• Aucun résultat trouvé

SPIN EFFECTS IN HADRON SCATTERING AT LARGE ANGLES AND QUARK INTERACTION DYNAMICS

N/A
N/A
Protected

Academic year: 2021

Partager "SPIN EFFECTS IN HADRON SCATTERING AT LARGE ANGLES AND QUARK INTERACTION DYNAMICS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00224536

https://hal.archives-ouvertes.fr/jpa-00224536

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SPIN EFFECTS IN HADRON SCATTERING AT LARGE ANGLES AND QUARK INTERACTION

DYNAMICS

S. Troshin, N. Tyurin

To cite this version:

S. Troshin, N. Tyurin. SPIN EFFECTS IN HADRON SCATTERING AT LARGE ANGLES AND QUARK INTERACTION DYNAMICS. Journal de Physique Colloques, 1985, 46 (C2), pp.C2-235- C2-238. �10.1051/jphyscol:1985225�. �jpa-00224536�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, supplément au n°2, Tome 46, février 1985 page C2-235

SPIN E F F E C T S IN H A D R O N S C A T T E R I N G A T L A R G E A N G L E S A N D Q U A R K I N T E R A C T I O N D Y N A M I C S

S.M. Troshin and N.E. Tyurin

Institute for High Energy Physios, Serpukhov, U.S.S.R.

Résumé - Le comportement des paramètres An n( s , 90) et P(s,Q) pour la diffu- sion pp et 35"N dans le domaine des grands angles est considéré d'ap- rès la conception basée sur la résolution de l'équation dynamique pour l'amplitude de la diffusion dans la théorie quantique des champs Les paramètres Ann et Am peuvent osciller avec le changement de s.

Leur valeurs asymptotiques sont de 1/3 et de -1/3 respectivement. Ce comportement permet d'expliquer les valeurs expérimentales obtenues au ZGS. La polarisation P ( s , 9 ) dans le domaine des grands angles de la diffusion peut avoir une valeur considérable et ne pas dimi- nuer avec l'augmentation de s. Les relations entre s-dépendance de P(s,0 ) , An n( s , 90°) et la section différentielle sont discutées.

Abstract - Spin correlation parameter An n( s , 90°) and polarization parameter P(s,0 ) behaviour in the large angle pp- andJTN-scattering is consi- dered in the approach, based on the three-dimensional equation for the scattering amplitude in QFT. Parameters Ann and A>£ may have oscillating behaviour with s, and their asymptotic values are 1/3 and -1/3, respectively. This allows one to explain ZGS spin effects.

Polarization P ( s , 6 ) in large angle scattering may get a considerab- le value and does not decrease with s. Relations between s-dependen- cies of P ( s , Q ) , An n( s , 90°) and dg/dt (s, 90°) are discussed.

The interest in the theoretical and experimental study of spin effects in large ang- le hadron scattering is mainly related to important role of spin in a hadron and quark interaction dynamics at short distances.

QCD has serious problems in explanation of the data on spin effects. Although with known uncertainties the perturbative calculations should be applied to large angle scattering region. But they lead to zero values of polarization parameter P ( s , Q ) and spin-spin asymmetry A in all orders in oCs(Q2) due to s-channel helicity con- servation.

It might be noted that as well as QCD many theoretical models lead to equality P(s, 0 ) = 0 although their predictions for spin-spin asymmetries are found non-zero due to account of additional contributions out of perturbative frameworks of QCD. Measu- rements of spin-spin asymmetries and recent AGS results on polarization in pp-scat- tering confirm the conclusion that spin effects can not be neglected at high ener- gies.

In this situation it seems natural to pay attention to theoretical approaches which a priori do not imply s-channel helicity conservation. We use the approach based on <JFT three-dimensional dynamic equation for the scattering amplitude F=F [U].

Through this equation/1/ the amplitude is related to the generalized reaction mat- rix (U-matrix) which is relativistic generalization of the reaction matrix in quan- tum mechanics. We have in the c.m.s. for the case of two spin 1/2 hadrons (fp| =

= 1*1 = |T|):

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985225

(3)

C2-236 JOURNAL DE PHYSIQUE

To choose t h e U-matrix we use d e f i n i t e ~ o n s i d e r a t i o n s / ~ / on quark s t r u c t u r e of had- r o n s and t h e i r i n t e r a c t i o n s which a r e s p e c i f i e d below.

We assume t h a t i n t e r a c t i o n of t h e hadronic s t r u c t u r e s ( v i r t u a l c l o u d s ) r e s u l t s in appearance of some e f f e c t i v e f i e l d Veff., and valence quarks a r e independently s c a t - t e r e d by Veff,. The U-matrix i s chosen i n t h e impact oarameter r e p r e s e n t a t i o n i n

t h e form of product: n. n-

I t i s assumed t h a t valence quarks a r e concentrated i n t h e c e n t e r of t h e i r . h a d r o n s . The f u n c t i o n s f q ( s q , b) a r e r e l a t e d t o dynamics of quark s c a t t e r i n g i n t h e f i e l d Veff. The b-deoendence of f q ( s q , b ) i s chosen i n such a way t o provide t h e r e s u l - t i n g U-matrix i n t h e form which follows from t h e known a n a l y t i c a l p r o p e r t i e s of t h e amplitude F o v e r c o s e and t h e b a s i c e q u a t i o n F = Flu]. Namely f q ( s , b) =

= gq(s)exu(-m b ) , where mq denotes t h e mass of valence q-quark. Such a form f o r quark "amplitudes" can be r e l a t e d t o q mechanism f o r quark s c a t t e r i n g when q-quark i n t e r a c t i o n r a d i u s is determined by i t s s i z e : R - r Wm-? We put g q ( s )=

= gqsA w i t h account f o r polynomial boundness of U(s, t ) and req?iregent of asympto- t i c a l growth of hadronic t o t a l c r o s s - s e c t i o n s : 6 t o t ( ~ ) - 1 0 g 2 s . For s i m p l i c i t y va- lence quark masses and quark momenta a r e considered equal.

These assumptions d e f i n e quark model f o r matrix/'/. I t should b e noted t h a t t h e y a r e n o t r e l a t e d t o any p a r t i c u l a r region of t - v a l u e s , and r e s u l t i n g U-matrix unam- biguously d e f i n e s t h e amplitude F = F[U] v i a eq. (1). The method o f c a l c u l a t i o n is founded on t h e a n a l y s i s of t h e impact parameter plane s i n g u l a r i t i e s of t h e ampli- tude i n s-channel. I t allows one t o o b t a i n e x p l i c i t l y t h e s c a t t e r i n g amplitudes f o r a l l v a l u e s of t o r e / 3 / . In t h i s way t h e s o f t and hard p a r t s of hadronic i n t e r a c -

t i o n s a r e considered Simultaneously. hll

Bq. (2) was g e n e r a l i z e d s o a s t o account f o r s p i n . The r e l a t i o n

Ah

= si bet-

i=l ween hadron h e l i c i t y and valence quark h e l i c i t i e s was used. We s h a l l i n t r o d u c e two f u n c t i o n s f f and f o which correspond t o h e l i c i t y f l i p and n o n - f l i p quark s c a t t e r i n g by Veff:

F a c t o r

a >

1 accounts f o r a more c e n t r a l mechanism o f quark h e l i c i t y - f l i p s c a t t e - r i n g . A p o s s i b l e form o f t h e p o t e n t i a l Veff was d i s c u s s e d i n r e f . i 4 / and conclusion was deduced on i n e q u a l i t y of t h e phases Ipo(s) $ y f ( s ) . C a l c u l a t i o n of t h e ampli- t u d e s f o r t h e f i x e d angle region was performed i n ref.141.

I t seems i n t e r e s t i n g t o s p e c i f y t h e i n t e r a c t i o n p i c t u r e assumed above t o introduce d e f i n i t e p h y s i c a l i n t e r p r e t a t i o n . We s h a l l assume t h a t v i r t u a l cloud a r i s i n g due t o i n t e r a c t i o n of hadronic s t r u c t u r e s c o n t a i n s n e a r l y on-shell aq-pairs. The number of quarks i n such a cloud can be estimated by q u a n t i t y Nq(s) = ( I - k ) &/mq, where k i s a p a r t of t o t a l i n i t i a l energy c a r r i e d by valence quarks. We assume f u r t h e r t h a t i n t h e c a s e of h e l i c i t y n o n - f l i p quark s c a t t e r i n g valence quarks f e e l t h e opa- c i t y of produced v i r t u a l cloud and t h e r e f o r e t h e f u n c t i o n g o ( s ) i s t o be proportio- n a l t o N ( s ) . On t h e c o n t r a r y h e l i c i t y f l i p quark s c a t t e r i n g corresoonds e f f e c t i v e l y q t o valence quark i n t e r a c t i o n with one quark from t h e cloud only. It i s n a t u r a l t o conform t o such a p i c t u r e t h e followi_ng r e l a t i o n

(4)

Eq. ( 4 ) l e a d s t o e s s e n t i a l and non-vanishing a t s + o c p o l a r i z a t i o n i n e l a s t i c s c a t - t e r i n g f o r t h e f i x e d angle region. We f i n d a non-vanishing term of p o l a r i z a t i o n pa- rameter f o r p p - s c a t t e r i n g

0

4 s i n A ( s ) s i n 2 6 (cos3

$

+ s i n 3

11

m2

P ( s , ~ ) =

-[...(a)].

( 5 )

(1-k)N 3cos20 +5 + s i n 3 g + ( 1 - k ) - ~ ~ - ~ s i n 2 0

In eq. ( 5 ) N s t a n d s f o r t o t a l number of valence quarks i n t h e hadrons and

A

( s ) =

= y f ( s ) - q o ( s ) . I t is g e n e r a l l y accepted t h a t t h e valence quarks c a r r y 1/2 of t h e t o t a l i n i t i a l energy.

Fig. 1

-

The behaviour of p o l a r i z a t i o n parameter P ( s ,

0

) f o r p p - s c a t t e r i n g a t p,, =

= 28 GeV/c f o r t h r e e d i f f e r e n t values of parameter k=0.2, k d . 5 and k d . 8

F i g u r e 1 shows t h e comparison of eq. (5) w i t h t h e d a t a l 5 / i n t h e c a s e of s i n l \ ( s ) = -,I. Solid curve corresponds t o t h e c a s e when k=1/2. The behaviour of P ( s , t ) a t p i < 4 ( ~ e ~ / c f s h o u l d be a t t r i b u t e d t o t h e f i x e d t region where h e l i c i t y amplitudes d e c r e a s e a s an exponent exp ( - ' I I / N ~ F ) and p o l a r i z a t i o n has f a m i l i a r o s c i l l a t i n g p a t t e r n .

The q u a n t i t y A ( s ) determines a l s o t h e behaviour of spin-spin asymmetries:

A

and of d i f f e r e n t i a l c r o s s - s e c t i o n 2m2

%(go0) =€jO(s)(l- (&[ I.+ {(I-B)] C O S ~ A(s)]

,

where 6 ,(s)- ( l / s ) 2 X N t 3 and t h e o s c i l l a t i n g f a c t o r i s s i n g l e d o u t I 4 / . Note t h a t a s i m i l a r conclusion about o s c i l l a t i o n s i n d i f f e r e n t i a l c r o s s - s e c t i o n was done i n r e f . / 6 / .

(5)

JOURNAL DE PHYSIQUE

Fig. 2

-

The behaviour of spin c o r r e l a t i o n parameter A ' nn'

Eq. (6) allows one t o f i t f a s t i n c r e a s e of A,, observed a t t h e energy region 8- -12 GeV (Fig. 2). There a r e two p o s s i b l e modes i n s-dependence of 4, s u b j e c t t o t h e i r agreement w i t h t h e data. They correspond t o t h e c a s e s when A(s) i s a c o n s t a n t o r i t i d e n f i n i t e l y grows with energy.Respectively,either parameter & g e t s i t s maxi- mum value a t 12 GeV and then decreases monotonously t o i t s asymptotical value 1/3 o r parameter hn o s c i l l a t e s around t h e value 1/3 and decreases i n magnitude.In t h e l a t - t e r case p p - d i f f e r e n t i a l c r o s s s e c t i o n ( 7 ) has got t o o s c i l l a t e i n preasymptotic re- gion also.Asymptotic regime i n hn and d6/dt behaviour t a k e s p l a c e a t e n e r g i e s of o r d e r of 1000GeV.

It may be shown t h a t eq. (5) with minor changes i s a l s o v a l i d f o r t h e s c a t t e r i n g of spin 0 and spin 1/2 particles/7/:

m2

P ( s , ~ ) Z 2 t ? - l ( l - k ) - l s i n ~ ( s ) s i n ! 2 [ l + ( l - k ) - ~ ~ - ~ s i n ~

!]-l[l+~(+)]

( 8 ) Note t h a t Eq. ( 8 ) i s w r i t t e n f o r t h e s c a t t e r i n g in forward hemisphere. Therefore, f o r i n s t a n c e , n ~ - s c a t t e r i n g p o l a r i z a t i o n a t

e=

60° can achieve 40%. Large value of ~ o l a r i z a t i o n i n meson-nucleon l a r g e angle s c a t t e r i n g is a l s o p r e d i c t e d by mas- s i v e quark model/8/.

Thus i n t h i s paper t h e model (U-matrix quark model) has been considered which l e a d s t o e s s e n t i a l and non-vanishing a t s + b o p o l a r i z a t i o n f o r l a r g e angle e l a s t i c s c a t - t e r i n g . Experimental observation of such a behaviour w i l l confirm t h e i n t e r a c t i o n mechanism of hadron c o n s t i t u e n t s which r e s u l t e d i n eq. ( 6 ) . The model p r e d i c t s t h e p o s s i b i l i t y of o s c i l l a t i n g behaviour f o r p o l a r i z a t i o n P ( s , 8 ), and t h e parameters h n ( s , 90°) and dg/dt (go0) in oreasymptotic region.

REFERENCES

1. LOGUNOV A.A. e t a l . 'beor. Math. Phys.", 6, (1971) 157.

2. TROSHIN S.M., 'X"IURIN N.E. P r e p r i n t IREP 83-62, Serpukhov, 1983.

3. TROSHIN S.M., TYURIN N.E. P a r t i c l e s and Nuclei, v o l . 15, D. 53,Atomizdat, 1984.

4. TROSHIN S.M., TnmIN N.E. Hadronic J o u r n a l , 6, (1983) 259.

5. RAYMOND R.S. e t a l . P r e p r i n t IQb HE 84-11, 1984.

6. PIRE B., RALSTON 1.P. Phys, Lett., 117, (1982) 233.

7. TROSBIN S.M., TYURIN N.E. Yad. F i e . , 3, (1981) 1347; p r e p r i n t IHEP 83-205.

8 . CHIAPFITA P., SOFF%R J. Phys. Rev., E , (1983) 2162.

Références

Documents relatifs

The Hall effect in ferromagnetic rare earth metals shows a number of features which can be related to the scattering of conduction electrons by 4 f spin

This indicates that the spin polarization of the electron states in the solid has the dominating influence as opposed to the effects of electron-magnon scattering in the manner

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The recently proposed method [16] to determine the spin-wave stiffness in the helical magnets based on DM interaction in the FP state, using polarized small-angle neutron

contribution of the spin misalignment to the total magnetic SANS cross section via the study of the individual magnetization Fourier components; it provides important

models, or indeed the strict spherical model, where the order parameter density is well defined its fluctuations being typically of order I IN where N is the system size in the case

The asymmetry corresponding to the allowed approximation is extracted directly after corrections for the measured polarization of the beam and the magnetic mirror effect of

scattering cross-sections at energies above the Coulomb barrier, is interpreted as an interference effect between rainbow scattering and the contribution coming from the