• Aucun résultat trouvé

Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pT

N/A
N/A
Protected

Academic year: 2021

Partager "Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pT"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-01466423

https://hal.archives-ouvertes.fr/hal-01466423

Submitted on 24 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pT

C. Adolph, R. Akhunzyanov, M. Alexeev, G. Alexeev, A. Amoroso, V.

Andrieux, V. Anosov, W. Augustyniak, A. Austregesilo, C. Azevedo, et al.

To cite this version:

C. Adolph, R. Akhunzyanov, M. Alexeev, G. Alexeev, A. Amoroso, et al.. Longitudinal double spin

asymmetries in single hadron quasi-real photoproduction at high pT. Modern Physics Letters B, World

Scientific Publishing, 2016, 753, pp.573 - 579. �10.1016/j.physletb.2015.12.035�. �hal-01466423�

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high p

T

C. Adolph

i

, R. Akhunzyanov

h

, M.G. Alexeev

ab

, G.D. Alexeev

h

, A. Amoroso

ab,ac

, V. Andrieux

v

, V. Anosov

h

, W. Augustyniak

ae

, A. Austregesilo

q

, C.D.R. Azevedo

b

,

B. Badełek

af

, F. Balestra

ab,ac

, J. Barth

e

, R. Beck

d

, Y. Bedfer

v,k

, J. Bernhard

n,k

, K. Bicker

q,k

, E.R. Bielert

k

, R. Birsa

z

, J. Bisplinghoff

d

, M. Bodlak

s

, M. Boer

v

, P. Bordalo

m,2

,

F. Bradamante

y,z

, C. Braun

i

, A. Bressan

y,z

, M. Büchele

j

, E. Burtin

v

, W.-C. Chang

w

, M. Chiosso

ab,ac

, I. Choi

ad

, S.-U. Chung

q,3

, A. Cicuttin

aa,z

, M.L. Crespo

aa,z

, Q. Curiel

v

, S. Dalla Torre

z

, S.S. Dasgupta

g

, S. Dasgupta

y,z

, O.Yu. Denisov

ac,

, L. Dhara

g

,

S.V. Donskov

u

, N. Doshita

ah

, V. Duic

y

, W. Dünnweber

4

, M. Dziewiecki

ag

, A. Efremov

h

, P.D. Eversheim

d

, W. Eyrich

i

, M. Faessler

4

, A. Ferrero

v

, M. Finger

s

, M. Finger Jr.

s

, H. Fischer

j

, C. Franco

m

, N. du Fresne von Hohenesche

n

, J.M. Friedrich

q

, V. Frolov

h,k

, E. Fuchey

v

, F. Gautheron

c

, O.P. Gavrichtchouk

h

, S. Gerassimov

p,q

, F. Giordano

ad

, I. Gnesi

ab,ac

, M. Gorzellik

j

, S. Grabmüller

q

, A. Grasso

ab,ac

, M. Grosse Perdekamp

ad

, B. Grube

q

, T. Grussenmeyer

j

, A. Guskov

h

, F. Haas

q

, D. Hahne

e

, D. von Harrach

n

, R. Hashimoto

ah

, F.H. Heinsius

j

, F. Herrmann

j

, F. Hinterberger

d

, N. Horikawa

r,5

, N. d’Hose

v

, C.-Y. Hsieh

w

, S. Huber

q

, S. Ishimoto

ah,6

, A. Ivanov

ab,ac

, Yu. Ivanshin

h

, T. Iwata

ah

, R. Jahn

d

, V. Jary

t

, R. Joosten

d

, P. Jörg

j

, E. Kabuß

n

, B. Ketzer

d,q

,

G.V. Khaustov

u

, Yu.A. Khokhlov

u,7,8

, Yu. Kisselev

h

, F. Klein

e

, K. Klimaszewski

ae

, J.H. Koivuniemi

c

, V.N. Kolosov

u

, K. Kondo

ah

, K. Königsmann

j

, I. Konorov

p,q

,

*

Correspondingauthors.

E-mailaddresses:oleg.denisov@cern.ch(O.Yu. Denisov),gerhard.mallot@cern.ch(G.K. Mallot),claude.marchand@cea.fr(C. Marchand).

1 Deceased.

2 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal.

3 AlsoatDepartmentofPhysics,PusanNationalUniversity,Busan609-735,RepublicofKoreaandatPhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973, USA.

4 SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe-cluster.de).

5 AlsoatChubuUniversity,Kasugai,Aichi487-8501, Japan.

6 AlsoatKEK,1-1Oho,Tsukuba,Ibaraki305-0801, Japan.

7 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia.

8 SupportedbyPresidentialgrantNSh-999.2014.2.

9 Presentaddress:TypesafeAB,DagHammarskjöldsväg13,75237Uppsala,Sweden.

10 Presentaddress:RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany.

11 SupportedbytheDFGResearchTrainingGroupProgramme1102“PhysicsatHadronAccelerators”.

12 Presentaddress:UppsalaUniversity,Box516,SE-75120Uppsala,Sweden.

13 SupportedbytheGermanBundesministeriumfürBildungundForschung.

14 SupportedbyEUFP7(HadronPhysics3,GrantAgreementnumber283286).

15 SupportedbyCzechRepublicMEYSGrantLG13031.

16 SupportedbySAIL(CSR),Govt.ofIndia.

17 SupportedbyCERN-RFBRGrant12-02-91500.

18 SupportedbythePortugueseFCTFundaçãoparaaCiênciaeTecnologia,COMPETEandQREN,GrantsCERN/FP109323/2009,116376/2010,123600/2011andCERN/FIS- NUC/0017/2015.

19 SupportedbytheMEXTandtheJSPSundertheGrantsNo.18002006,No.20540299andNo.18540281;DaikoFoundationandYamadaFoundation.

20 SupportedbytheIsraelAcademyofSciencesandHumanities.

21 SupportedbythePolishNCNGrantDEC-2011/01/M/ST2/02350.

http://dx.doi.org/10.1016/j.physletb.2015.12.035

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

574 C. Adolph et al. / Physics Letters B 753 (2016) 573–579

V.F. Konstantinov

u

, A.M. Kotzinian

ab,ac

, O. Kouznetsov

h

, M. Krämer

q

, P. Kremser

j

, F. Krinner

q

, Z.V. Kroumchtein

h

, N. Kuchinski

h

, R. Kuhn

q,9

, F. Kunne

v

, K. Kurek

ae

, R.P. Kurjata

ag

, A.A. Lednev

u

, A. Lehmann

i

, M. Levillain

v

, S. Levorato

z

, J. Lichtenstadt

x

, R. Longo

ab,ac

, A. Maggiora

ac

, A. Magnon

v

, N. Makins

ad

, N. Makke

y,z

, G.K. Mallot

k,∗

, C. Marchand

v,

, B. Marianski

ae

, A. Martin

y,z

, J. Marzec

ag

, J. Matoušek

s

, H. Matsuda

ah

, T. Matsuda

o

, G. Meshcheryakov

h

, W. Meyer

c

, T. Michigami

ah

, Yu.V. Mikhailov

u

,

Y. Miyachi

ah

, P. Montuenga

ad

, A. Nagaytsev

h

, F. Nerling

n

, D. Neyret

v

, V.I. Nikolaenko

u

, J. Nový

t,k

, W.-D. Nowak

j

, G. Nukazuka

ah

, A.S. Nunes

m

, A.G. Olshevsky

h

, I. Orlov

h

, M. Ostrick

n

, D. Panzieri

a,ac

, B. Parsamyan

ab,ac

, S. Paul

q

, J.-C. Peng

ad

, F. Pereira

b

,

M. Pešek

s

, D.V. Peshekhonov

h

, S. Platchkov

v

, J. Pochodzalla

n

, V.A. Polyakov

u

, J. Pretz

e,10

, M. Quaresma

m

, C. Quintans

m

, S. Ramos

m,2

, C. Regali

j

, G. Reicherz

c

, C. Riedl

ad

,

N.S. Rossiyskaya

h

, D.I. Ryabchikov

u,8

, A. Rychter

ag

, V.D. Samoylenko

u

, A. Sandacz

ae

, C. Santos

z

, S. Sarkar

g

, I.A. Savin

h

, G. Sbrizzai

y,z

, P. Schiavon

y,z

, K. Schmidt

j,11

, H. Schmieden

e

, K. Schönning

k,12

, S. Schopferer

j

, A. Selyunin

h

, O.Yu. Shevchenko

h,1

, L. Silva

m

, L. Sinha

g

, S. Sirtl

j

, M. Slunecka

h

, F. Sozzi

z

, A. Srnka

f

, M. Stolarski

m

, M. Sulc

l

, H. Suzuki

ah,5

, A. Szabelski

ae

, T. Szameitat

j,11

, P. Sznajder

ae

, S. Takekawa

ab,ac

, S. Tessaro

z

, F. Tessarotto

z

, F. Thibaud

v

, F. Tosello

ac

, V. Tskhay

p

, S. Uhl

q

, J. Veloso

b

, M. Virius

t

,

T. Weisrock

n

, M. Wilfert

n

, J. ter Wolbeek

j,11

, K. Zaremba

ag

, M. Zavertyaev

p

, E. Zemlyanichkina

h

, M. Ziembicki

ag

, A. Zink

i

aUniversityofEasternPiedmont,15100Alessandria,Italy

bUniversityofAveiro,DepartmentofPhysics,3810-193Aveiro,Portugal

cUniversitätBochum,InstitutfürExperimentalphysik,44780Bochum,Germany13,14 dUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany13 eUniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany13

fInstituteofScientificInstruments,ASCR,61264Brno,CzechRepublic13

gMatrivaniInstituteofExperimentalResearch&Education,Calcutta700030,India16 hJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia17 iUniversitätErlangen–Nürnberg,PhysikalischesInstitut,91054Erlangen,Germany13 jUniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germany13,14 kCERN,1211Geneva23,Switzerland

lTechnicalUniversityinLiberec,46117Liberec,CzechRepublic15 mLIP,1000-149Lisbon,Portugal18

nUniversitätMainz,InstitutfürKernphysik,55099Mainz,Germany13 oUniversityofMiyazaki,Miyazaki889-2192,Japan19

pLebedevPhysicalInstitute,119991Moscow,Russia

qTechnischeUniversitätMünchen,PhysikDepartment,85748Garching,Germany13,4 rNagoyaUniversity,464Nagoya,Japan19

sCharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublic15 tCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic15

uStateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘KurchatovInstitute’,142281Protvino,Russia vCEAIRFU/SPhNSaclay,91191Gif-sur-Yvette,France14

wAcademiaSinica,InstituteofPhysics,Taipei11529, Taiwan

xTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel20 yUniversityofTrieste,DepartmentofPhysics,34127Trieste,Italy

zTriesteSectionofINFN,34127Trieste,Italy aaAbdusSalamICTP,34151Trieste,Italy

abUniversityofTurin,DepartmentofPhysics,10125Turin,Italy acTorinoSectionofINFN,10125Turin,Italy

adUniversityofIllinoisatUrbana-Champaign,DepartmentofPhysics,Urbana,IL61801-3080,USA aeNationalCentreforNuclearResearch,00-681Warsaw,Poland21

afUniversityofWarsaw,FacultyofPhysics,02-093Warsaw,Poland21

agWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland21 ahYamagataUniversity,Yamagata992-8510, Japan19

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received11September2015

Receivedinrevisedform17November2015 Accepted11December2015

Availableonline21December2015 Editor:M.Doser

Keywords:

COMPASS

Deepinelasticscattering Doublespinasymmetry

WemeasuredthelongitudinaldoublespinasymmetriesALLforsinglehadronmuoproductionoffprotons and deuteronsatphoton virtuality Q2<1 (GeV/c)2 fortransverse hadronmomenta pT intherange 1 GeV/c to4 GeV/c.They weredeterminedusingCOMPASSdata takenwithapolarisedmuonbeam of160 GeV/cor200 GeV/cimpingingonpolarised6LiDorNH3targets.Theexperimentalasymmetries arecomparedtonext-to-leadingorderpQCDcalculations,andaresensitivetothegluonpolarisationG insidethenucleonintherangeofthenucleonmomentumfractioncarriedbygluons0.05<xg<0.2.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(4)

HighpT

G

Fig. 1.Contributionstothesingle-inclusivecrosssection forquasi-realphotoproductionofahadronh intodirect (left)andresolved(right)subprocessesaccordingto Ref.[14].Theinternallinesrepresentthephotona=γ(left)andpartons{a,b,c}= {q,q¯,g}.Thecentralblobdescribesthehardscatteringcrosssectionσˆ.Theperipheral blobsdescribethenon-perturbativeobjects:partondistributionsofthenucleon, fbN,andofthephoton,faγ,andthefragmentationfunctionsoftheproducedhadron,Dhc.

1. Introduction

The spin structure of the nucleon is one of the major unre- solvedissues inhadronicphysics.While thequark spincontribu- tionto the nucleon spin, denotedas , hasbeen measured to beabout30%[1],thegluonspincontributionisstillinsufficiently constrainedaftermorethan twodecades ofintense study.Inthe frameworkofperturbativeQuantumChromodynamics(pQCD),in- clusiveDeep InelasticScattering (DIS)issensitivetogluoncontri- butionsonlythroughhigher-ordercorrectionstothecrosssection.

Thespin-averagedgluon densityg(xg),wherexg denotesthenu- cleonmomentum fraction carried by gluons, is well constrained byDISexperimentswithunpolarisedbeamandtargetbecauseof theirhighstatistics andlargekinematiccoverage. Thefewer data fromDIS experiments with polarised beam and target, however, cannot sufficientlyconstrainthegluonhelicitydistributiong(xg). Thisaffectsdirectlyourknowledgeofthecontributionofthegluon spintothespinofthenucleon,knownasG=

g(xg)dxg,and to a lesserextent that of the quarks [2]. In order tobetter con- straing(xg),one hastoresorttoprocesseswherecontributions fromgluonsappearatleadingorder,suchashadronproductionat hightransversemomentaorproductionofopencharminpolarised lepton–nucleon[3–7]orhadron–hadroninteractions[8–11].

The COMPASS collaboration hasalready investigated asymme- triesofhadronsathightransverse momenta pT,inboth the DIS andthe quasi-realphotoproductionregimes [4,6,12]. Here,trans- verse means transverse withrespect to the direction of the vir- tualphoton γ thatisexchanged inthescatteringprocess.Using a Lund Monte Carlosimulation, these measurements were inter- pretedonthehadronlevel,therebysimultaneouslyextractingthe gluonhelicityonthepartonlevel.Suchananalysisisrestrictedto leadingorder(LO)inthestrongcouplingconstant αs,aspresently there exists no next-to-leading order (NLO) Monte Carlosimula- tionforleptoproduction.Duetothelimitationofneglectinggluon contributionsatNLO,suchresultscannot beusedinrecentglobal fitsatNLOofpolarisedPartonDistributionFunctions(PDFs)[13].

InthisLetter,we presenta newanalysisofCOMPASSdatafor single-inclusive hadron quasi-real photoproduction at high pT,22 which differs from our previous analysis in that all measured hadronswithinagivenpT binareincludedintheanalysis,andnot onlythehadron(s)withhighestpT.Moreover,theinterpretationof

22 Notethatalsoinclusivequasi-realphotoproductionofhadronpairscanbecon- sidered[15].

theresults isbasedona collinearpQCD framework thatwas de- velopeduptoNLO[14],thebasicconceptbeingtheapplicationof the factorisationtheoremto calculatethecross section ofsingle- inclusivehadron production. The authors ofRef. [14] discuss the sensitivityof COMPASS data to g(xg) interms ofcontributions from“direct-photon”, γgqq¯ (PhotonGluon Fusion),andfrom

“resolved-photon”subprocesses,qgandgg,wherethephotonacts as a source of partons. Similarly, they consider direct γqqg (QCD Compton) as well as resolved qq and gq subprocesses for thebackground.These contributionsto thecrosssection are rep- resented schematically in Fig. 1. In the framework of collinear fragmentation, photo-absorption on quarks, γqq,is not con- tributingtohighpT hadronproduction.

In order to gain confidence in the applicability of this pQCD framework to single-hadron production with longitudinally po- larisedbeamandtarget, an importantstepisto comparepredic- tionsofthismodeltomeasurementswithbeamandtargetunpo- larised,forwhichthePDFsarewellknown.Whilegoodagreement was found by RHIC experiments on the production of high-pT hadrons in pp collisions at

s200 GeV [16,17], complications arisewhenhardscatteringsubprocessesareprobedinthe“thresh- old” regime, in which large logarithmic contributions from soft and collinear gluons play a significant role [18]. Such contribu- tionsbecomedominantattheCOMPASScentre-of-massenergyof

s18 GeV.Whentakenintoaccount byatechnique knownas

“threshold resummation”at next-to-leadinglogarithm (NLL)[18], the calculations reproduce the COMPASS cross section measure- ments[19]withintheoreticaluncertainties.

In thisLetter, we analyse the quasi-realphotoproduction data collected by COMPASS from 2002 to 2011 on longitudinally po- larised deuteron and proton targets. In Sec. 2, we give a brief descriptionoftheexperimentalsetup,anddetailsonthedatase- lectioncan be foundin Sec.3.The procedure fortheasymmetry determinationisdescribedinSec.4.InSec.5,wepresentthecor- responding double spin asymmetries for single-inclusive hadron production asa function of their transverse momenta pT. These asymmetriesarecomparedtocalculationsthatwereperformedus- ingthecodeofRef.[14],whichdoesnotincludetheresummation ofthresholdlogarithms.

2. Experimentalsetup

The measurements were performed with the COMPASS setup using positive muons from the M2 beam line of the CERN SPS.

Adetaileddescription oftheexperimental setup canbe found in

Références

Documents relatifs

the Bjorken sum rule supplemented by some natural (but still speculative) assump- tions predicts a quite distinctive X behaviour of this function 181. b) The evolution with

These results can be a test of both the underlying probabilistic scheme of the QCD parton model and of the elementary interactions, as well as a way of learning about the

Abstract - Spin correlation parameter A n n ( s , 90°) and polarization parameter P(s,0 ) behaviour in the large angle pp- andJTN-scattering is consi- dered in the approach, based

The inclusive cross section for the photoproduction of neutral pions has been measured as a function of the transverse momentum, rapidity, and Feynman x of the π 0 mesons at an

An analysis of the underlying symmetry patterns led to interesting results for hadron spectroscopy, with the possibility of low-lying scalar states, seen as partners of the

three regions of E T jet (see Tab.. ) uncertainties are shown separately... The data are compared with LO and NLO QCD calculations using GRV photon PDFs and CTEQ5M proton PDFs.

Negative asymmetries were in fact observed for a polarized neutron target in both spectrometers in experiment E154 [13], with an average value of A k = −0.004 ± 0.001 for

The (QQq) baryons are perhaps the most inter- esting of ordinary hadrons, as they combine in a single object two extreme regimes: the slow motion of two heavy quarks in an