d dt µ d

dt E [X

2

] = X

j

2v

j

E [↵

j

(X ) · X ] + v

j2

E [↵

j

(X )]

d

dt µ = X

j

v

j

E [↵

j

(X )]

E [↵

j

(X )] = ↵

j

(µ) + E[(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt

2

= d

dt (E [X

2

] µ

2

) = d

dt E [X

2

] d dt µ

2

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t)

X = (X

E

, X

S

, X

C

, X

P

)

1

(X ) = c

1

X

E

X

S

2

(X ) = c

2

X

C

3

(X ) = c

3

X

C

E [↵

j

(X )] ⇡ ↵

j

(µ)

f (x) = ↵

j

(x) · x f (x) = f (µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . E [f (X )] = f (µ) + E [(X µ)]

1! · @

@ x f (µ) + E [(X µ)

2

]

2! · @

2

@ x

2

f (µ) + . . . d

dt µ(t) = X

j

v

j

j

(µ(t))

2µ d dt µ d

dt E [X

2

] = X

j

2v

j

E [↵

j

(X ) · X ] + v

j2

E [↵

j

(X )]

d

dt µ = X

j

v

j

E [↵

j

(X )]

E [↵

j

(X )] = ↵

j

(µ) + E [(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt

2

= d

dt (E [X

2

] µ

2

) = d

dt E [X

2

] d dt µ

2

d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t)

order-2 approximation:

d

dt µ = X

j

v

j

E [↵

j

(X )]

E [↵

j

(X )] = ↵

j

(µ) + E [(X µ)]

1! · @

@ x ↵

j

(µ) + E [(X µ)

2

]

2! · @

2

@ x

2

j

(µ) + . . .

j

(x) = ↵

j

(µ) + x µ

1! · @

@ x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . d

dt µ(t) = d

dt E [X (t)] = d dt

X

x

x · p

(t)

(x) = X

x

x · d

dt p

(t)

(x) d

dt p

(t)

(x) = X

j:x vj 0

j

(x v

j

) · p

(t)

(x ~ v

j

) X

j

j

(x) · p

(t)

(x) p

(t)

(x) = P ( X ~

(t)

= ~ x)

k · [S

1

](t) · [S

2

](t) R(t) = k · Y

i

([S

i

](t))

li

d

dt [S

i

](t) = X

j

(m

j

l

j

) · R

j

(t) d

dt x

i

(t) = X

j:Rj kont.

v

ij

r

ij

(~ x(t)) + X

k6=i

x

k

(t) p

k

(t)q

ki

(~ x(t)) p

i

(t)

d

dt ~ p(t) = p(t)Q(~ ~ x(t))

x

i

(t) := E [X (t) | M (t) = i]

X

i

(t + h) = X

i

(t) + X

j

R

j

(t, t + h)

| {z } · v

ij

|{z}

E + S )

c

*

1

c2

C

c

!

3

E + P R

j

(0, t) = Y

j

✓Z

t 0

j

(X (s))

X

3

(t + h) = X

3

(t) + R

1

(t, t + h) · (+1) +R

2

(t, t + h) · ( 1)

exact time evolution of means:

d

dtµE = c1µEµS + (c2 + c3C d

dtµS = c1µEµS + c2µC d

dtµC = +c1µEµS (c2 + c3C d

dtµS = + c3µC

X = (XE, XS, XC, XP)

1(X) = c1XEXS

2(X) = c2XC

3(X) = c3XC

E[↵1(X)] = ↵1(µ) + E[(XE µE)(XS µS)]

2! · @2

@xExS

1(µ)

f(x) = ↵j(x) · x f(x) = f(µ) + x µ

1! · @

@x↵j(µ) + (x µ)2

2! · @2

@x2j(µ) + . . . E[f(X)] = f(µ) + E[(X µ)]

1! · @

@xf(µ) + E[(X µ)2]

2! · @2

@x2f(µ) + . . . d

dtµ(t) = X

j

vjj(µ(t))

2µ d dtµ d

dtE[X2] = X

j

2vjE[↵j(X) · X] + vj2E[↵j(X)]

d

dtµ = X

j

vjE[↵j(X)]

E[↵j(X)] = ↵j(µ) + E[(X µ)]

1! · @

@x↵j(µ) + E[(X µ)2]

2! · @2

@x2j(µ) +. . .

j(x) = ↵j(µ) + x µ 1! · @

@x↵j(µ) + (x µ)2

2! · @2

@x2j(µ) + . . . d

dt

2 = d

dt(E[X2] µ2) = d

dtE[X2] d dtµ2

=> approximate time evolution of covariance

After Verena Wolf, U. Saarbrucken

(7)

Michaelis-Menten 2 nd order approximation

Close after 2nd

moment => approximation because we set all higher centered moments to zero Equations for rate functions that are at most quadratic:

d

dt µ

i

= X

j

v

ji

j

(µ) + X

k,l

@

2

j

(µ)

@x

k

@x

l

kl

2!

!

d

dt

ir

= X

j

v

ji

X

k

@↵

j

(µ)

@ x

k

kr

1! + v

jr

X

l

@↵

j

(µ)

@x

l

il

1!

!

+ X

j

v

ji

v

jr

j

(µ) + X

k,l

@

2

j

(µ)

@x

k

@x

l

kl

2!

!

d

dt

µ

E

= c

1

µ

E

µ

S

+ (c

2

+ c

3

C d

dt

µ

S

= c

1

µ

E

µ

S

+ c

2

µ

C

d

dt

µ

C

= +c

1

µ

E

µ

S

(c

2

+ c

3

C

d

dt

µ

S

= + c

3

µ

C

X = (X

E

, X

S

, X

C

, X

P

)

1

(X ) = c

1

X

E

X

S

2

(X ) = c

2

X

C

3

(X ) = c

3

X

C

E [↵

1

(X )] = ↵

1

(µ) + E [(X

E

µ

E

)(X

S

µ

S

)]

2! · @

2

@ x

E

x

S

1

(µ) f (x) = ↵

j

(x) · x

f (x) = f (µ) + x µ 1! · @

@x ↵

j

(µ) + (x µ)

2

2! · @

2

@ x

2

j

(µ) + . . . E [f (X )] = f (µ) + E [(X µ)]

1! · @

@x f (µ) + E [(X µ)

2

]

2! · @

2

@x

2

f (µ) + . . . d

dt µ(t) = X

j

v

j

j

(µ(t))

2µ d dt µ d

dt E [X

2

] = X

j

2v

j

E [↵

j

(X ) · X ] + v

j2

E [↵

j

(X )]

d

dt µ = X

j

v

j

E [↵

j

(X )]

There are many examples where means + covariances give a very good approximation since

distributions are often similar to multivariate normal distribution (even when populations are small)

After Verena Wolf, U. Saarbrucken

(8)

Michaelis-Menten 2 nd Order Closures

time evolution of means (including approximation of the covariances) and covariances

After Verena Wolf, U. Saarbrucken

(9)

Switch Example

Species

Proteins: X1, X2

Promoter state: DNA, DNA.X1, DNA.X2 Exclusive Switch (Loinger et al., Phy. Rev. E, 2007)

Reactions

DNA ⟶ DNA+ Xi Xi ⟶ 0

DNA+Xi ⟷ DNA.Xi

DNA.Xi ⟶ DNA.Xi + Xi

After Verena Wolf, U. Saarbrucken

(10)

State Distributions

Exclusive Switch (Loinger et al., Phy. Rev. E, 2007)

0 50 100

0 50 100

P1

P2

0 50 100

0 50 100

P1

P2

X1 X2

X1

X1 X2

⟵ low rate for binding to the promoter

high rate for binding to the promoter

(11)

TD 4: Toggle Switchactions

1. Connect to http://lifeware.inria.fr/biocham4 2. Open examples/MPRI

3. Run the notebook TD4_toggle_switch.ipynb

MPRI C2-19 January 2017 François Fages

(12)

Switch at Low Binding Rate

Exclusive Switch (Loinger et al., Phy. Rev. E, 2007)

X1 low binding

rate

After Verena Wolf, U. Saarbrucken

(13)

Switch at High Binding Rate

X1 high binding rate

order 4 (normal

pdf uses only mean and covariance matrix)

Exclusive Switch (Loinger et al., Phy. Rev. E, 2007)

(14)

2 nd Order Moment Closure for Mean

Exclusive Switch (Loinger et al., Phy. Rev. E, 2007)

X1 X2

X2

⟵ low rate for binding to the promoter

high rate for binding to the promoter ⟶

how good is moment closure?

means

means order 2 approximation

(15)

2 nd Order Moment Closure for Variance

Exclusive Switch (Loinger et al., Phy. Rev. E, 2007)

X1

⟵ low rate for binding to the promoter

high rate for binding to the promoter ⟶

(co)variances

(co)variances

(16)

4 th Order Moment Closure for Variance

Exclusive Switch:

X1 Covariances

(high binding rate)

order 2

order 4

(17)

20/01/2017 François Fages C2-19 MPRI 17

Lotka-Volterra Prey-Predator Model

0.3*[RA] for _ =[RA]=> RA. 0.15*[RB] for RB => _.

0.3*[RA]*[RB] for RA =[RB]=> RB. present(RA,0.5). present(RB,0.5).

Continuous oscillations Stochastic extinctions

Références

Documents relatifs

Devant de telles absurdités, la tentation est grande de retomber sur la solide distinction entre substance et attributs, ou dans celle entre noms propres et noms communs,

Recalling the impossibility of doubting his existence and looking back to his “sum”-intuition, the Cartesian

Another example of such a statistic is provided with the Denert statistic, “den”, introduced recently (see [Den]) in the study of hereditary orders in central simple algebras1.

We define a partition of the set of integers k in the range [1, m−1] prime to m into two or three subsets, where one subset consists of those integers k which are < m/2,

A previous, smaller trial, the Pharmacological Intervention in Atrial Fibrillation trial 1 compared rate control with rhythm control in 252 patients for 1

First introduced by Faddeev and Kashaev [7, 9], the quantum dilogarithm G b (x) and its variants S b (x) and g b (x) play a crucial role in the study of positive representations

Stability of representation with respect to increasing lim- its of Newtonian and Riesz potentials is established in ([16], Theorem 1.26, Theorem 3.9).. Convergence properties

9.In 16---, the Pilgrim fathers , the Puritans established the