• Aucun résultat trouvé

Coupling of quantum emitters in 4H SiC nanopillars

N/A
N/A
Protected

Academic year: 2021

Partager "Coupling of quantum emitters in 4H SiC nanopillars"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02060609

https://hal.archives-ouvertes.fr/hal-02060609

Submitted on 7 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Coupling of quantum emitters in 4H SiC nanopillars

A Al Atem, A Almutairi, S Castelletto, Nicolas Chauvin, B Canut, G Guillot, J Bluet

To cite this version:

A Al Atem, A Almutairi, S Castelletto, Nicolas Chauvin, B Canut, et al.. Coupling of quantum emitters in 4H SiC nanopillars. Crystal defects for qubits, single photon emitters and nanosensors, Jul 2018, Brème, Germany. 2018. �hal-02060609�

(2)

Coupling of quantum emitters in 4H SiC nanopillars

Aim

Develop a scalable integrated process compatible with standard CMOS technologies, to optimise light collection from quantum emitters in SiC.

Applications : Technological building block for

 Single Photon Source

 Platform for optical spin manipulation

PL and LTPL results

n// = 2.55 n = 2.59

𝛌 = 𝟗𝟎𝟎 𝒏𝒎 𝟏𝟏𝟎𝟎 𝒏𝒎 𝟏𝟐𝟓𝟎 𝒏𝒎

NA = 0.4

Dipole : // or  at 2µm from top

Conclusion

Development of a scalable fast and costless process to design nanopillars in SiC ;

Evidence of VSi and VSiVC signal enhancement ; Confirmation of V1, V2 line polarisation.

Next

µ-Pl : spectral, LT, NIR excitation, Single …

A.S. Al Atem

1

, A. F. Almutairi

2

, S. Casteletto

2

, N. Chauvin

1

, B Canut

1

, G. Guillot

1

and J. M. Bluet

1

1 Univ Lyon, INSA Lyon, CNRS, INL, UMR5270, F-69621 Villeurbanne, France

2 RMIT University, School of Engineering, Cnr. Plenty Rd & McKimmies Lane, Bundoora, Melbourne, VIC 3083, Australia.

Abdul Salam Al Atem thesis is supported by a doctoral research grant from the Région Auvergne Rhône-Alpes

State of the art

Emission enhancement PhC coupling approach

Collection enhancement Guiding approach

Calusine et al. APL 105(1), p.

11123, 2014

Radulaski et al. , Nano Letter 17(3), pp1782-1786,2017.

Approach

Realization of nano pillars array using optical lithography (laser lithography, l=350 nm) and ICP etching (SF6/O2).

Sample : 4H n-type SiCrystal

SiC-4H

FDTD Simulations

0.0 0.2 0.4 0.6 0.8 1.0 1.0

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Effective refractive index

D/l

HE11 TE01 TM01 HE21 EH11 HE12 HE31 EH21 TE02 TM02 HE41 HE22 EH31

Defect l

(nm) D/l F F//

VSi 900 0.83 18 159 VSi-VC 1100 0.68 3 59

NV 1250 0.6 0.9 265

Multimodal structure of guided wave depending on defect (l). F is quite bigger for // pillar (// c axis) polarised emitter due to very poor collection for bulk in this configuration.

𝐹 = 𝐼𝑐𝑜𝑙𝑙. −𝑝𝑖𝑙𝑙𝑎𝑟

𝐼𝑐𝑜𝑙𝑙. −𝑏𝑢𝑙𝑘

H+ Implantation at 300 keV (Rp=2µm)

𝑭𝒍𝒖𝒆𝒏𝒄𝒆 = 𝟏𝟎𝟏𝟑 𝒄𝒎−𝟐

𝟏𝟎𝟏𝟔 𝒄𝒎−𝟐 𝑻𝒂𝒏𝒏𝒆𝒂𝒍 = 𝒖𝒏𝒂𝒏𝒏𝒆𝒂𝒍𝒆𝒅 𝟕𝟓𝟎°𝑪 𝟗𝟎𝟎°𝑪

532 nm ; 315W

On 1013cm-2 sample : 900 kcts.s-1 at 40 µW 30 times bulk signal

780 nm ; 41 mW

Long pass 850 nm :

Saturation at 1,6 MCts.s-1

0,0001 0,001 0,01 0,1 1

0 5 10 15

counts (a.u.)

time/ns

Spectral

NIR excitation

Singles

LTPL results

collective excitation

Global enhancement factor 2-3 times but quite higher for V1 and V2 line according to FDTD simulation. Indeed V1 is polarised // to c- axis [1] while V1’ is polarised around 60° to c-axis [2].

671 nm  100 W.cm-2 T=12K

0.8 0.9 1.0 1.1 1.2 1.3

0 100 200 300 400 500 600 700 800 900 1000

PL3

1.127 eV 1.122 eV

PL Intensity (a. u. )

Energy (eV)

Without Pillars Pillars

1.100 eV

PL1/PL2

1.153 eV

PL4

unknown

References : [1] Janzén E, et al. (2009), Physica B 404:4354–4358.

[2] Bracher et al, PNAS, vol, 114 n°16, 406-4065, 2017

t = 2 ns

Références

Documents relatifs

Trenched-implanted-gate 4H–SiC vertical-channel JFET (TI-VJFET) have been fabricated with self-aligned nickel silicide source and gate contacts using a process sequence that

We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as one nanometer and separated from each others by only few

Nuclear reaction analysis (NRA) and secondary ion mass spectroscopy (SIMS) measurements were performed to study the deuterium profiles after subsequent annealing at 1000-1250°C

Left: evolution with increasing fluences of the X-ray scattered intensity distribution along the surface direction close to the (0004) reflection of SiC implanted with 540 keV

En effet à partir des contributions du chapitre 5 dénommé « la détermination du statut et du niveau de vulnérabilité d’un individu à travers les Réseaux Bayésiens dans

In Chapter 2 the experimental techniques and experimental conditions used for samples characterisation (SIMS, PL and Raman) have been given. In Chapter 3 the

This value is very low compared to temperatures needed for post-implantation annealing (~1700°C) or classical SiC CVD epitaxy (~1400°C-1600°C), reducing thus device

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des