• Aucun résultat trouvé

dmr dml (x) dmg dml-g fa(X)~mmg (x+g)dm=fa(x-g)~mg d ml/d mg (dml/dmu)(x)= (dmr-g/dmo) (x-g). Proo/. mf x(t)+/(t) x(t) (dmr/dmg)(x) mf R(s,t). Likelihood ratios of Gaussian processes 1

N/A
N/A
Protected

Academic year: 2022

Partager "dmr dml (x) dmg dml-g fa(X)~mmg (x+g)dm=fa(x-g)~mg d ml/d mg (dml/dmu)(x)= (dmr-g/dmo) (x-g). Proo/. mf x(t)+/(t) x(t) (dmr/dmg)(x) mf R(s,t). Likelihood ratios of Gaussian processes 1"

Copied!
10
0
0

Texte intégral

(1)

A R K I V F O R M A T E M A T I K B a n d 4 n r 5 Communicated 9 April 1958 b y ]:[ARALD CRAM]~R and L E N N A R T CARLESON

L i k e l i h o o d r a t i o s o f G a u s s i a n p r o c e s s e s 1

B y T . S. PITCItER 2

l . I n t r o d u c t i o n

Let x (t), A < t ~< B be a real Gaussian stochastic process with autocorrelation f u n c t i o n

R(s,t).

E a c h choice of a m e a n value f u n c t i o n [(t) for the process es- tablishes a measure

mf

o n t h e set of sample functions m a d e into a measure space i n the usual w a y [1]. I n statistical applications one often wishes to k n o w when mf a n d m~ are t o t a l l y singular a n d when t h e y are absolutely c o n t i n u o u s with respect to each other, i.e., when t h e likelihood ratio exists. I n the l a t t e r case i t is desirable to be able to c o m p u t e

(dmr/dmg)(x)

i n terms of the sample f u n c t i o n x (t).

T h e t r a n s f o r m a t i o n on t h e space of sample functions which carries

x(t)

into

x(t)+/(t)

preserves m e a s u r a b i l i t y a n d carries ma i n t o m~+a, i.e., if a ( x ) i s a m e a s u r a b l e f u n c t i o n so is a (x + [) a n d we have

f a (x) d mI+g = f a (x + [) d rag.

T h e following l e m m a shows t h a t i t is sufficient to consider t h e case g = 0 . L e m m a 1.1.

mf

a n d mg are t o t a l l y singular if a n d only if m1_ o a n d mo are.

mr is absolutely c o n t i n u o u s with respect to mg if a n d only if ml-g is absolutely c o n t i n u o u s with respect to m0 a n d i n this case

(dml/dmu)(x)= (dmr-g/dmo) (x-g).

Proo/.

If m~ (A) = 1 a n d mg (A) = 0 t h e n mr-g (A + g) = 1 a n d m0 (A + g) = 0 which proves t h e first assertion. I f

d ml/d mg

exists t h e n

dmr dml (x) dmg

= f a (x - g) d m I = f a (x)

dml-g fa(X)~mmg (x+g)dm=fa(x-g)~mg

which proves the second assertion.

F r o m n o w o n we shall assume t h a t R is c o n t i n u o u s a n d bounded, a n d t h a t t h e process is separable. W e will write m for m0, mr I[ m if m I a n d m are t o t a l l y singular, a n d ms -~ m if m I a n d m are m u t u a l l y absolutely continuous.

L e m m a 1.2. I f A a n d B are finite x (t) is i n L~ with m p r o b a b i l i t y one. I f [ is n o t i n L,, mr ]lm.

z T h e research in this paper was s u p p o r t e d jointly b y t h e U.S. A r m y , U.S. N a v y , a n d U.S.

Air Force u n d e r contract with t h e M a s s a c h u s e t t s I n s t i t u t e of Technology.

s Staff Member, Lincoln Laboratory, M a ~ a c h n s e t t s I n s t i t u t e of Technology.

3:1 35

(2)

T. S, PITCHER,

Likelihood ratios of Gaussian processes

B B

Proo/. f dt f x2(t)dm= [ R(t,t)dt < ~ ,

A

B

so b y F u b i n i ' s t h e o r e m f x 2 (t) d t A

is m m e a s u r a b l e a n d finite a l m o s t everywhere. The set L 2 of s a m p l e functions h a v i n g

B

f xe(t)dt <

A

is m e a s u r a b l e a n d m (Le) = 1. I f ] is n o t in L2, mr (L2) = m (L 2 - / ) = 0 since L~ - is c o n t a i n e d in t h e c o m p l i m e n t of L 2.

I f A a n d B are finite let (q~) a n d (~t,) be t h e eigenfunctions a n d e i g e n v a h e s of t h e integral o p e r a t o r w i t h kernel R, so t h a t

B

~ r (t) = I R (t, s) r (s) d s.

The following t h e o r e m due to G r e n a n d e r [2] settles m o s t of t h e questions in this

c a s e .

T h e o r e m 1.1. Suppose A a n d B are finite a n d / is in L 2 on (A, B) a n d let

B

/n=f /(t)r

A

T h e n m r ~ m if E <

a n d m,

II

m if

E j~/2. = ~ ,

so t h a t these are t h e o n l y cases which occur. Moreover we can w r i t e

B

d mr f 1

log ~/~- (x) = (x (t) - ~ ] (t)) h (t) d t

A

for some h in L~ if a n d o n l y if

2 2

z / ~ / ~ n < ~ .

2. Some general results I n this section A a n d B m a y be finite or infinite.

T h e o r e m 2.1. I f

mI=--m

t h e n

m;1:m

for all 0 ~<), < ~ , a n d log

(dm~r/dm)(x)=

~ r ( x ) - 1 2 2 C where C~> 0, for a n y real n u m b e r a, r

(ax)=ar (x)

a l m o s t e v e r y - where a n d for a l m o s t all pairs (x, y), r (x + y) = r (x) § r (y).

Proo/.

L e t Sn be t h e subfield g e n e r a t e d b y the coordinate functions

x(k/n)

for m a x (A, - n ) ~ < k / n ~< rain (B, n). The S~ are increasing a n d t h e original

(3)

ARKIV FOR MATEMATIK. B d 4 nr 5 measure field is the smallest field containing t h e m all. L e t

x(kl) .... z(k~)

be a non-degenerate set which spans the set

x (k/n), R ~

its correlation matrix, an the determinant of R ~ a n d A n = ( R ' ) -1. I f G is an Sn measurable function then

G(x)=g(x(kl),

. . . X ( k N ) ) for some Baire function g and

1 1

f dt~

g(tl, t i v ) e x p / - - [ - 2 ~

EASters).

( 2 ~ ) ~t2

an f gh

. . . . . .

I f for some / we set

Cn (x) = 2_ Z A~x (k,) l (k~)

fin then C~ >t 0 and (*)

and

C~=--EA~./(k~}/(kj),

2

~ n

1 2

f a(x)

exp

(]Lea(x)- 2]r C~)dm

_ ( 2 z ~ ) NI~" ~

1 1 fdt~

9

. ]dt~g(tl, . . tN)

exp

. -~anEA~(t~-2/(k,))(tj-1/(k,'i) . .

( ,

1 1 fdtl fdtng(tl+2/(kl) ' tN+$/(k~))exp

--

l~xA~tit, l

(2~) Nj2 a~ ' . . . 2a~

= f G(x+ M)dm= f G(x)dm~.r.

Setting 2 = 1 in (*) shows t h a t exp

( ~ (x)- 89 C,~)

is the conditional expectation with respect to m of

dmf/dm

on S~. B y the martingale convergence theorem (Theorem 4.1, page 319 of [3]) exp ( C a ( x ) - 8 9 converges to

(dml/dm)(x)

for a l m o s t all x. Since x - + - x preserves m-measure, there is at least one x for which b o t h exp (Ca (x) - 89 C~) a n d exp (r ( - x) - 89 C~) = exp ( - r (x) - 89 C~) conver~e t o a finite limit alad hence - (r (x) - 89 Ca) - ( - Cn (x) - { C~) = Cn converges to some finite non-negative limit C. Thus r (x) converges almost everywhere to some finite limit r (x) a n d

(dmf/dm)(x)=

exp (r ( x ) - 89 C) almost everywhere.

I f

H(x)

is an Sp measurable function for some

p<n

then b y (*)

f H (x)

exp

(2r189 ~C~)dm=f H (x+~/)dm

= f H (x) exp (Z 4~ ( x ) - 89 Z~r a m, so t h e sequence

exp (2 ~b~ (x) - 89 22 C~) is a martingale with limit exp (2 r (x) - 89 22 C).

A p p l y i n g (*) with G ( x ) = l a n d ~ replaced by 2~ we get

= exp ()2 C,) --> exp (A ~ C),

so b y Theorem 4.1, page 319 of [3] the conditional expectation of exp

().r189162

on Sn is exp

()~r189

(4)

"r. 8. rITCHER, Likelihood ratios of Gaussian processes

If H is the characteristic function of a set in S~

f H ( x )

exp (2r (x)

- 8 9

exp ( ~ r ( x ) - 8 9

Since this relation holds for sets in a n y S~ and b y the dominated convergence theorem for monotone limits it holds for all measurable sets b y Theorem 1.2, page 599, of [3]. Hence

ma:~m

and log

(d maffdm)(x)=,?tr189

Theorem 2.2. r is in .Lr for all p.

[~(Or j ,/,(~)d.,=O,

For a n y n and 0 < , ~ < I

where

Proo/.

and

f r (x) dm= C.

dmx: ( g r 89 k

d m (x) = ~ k~o k! + 0.,

1r <exp (plr (pr ( - p ~ )

= (exp (p r - 89 p2 C) + exp ( - p r - 89 f C)) exp (89 pX a) /dm~! dm_p:~

= (-d-~m + - ~ - ~ 1 exp (89

soflr

exp (89 which proves the first assertion. For 0 < ) l < 1

Io,,1< ~ I~,~-- J r el"

,,+1 k!

<r+, ~ I,/,- j~tol"

,*+1 k!

<;t .+, e ~ l , / , - 8 9 <;t"+'(e,~p ( , / , - 8 9 ( - , / , + 89

=).§

_

dra_~ )

\ d m exp 8 9 m exp 8 9

<~n+leedm~f q dm_~ -a-g"

Now

_-f (1 +).4,(x)_ 89 ~ (~'4' (=)- 89 C)z + O~)dm

2

i,(~)a,,,+i f § c f i,(~) +J'o,a.,.

38

(5)

ARKIV FOR MATEMATIK. Bd 4 nr 5 The previous inequality shows t h a t the last term is of order 23 so the coeffi-

cients of 2 a n d 23 are zero

givingfr andfr

Also

2 / ( t ) = f

(x(t)+ 2/(t))dm

= f x (t)dmar

= f x (t) ~ - ~ (x)dm

= f x(t)(l + 2 r 1 8 9 22C +OOdm.

The last t e r m is of order 22 since

Conversely if

then

Sx(t) 01 ( x ) d ? ' l ' l , -~ 22e6' S I x (t) I ( ~ . d-~T/,_~,f~ dff$

dm ]

=2~eC f (Ix(t)+ /(t)l + Ix (t)-/(t)l )din

<2ZeC (I/(t) l+ f l~(Oldm),

so the coefficients of 2 on the two sides of the preceding equality are equal giving / (t) = f x (0 ~ (0 d m.

B

Theorem 2.3. If F has bounded variation on (A, B) and

[ (s)= f R (s, t)dF

(t), A

B B

then

m=--mf,

and

log~m'(X)= f x(t)dF(t)- 89 f /(t)dF(t ).

A A

d mr

B

l o g j a m ( x ) =

x(OdF(t)- 89

A

B B

d=f f(oeF(o

and

f(s)=f R(s, tlaF(t).

A A

i ] Z B B B

Proof. S i n c e f

x(t)dF(t) dm=SdF(s)fdF(t)R(s,t)<oo,fx(t)dF(t)exists

A A A

almost everywhere and is in L2. We now define the subfield

S,,

the function r and the constant Cn as in Theorem 2.1. We have

f ~ (x) x (t~) d m = Y, A ~ / (tj) R (tt, tk) = / (tk) a n d

f [i (t)dF(t) x(tk)dm=fR(tk, t)dF(t)=/(t~), ] "

A

39

(6)

T. S. PITCHER,

Likelihood ratios of Gaussian processes

B

so Cn (x) is the projection

off x(t)dF(t)

on the linear manifold spanned by t h e

A B

x (t~). Since f x (t) d 2' (t) and the x (t~) are Gaussian, this implies t h a t ~bn (x) is the

A

B

conditional expection of

f x (t) d F (t)

on Sn, a n d b y the martingale t h e o r e m (The-

A

B

orem 4.1, page 319 of [3]) t h a t ~ , ~ ( x ) - + f x ( t ) d F ( t ) almost everywhere a n d in

A

mean. I n particular

C n = f r d m - - ~ f x(t)dF(t) dm=f/(t)dF(t). It

only

A

remains to show t h a t exp ( ~ n - 8 9 converges to

d m f / d m .

f exp ~ (~bn (x) - 89 Cn ) d m =

e cn f

exp (2

Cn (x) - 2 Cn) d m - e cn

since exp (2 ~ n - 2 Cn) differs from exp ( ~ n - 8 9 Cn) only in having / replaced b y 2/.

T h e e cn are uniformly b o u n d e d so b y the martingale theorem exp ( ~ n - ~ Cn) 1

converges almost everywhere a n d in m e a n to a limiting function which is easily shown as in the proof of Theorem 2.1 to be

dmi/dm.

Conversely, suppose

B

A B

T h e n

r~ (x) - f x (t) d F (t)

is a constant a n d integrating shows this constant to

A

be zero.

B B

/(s) = f

x(s)r x(s) f x(t)dF(t)=f R(s, t)d~(t)

A A

a n d

d = C = f r x(t)dF(t) d m = f d F ( t ) f d F ( s ) R ( s , t ) = f / ( t ) d F ( t ) .

A A

3. T h e i n f i n i t e case

I n this section the results of section 1 are extended to the infinite case.

L e t Sn be the subfield generated b y the s (t)'s with A n = m a x

(A,-n)<~t<~

rain

(B,n)= Bn.

L e t

m'n.r, S'n

be the measure a n d the field of measurable sets associated with t h e Gaussian stochastic process x (t), An ~< t < Bn with autocorrelation function R (s, t) a n d m e a n /(s) defined for An ~< s, t ~< Bn. If we write an for the m a p which takes every sample function of t h e original process into the restriction of t h a t function

~o (A~, Bn) t h e n an sets up a 1 : 1 correspondence between Sn a n d S~ for which

ml ,,A)= m',j (an (A)).

(7)

ARKIV FOR MATEMATIK. Bd 4 n r 5

L e m m a 3.1. m t a n d m are m u t u a l l y absolutely continuous over the subfield Sn if a n d only if m'n-~m'~,r a n d in this case

d d ~ (x ) dm'~

Proo[. L e t Ca be the characteristic function of a set in Sn, then

d m'. d m'.

f - - - ~ - (a. (x)) d m = f ~ , - ( a . (x)) C~.(A)(~. (x))d m

d mn,f a mn,f

d m'n C

= f (x) J~.(A)(x)dm:,

n , f

= m'. (c~n (A) - [) = m'= (an(A - 1)) = m (A - 1).

The above lemma Shows t h a t for each S . either mr and m are totally singular over Sn a n d hence are t o t a l l y singular or else mf and m are m u t u a l l y absolutely continuous over S . with derivative equal to exp ( C a ( x ) - 8 9 C.).

Theorem 3.1. The C . are non-decreasing. If C = l i m C,,< oothen ml--:~m a n d ( d m f f d m ) (x) = exp (r ( x ) - ~ C), where ~b. (x) -+ r (x) almost everywhere, if lira C . = c~ then mr ]] m.

Proo[.

f ex1,2 (r (x) - ~ C.) d m = [

f exp (2 r 2 c.) dm] = o . ,

which proves t h a t l~he C . are non-decreasing since exp 2 ( r (x) - 89 C.) is a semi- martingale. If lim C n < oo the martingale theorem implies t h a t C. (x) -§ r (x) almost everywhere a n d it can be shown as in Theorem 2.1 t h a t ( d m f f d m ) ( x )

= exp (r (x) - 89 C).

Conversely, suppose C - + oo. B y the martingale theorem ~ t C n - 8 9 con- verges almost everywhere. We first prove t h a t ~t r 89 2 ~ C . - - > - oo with pro- bability one for a n y ~t*0. If n o t there is a set A, r e ( A ) > 0 on which lira 2 r 1 8 9 oo a n d for large enough n there are sets An on which

) . r 1 8 9 We have

1 = f exp ((~- ~.) r 89 (~ - ~.)' C.)

dm

and choosing ~ . so t h a t ~ , - ~ 0 a n d ) . ~ . C . - - ~ ~ makes the right h a n d side go to + oo which is a contradiction. If B is the set where ~ b . - 89 C ~ - + - oo then m (B)== 1. mt ( B ) = m ( B - ~) and elements of B - ~ are y's such that ~ . (y + ~ ) - 89 C.

(8)

T. S. PITCHER,

Likelihood ratios of Gaussian processes

= ~ n ( y ) ~ - ~ C ~ - - - > - ~ . 1 I f

mr(B)~O

t h e n t h e set where ~ - ~ C ~ , - r 1 8 9 I

a n d ~ + 89 all go t o - ~ has p o s i t i v e m e a s u r e hence is n o t e m p t y so for some x, 0 = - ~ (x) - 89 C~ + ~ (x) + 8 9 C~ --> - co. T h e set B s e p a r a t e s m a n d mr.

If C is t h e set of f u n c t i o n s on (A, B) which are solutions of

B

/ (s) = f R (s, t) d F (t) a

for some F of b o u n d e d v a r i a t i o n , D is t h e set of f u n c t i o n s f for which

m r = m

a n d E is t h e set of all s a m p l e f u n c t i o n s on (A, B) t h e n b y T h e o r e m 2.3 C ~ D ~ E.

D is, in a p r o b a b i l i t y sense, v e r y r a r e in E . I n fact, if A a n d B a r e finite, T h e o r e m 1.1 s a y s t h a t D consists of those x for which t h e series

x ( t ) r

2.

n = l

converges to a f i n i t e l i m i t a n d since t h e s u m m a n d s are i n d e p e n d e n t i d e n t i c a l l y d i s t r i b u t e d r a n d o m v a r i a b l e s , t h u s has p r o b a b i l i t y 0. I n t h e infinite case, using t h e n o t a t i o n e s t a b l i s h e d a t t h e b e g i n n i n g of t h i s s e c t i o n C is c o n t a i n e d in t h e set of functions / for which

mr--m

o v e r S~ a n d this h a s p r o b a b i l i t y 0.

d mr

F o r / in D write

drag

= e x p ( r 1 8 9 Cr).

If / a n d g a r e in

D,

dmr+o,

d m r + g ,

, d m r , ,

d rag d mt

- d m (x + / ) ~mm (x)

= exp (r (z + / ) + Cr (x) - 89 C r - 89 cg)

= exp (r (x) + Cg (x) +

(r (/)

- 89 O r - 89 Co)

= e x p (~bt (x) + Cg (x) + (r (l) - 89 C t - 89 C o ) , so D is a l i n e a r space a n d C t + g = r 1 6 2

T h e o r e m 3.2. D is a H i l b e r t space w i t h t h e i n n e r p r o d u c t

(~, g} = f ~t (x)Cg (x)din.

C is dense in t h i s H i l b e r t space.

Proof.

To p r o v e t h a t D is a H f l b e r t space we m u s t show t h a t i t is c o m p l e t e in t h e n o r m e s t a b l i s h e d b y t h e i n n e r p r o d u c t . I f ]~ is a C a u c h y sequence t h e n r is a C a u c h y sequence in t h e o r d i n a r y L 2 so i t converges in m e a n t o a r a n - d o m v a r i a b l e ~. I f

f(t)=fx(t)ve(x)dm,

t h e n f ( t ) = l i m •(t) since

I f (t) - / ~ (t)12 = I f x (t)(v 2 (x) - Cr~ (x)) d m 12 < n (t, t) f I ~ (x) - ~r (x)12 d m --> 0.

(9)

ARKIV FOR MATEMATIK. B d 4 n r 5

L e t Sn be t h e subfield g e n e r a t e d b y

x (k/n),

m a x

(A, -n)<~ k/n

< m i n

(B, n).

T h e conditional e x p e c t a t i o n of

d m f J d m

on S~ has the form exp

Z An (x (i/n)fk (i/n) - 89 fk (i/n)/k (j/n))

a n d converges, pointwise a n d in m e a n , to

d , = exp

~ A~ (x (i/n) / (j/n) - 89 (i/n) / (j/n) ).

d~ is a martingale,

f d~ d m = lim

exp 8 9 A n

~j/~ (i/n) /k (j/n) <-..lim

sup exp

CI~ = f ~p~ dm,

so d~ converges, pointwise a n d in m e a n , to

d rnJdm.

I t remains to show t h a t [ [ / ' - / H - - > O, i.e., t h a t r converges to r in mean, which is equivalent to r

N o w f x ( t ) ( ~ ( x ) - ~ p ( x ) ) d m = / ( t ) - / ( t ) = O

so r is orthogonal to the mani- fold M s p a n n e d b y t h e x(t)'s. H o w e v e r ~ a n d all the ~ft's are in M, from their m e t h o d of construction a n d so is ~o which is a limit of the ~r's so ~0 = ~ a n d t h e space D is complete.

C is clearly a linear subspace of D. We need to show t h a t if ( [ , g ) = 0 for e v e r y g in C t h e n / = 0. W e will p r o v e below t h a t if

B

g(s)=f R(8, t)dO(t),

A B

t h e n ([, g) = f ] (8) d O (8).

A

Choosing G (s) = 0 for 8 < so a n d G (8) = 1 for

s >1 so

will t h e n give

B

0 = f [ (8) d G (s) = / (8o) for alI

so

A

which will complete the proof.

B

L e m m a 3.2. I f

g(s)=f R(8, t) dO(t)

is in

C,

t h e n for a n y [ in D

,4

B

(/, g) = f / (8) d G (8).

A

Proo/. (/, g) = f Cr (x) r (x) d m

B

= f ~r(x) ~ x(t)dG(t)dm

A f l

= f ( f r x(t)dm)dG(t)

A B

=~/(tlda(t).

,4

43

(10)

T. S. PITCHER, Likelihood ratios of Gaussian processes

The following example shows t h a t C is n o t all of D. L e t R ( s , t ) = r ( s - t ) where r has two continuous derivatives a n d

f 0 if t < - l / n , Fn (t)=~ - 2 n i f ] t l < l / n ,

[ 0 if t>~l/n,

B

then [~ (s) = f R (s, t) dFn (t) = 2 n (r (s + l / n ) - r (s - l / n ) ) . A

[n is a Cauehy sequence from C and its limit is d r / d s . If d r / d s is in D we have B

A

which is n o t true in general. I n fact if r (s)= exp ( - s ~) we h a v e B

- s exp ( - s 2 ) = e x p ( - s 2) f e x p ( 2 s t - t ~ ) d F ( t )

A

a n d multiplying b y exp s 2 a n d differentiating twice gives B

0 = f t 2 exp (2st - t 2 ) d F ( t ) . A

Since t h e integrand is positive this means F is constant except for a j u m p a t 0 a n d this gives - s exp ( - s 2) = C exp ( - s 2) which is impossible.

R E F E R E N C E S

1. KOLMOGOROFF, A. ~]'., F o u n d a t i o n s of the T h e o r y of Probability. N e w Y o r k , Chelsea P u b - lishing C o m p a n y , 1950.

2. GREI~TANDER, U., " S t o c h a s t i c processes a n d statistical inference", A r k i v for M a t e m a t i k , B. 1, H. 3. (1950) p. 195.

3. DooB, J . L., Stochastic Processes. N e w York, J o h n Wiley a n d Sons, 1953.

Tryckt den 28 augusti 1959.

Uppsala 1959. Almqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

La fonction m

Exprimer, en fonction de x , le volume que peuvent occuper les bonbons dans la boîte.. Dans la pratique, x est compris entre 0,5

1 Pour chacune des questions suivantes, trois réponses sont proposées, une seule est exacte.. Pour chaque question, entoure la

1 Pour chacune des questions suivantes, trois réponses sont proposées, une seule est exacte.. Pour chaque question, entoure la

Quelles sont les valeurs minimales et maximales d'abscisses et d'ordonnées à entrer dans la fenêtre d'affichage de la

Quelles sont les valeurs minimales et maximales d'abscisses et d'ordonnées à entrer dans la fenêtre d'affichage de la

Soit f et g deux fonctions l'une croissante et l'autre décroissante sur l'intervalle [-3

Soit f et g deux fonctions l'une croissante et l'autre décroissante sur l'intervalle [-3