• Aucun résultat trouvé

ROLE OF WATER LAYER AT AN ICE SURFACE IN THE KINETIC PROCESSES OF GROWTH OF ICE CRYSTALS - GROWTH OF SNOW CRYSTALS AND FROST HEAVING

N/A
N/A
Protected

Academic year: 2021

Partager "ROLE OF WATER LAYER AT AN ICE SURFACE IN THE KINETIC PROCESSES OF GROWTH OF ICE CRYSTALS - GROWTH OF SNOW CRYSTALS AND FROST HEAVING"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00226313

https://hal.archives-ouvertes.fr/jpa-00226313

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ROLE OF WATER LAYER AT AN ICE SURFACE IN THE KINETIC PROCESSES OF GROWTH OF ICE CRYSTALS - GROWTH OF SNOW CRYSTALS AND

FROST HEAVING

T. Kuroda

To cite this version:

T. Kuroda. ROLE OF WATER LAYER AT AN ICE SURFACE IN THE KINETIC PROCESSES OF GROWTH OF ICE CRYSTALS - GROWTH OF SNOW CRYSTALS AND FROST HEAVING.

Journal de Physique Colloques, 1987, 48 (C1), pp.C1-487-C1-493. �10.1051/jphyscol:1987167�. �jpa-

00226313�

(2)

JOURNAL DE P H Y S I Q U E

C o l l o q u e C1, s u p p l 6 m e n t au n o 3, Tome 4 8 , mars 1 9 8 7

ROLE OF WATER LAYER AT AN ICE SURFACE IN THE KINETIC PROCESSES

OF GROWTH OF ICE CRYSTALS

-

GROWTH OF SNOW CRYSTALS AND FROST HEAVING T . KURODA

Institute of Low Temperature Sciences, Hokkafdo University, Sapporo 060, Japan

&sun6

-

Dans cette 6tude thkrique, les propri&t&s thermodynamiques de la couche d'eau existant de maniere stable h l'interface glace/vapeur ou glace/particule de sol h des t e r a t u r e s infbrieures h O°C sont discutges. I1 est mntr& que la couche d'eau h la surface de la glace joue un r6le important dans la cinbtique de croissance de la glace : 1) croissance des cristaux de neige et 2) pous&e du givre.

Pour ce dernier cas, il existe une surfusion critique

AT^

en-dessous de laquelle une lentille de glace est continuellement form&e sans avanc6e du front de conghlation du &t& du sol non gel&.

A b s t r a c t

-

I n t h i s t h e o r e t i c a l s t u d y , we d i s c u s s e d thermodynamical p r o p e r t i e s of water l a y e r which e x i s t s i n a s t a b l e way a t ice/vapour i n t e r f a c e o r a t i c e / s o i l p a r t i c l e i n t e r f a c e a t t e m p e r a t u r e s below O°C. Then, we showed t h a t t h e water l a y e r a t t h e i c e s u r f a c e p l a y s a n important r o l e i n t h e k i n e t i c p r o c e s s e s of growth of i c e : 1 ) growth of snow c r y s t a l s and 2) f r o s t heaving. A s t o f r o s t heaving, i t was shown t h a t t h e r e i s a c r i t i c a l supercooling ATc below which i c e l e n s i s c o n t i n u o u s l y formed without an advance of f r e e z i n g f r o n t towards t h e unfrozen s o i l .

1. I n t r o d u c t i o n

There a r e s e v e r a l phenomena concerning t h e phase t r a n s f o r m a t i o n i n H20 systems i n which t h e water l a y e r a t an i c e s u r f a c e below O°C p l a y s an important r o l e . For an example, Kuroda and Lacmann[l] t h e o r e t i c a l l y i n v e s t i g a t e d t h e c h a r a c t e r i s t i c s of t h e vapour growth k i n e t i c s of i c e s u r -

f a c e covered w i t h t h e q u a s i - l i q u i d

l a y e r (V-QL-S-mechanism) on t h e b a s i s R frost heaving

over burden h

of a phenomenological model proposed .1

L & I

3.

by Lacmann and S t r a n s k i [ 2 ] . They

- - -

argued t h a t t h e complicated h a b i t

- - -

I c e L e n s

- - -

change of snow c r y s t a l s , i . e . i c e

- - - -

Water Layer

c r y s t a l s grown from t h e vapour, i s

- - - -

/(thickness

6 )

e s s e n t i a l l y caused by t h e change i n t h e e q u i l i b r i u m t h i c k n e s s of t h e q u a s i - l i q u i d l a y e r on b a s a l and prism f a c e s w i t h d e c r e a s i n g temperature.

Ohtomo and Wakahama[3] a s c r i b e d t h e measured l a r g e v a l u e of d i f f u s i o n c o n s t a n t i n t h e g r a i n boundary a t 272.7K t o g r a i n boundary melting.

Recently, Kuroda[4] a p p l i e d t h e theo- r e t i c a l s t u d y of t h e V-QL-S-mechanism

111 t o t h e k i n e t i c p r o c e s s e s of f r o s t heaving occuring a t water l a y e r be- tween i c e l e n s and s o i l p a r t i c l e s

(Fig. 1). F i g . 1 Schematic r e p r e s e n t a t i o n of k i n e t i c

p r o c e s s e s a t a water l a y e r between i c e l e n s and s o i l p a r t i c l e s , i . e . f r e e z i n g of t h e l a y e r and s u c t i o n of p o r e w a t e r ( a f t e r [ 4 ] ) .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987167

(3)

C1-488 JOURNAL DE PHYSIQUE

I n o r d e r t o pursue t h e k i n e t i c p r o c e s s e s w i t h which t h e water l a y e r a t i c e sur- f a c e i s concerned, we need thermodynamical f u n c t i o n s of t h e water l a y e r such a s chemi- c a l p o t e n t i a l Ap(6) depending on i t s t h i c k n e s s 6 . Forms of t h e f u n c t i o n s depend on t h e model which e x p l a i n s t h e o r i g i n of t h e s t a b l e e x i s t e n c e of t h e l a y e r below O°C.

I n t h i s t h e o r e t i c a l s t u d y , however, we d i s c u s s t h e g e n e r a l thermodynamical p r o p e r t i e s of t h e l a y e r without a model, a s f a r a s p o s i b l e ( s e c t i o n 2) and pursue t h e r o l e of t h e w a t e r l a y e r a t t h e i c e s u r f a c e i n t h e k i n e t i c p r o c e s s e s of growth of i c e c r y s t a l s , e.g. growth of snow c r y s t a l s ( s e c t i o n 3) and f r o s t heaving ( s e c t i o n 4 ) .

2. Thermodynamical p r o p e r t i e s of a w a t e r l a y e r a t an i c e s u r f a c e

On t h e b a s i s of s e v e r a l p i e c e s of experimental ( s e e R e f . [ l ] ) and t h e o r e t i c a l s t u d i e s [ l , 2 , 5 ] , i t i s w e l l known t h a t an i c e s u r f a c e , i . e . ice/vapour i n t e r f a c e i s covered w i t h a q u a s i - l i q u i d l a y e r i n e q u i l i b r i u m a t t e m p e r a t u r e s a p p r e c i a b l y below m e l t i n g p o i n t Tm (=O°C) of i c e .

I n a d d i t i o n , a s t o f r o s t heaving, measurements u s i n g c a l o r i m e t r y [ 6 ] and NMR[7]

show a l s o t h a t a t h i n water l a y e r e x i s t s between i c e l e n s and s o i l p a r t i c l e s i n a s t a b l e way a t t e m p e r a t u r e s below O°C.

L e t Ap(6) denote t h e chemical p o t e n t i a l of a water l a y e r (so c a l l e d q u a s i - l i q u i d l a y e r a t i c e / v a p o u r i n t e r f a c e o r water l a y e r a t i c e - l e n s / s o i l - p a r t i c l e i n t e r f a c e ) whose t h i c k n e s s is 6 and Avw denote t h e chemical p o t e n t i a l of bulk w a t e r . Chemical p o t e n t i a l is s o scaled that it is z e r o f o r bulk i c e . Because of molecular i n t e r a c - t i o n s among i c e , water and vapour o r s o i l p a r t i c l e s , Av(6) i s considered t o depend on t h e t h i c k n e s s 6 of t h e water l a y e r .

S i n c e t h e b u l k water i s u n s t a b l e a t temperatures below Tm, i t s chemical poten-

t i a l Avw = Om

AT IT^ ---

(1)

i s p o s i t i v e a t T < Tm (Qm: l a t e n t h e a t of f u s i o n p e r molecule, AT=Tm-T:supercooling;l N e v e r t h e l e s s , s e v e r a l experimental r e s u l t s confirmed t h a t a w a t e r l a y e r can e x i s t a t an i c e s u r f a c e i n a s t a b l e way even T < Tm a s mentioned above. It means t h a t t h e chemical p o t e n t i a l Av(6) of t h e t h i n water l a y e r h a s t o be s m a l l e r t h a n Avw. However, Av (6) must approach Apw a s 6 + m:

AP (6-) = Avw

,

s i n c e t h e water l a y e r w i t h i n f i n i t e t h i c k n e s s can b e regarded a s b u l k water. Thus, Ap(6) i s considered t o be a n i n c r e a s i n g f u n c t i o n of t h e l a y e r t h i c k n e s s 6 (Fig.2).

Namely, Ap(6) d e c r e a s e s w i t h d e c r e a s i n g 6 and i t is expected t h a t t h e r e i s a equi- l i b r i u m t h i c k n e s s 6eq f o r which t h e chemical p o t e n t i a l of t h e water l a y e r i s equal t o t h a t of b u l k i c e , i . e .

Av(6eq) = 0

---

(2)

This c o n d i t i o n i s n o t h i n g but minimizing t h e t o t a l f r e e energy of t h e system w i t h r e s p e c t t o 6. We can o b t a i n t h e e q u i l i b r i u m t h i c k n e s s 6, as a f u n c t i o n of super- c o o l i n g AT from eq. ( 2 ) , i f Ap(6) i s known a s a f u n c t i o n

01

6. 6eq i s expected t o d e c r e a s e w i t h i n c r e a s i n g AT, because t h e i n s t a b i l i t y of bulk l i q u i d i n c r e a s e s w i t h i n c r e a s i n g AT(e.g. s e e eq. ( 6 ) ) .

We can q u a l i t a t i v e l y d i s c u s s a l s o t h e dependence on t h e t h i c k n e s s 6 of t h e equi- l i b r i u m vapour p r e s s u r e p ( 6 ) of a t h i n water l a y e r u s i n g a g e n e r a l r e l a t i o n between p ( 6 ) and Ap(6):

- - -

-

i c e

- -

- - - - - - - - -

- - - - i c e - -

,+ bi/w

water layer

$+a

Fig.2 Chemical p o t e n t i a l Ap(6) Fig.3 Schematic r e p r e s e n t a t i o n of i n t e r - of a w a t e r l a y e r r e l a t i v e t o f a c i a l f r e e energy of t h e i c e and a-phase b u l k i c e a s a f u n c t i o n of t h e system ( a ) without w a t e r l a y e r and (b) l a y e r t h i c k n e s s 6. w i t h water l a y e r .

(4)

k~ l n [ p ( 6 ) l p i 1 = A I J ( ~ ) ,

---

(3)

where p i is t h e e q u i l i b r i u m vapour p r e s s u r e of i c e . p ( 6 ) i s considered t o be equal t o pi f o r 6 = 6eq, t h e n t o i n c r e a s e w i t h i n c r e a s i n g 6 and t o approach t h e e q u i l i b r i u m vapour p r e s s u r e pw of b u l k water a s 6 -+ rn.

It should be noted t h a t c o n c r e t e e x p r e s s i o n s f o r t h e f u n c t i o n s Ap(6), 6eq(AT) and p ( 6 ) depend on t h e model which e x p l a i n s t h e s t a b l e e x i s t e n c e of a water l a y e r a t T<Tm

,

even though t h e y show t h e same behaviour a s d i s c u s s e d above i n any models.

For a n example, according t o Lacmann-Stranskimodel[2], o r i g i n of a q u a s i - l i q u i d l a y e r below Tm i s p o s i t i v e v a l u e of t h e w e t t a b i l i t y parameter AobD defined by t h e following equation:

ham = a i l a

-

( a i l w

+

a,/,).

---

( 4 )

Here O i P

i s t h e i n t e r f a c i a l t e n s i o n ( s p e c i f i c i n t e r f a c i a l f r e e energy) between i c e and a-p a s e without a water l a y e r a s shown i n Fig.3a(a-phase corresponds t o t h e vapour i n t h e c a s e of growth of snow c r y s t a l s and t o s o i l p a r t i c l e i n t h e c a s e of f r o s t heaving), ailw i s t h a t between i c e and water and awla i s t h a t between water and a-phase a s shown i n Fig.3b.

The e x p r e s s i o n s f o r Ap(6) and 6," derived from t h e model a r e a s follows[2,4]:

where vm i s t h e volume of a water molecule, and A and n a r e t h e parameters concern- i n g molecular i n t e r a c t i o n s among i c e , water and vapour of s o i l p a r t i c l e . Ap(6) i s smaller t h a n t h e chemical p o t e n t i a l of b u l k w a t e r ( f i r s t term) by a n amount of t h e second term i n c l u d i n g t h e w e t t a b i l i t y parameter Aam.

3. Growth of snow c r y s t a l s a t temperatures not. f a r below O°C

Snow c r y s t a l s a r e i c e c r y s t a l s grown from water vapour i n t h e a i r . Therefore, q u a s i - l i q u i d l a y e r on an i c e s u r f a c e i s expected t o i n f l u e n c e t h e growth mechanism of t h e snow c r y s t a l s a t temperatures n o t f a r below O'C. The growth mechanism of an i c e s u r f a c e covered w i t h t h e q u a s i - l i q u i d l a y e r was f i r s t proposed by Lacmann and StranskiL21 and i t was a p p l i e d t o t h e i n t e r p r e t a t i o n of complicated h a b i t change of snow c r y s t a l s by Kuroda and Lacmann[l].

I f t h e a c t u a l p r e s s u r e p of water vapour is l a r g e r t h a n t h e e q u i l i b r i u m vapour p r e s s u r e p(6) of a q u a s i - l i q u i d l a y e r w i t h a t h i c k n e s s 6 , water vapour i s condensed i n t o t h e q u a s i - l i q u i d l a y e r and consequently t h e t h i c k n e s s 6. i n c r e a s e s . The con- d e n s a t i o n r a t e Rc i s expressed by Hertz-Knudsen equation, i . e .

where m i s t h e mass of a water molecule. Since p ( 6 ) i s a i n c r e a s i n g f u n c t i o n of 6, Rc d e c r e a s e s w i t h i n c r e a s i n g 6.

On t h e o t h e r hand, t h e chemical p o t e n t i a l Ap(6) of t h e q u a s i - l i q u i d l a y e r becomes p o s i t i v e , when i t s t h i c k n e s s 6 exceeds t h e e q u i l i b r i u m t h i c k n e s s 6eq because of t h e condensation of water vapour i n t o t h e q u a s i - l i q u i d l a y e r . Therefore, f r e e z - i n g occurs a t t h e i n t e r f a c e between i c e and q u a s i l i q u i d l a y e r , s o t h a t 6 decreases.

The f r e e z i n g r a t e Rf(Ap(6)) i n c r e a s e s a s Ap(6) i n c r e a s e s . Namely, i t i n c r e a s e s w i t h i n c r e a s i n g 6.

Under s t e a d y s t a t e c o n d i t i o n s , both r a t e s Rc and Rf must be equal, i . e . From t h i s equation, we can e v a l u a t e t h e r a t e R,(T, Ap) of vapour growth of a n i c e s u r f a c e covered w i t h a q u a s i - l i q u i d l a y e r and i t s t h i c k n e s s 6 s t ( ~ , Ap) under steady s t a t e c o n d i t i o n s a s f u n c t i o n s of temperature T and e x c e s s vapour p r e s s u r e Ap.

I t should be n o t i c e d t h a t t h e v a l u e of t h e edge energy of a two-dimensional n u c l e u s a t t h e q u a s i - l i q u i d l i c e i n t e r f a c e i s much s m a l l e r t h a n a t a v a p o u r / i c e i n t e r f a c e without q u a s i - l i q u i d l a y e r , and consequently t h e q u a s i - l i q u i d l a y e r promotes t h e growth of i c e c r y s t a l s from t h e vapour phase a t lower s u p e r s a t u r a t i o n s

F. 7

(5)

JOURNAL DE PHYSIQUE

4. F r o s t heaving

4 . 1 R a t e of f r o s t heave d u r i n g continuous formation of i c e l e n s 141

K i n e t i c p r o c e s s e s of f r o s t heaving c a n b e d i s c u s s e d a l s o on t h e b a s i s of t h e thermodynamical p r o p e r t i e s of a t h i n water l a y e r between i c e l e n s and s o i l p a r t i c l e s ( F i g . l ) , i n t h e same way a s t h e k i n e t i c s of vapour growth of i c e c r y s t a l s covered w i t h t h e q u a s i - l i q u i d l a y e r .

A t f i r s t , l e t t h e t h i c k n e s s of t h e water l a y e r b e e q u a l t o t h e e q u i l i b r i u m t h i c k n e s s rSeq f o r which t h e chemical p o t e n t i a l

AM(^,^)

of t h e w a t e r l a y e r r e l a t i v e t o bulk i c e i s zero. On t h e o t h e r hand, t h e chemical p o t e n t i a l Av(rp) of p o r e water which f i l l s p o r e s among s o i l p a r t i c l e s i s l a r g e r t h a n t h a t of t h i n water l a y e r f o r T<Tm, s i n c e t h e d i s t a n c e rp from t h e s u r f a c e of s o i l p a r t i c l e t o t h e c e n t r a l p a r t of of t h e p o r e water i s l a r g e r t h a n t h e t h i c k n e s s 6eq of t h e water l a y e r ( F i g . 1 and 2 ) . I n g e n e r a l , m a t e r i a l t e n d s t o f l o w from t h e s t a t e of h i g h e r chemical p o t e n t i a l t o t h e s t a t e of lower chemical p o t e n t i a l . T h e r e f o r e , t h e p o r e water i s drawn towards t h e water l a y e r s o t h a t t h e t h i c k n e s s of t h e water l a y e r becomes l a r g e r t h a n t h e e q u i l i b r i u m t h i c k n e s s 6eq and consequently i c e l e n s i s pushed up. The g r a d i e n t of t h e chemical p o t e n t i a l a t t h e water l a y e r which i s a d r i v i n g f o r c e f o r t h e s u c t i o n of p o r e water i s approximately expressed a s

s i n c e t h e d i s t a n c e between water l a y e r and p o r e water i s of t h e o r d e r of mean r a d i u s rs of t h e s o i l ~ a r t i c l e s ( F i g . 1 ) ~ and t h e chemical p o t e n t i a l Ap(r ) o f p o r e w a t e r i s roughly assumed t o be e q u a l t o AM, of b u l k w a t e r ( F i g . 2 ) . Thus, t h e r a t e Rs of P t h i c k e n i n g of t h e water l a y e r by s u c t i o n of p o r e water may b e given by

where K i s t h e h y d r a u l i c c o n d u c t i v i t y n e a r t h e water l a y e r . The e s t i m a t e d v a l u e s of K from t h e experiment by Horiguchi(unpub1ished) a r e of t h e o r d e r of 1 0 ~ & 1 0 ~ cm2 s-l erg-1.

On t h e o t h e r hand, t h e chemical p o t e n t i a l Au(6) of t h e water l a y e r becomes p o s i t i v e , s i n c e i t s t h i c k n e s s becomes l a r g e r t h a n 6eq because of s u c t i o n of p o r e water. Therefore, f r e e z i n g o c c u r s a t t h e i n t e r f a c e between i c e l e n s and s o i l p a r t i c l e s , s o t h a t t h i c k n e s s 6 d e c r e a s e s . The r a t e Rf of t h i n n i n g of t h e water l a y e r by f r e e z i n g i s expressed a s

where D i s t h e s e l f - d i f f u s i o n c o n s t a n t of water molecules and a i s t h e molecular d i s t a n c e i n t h e water l a y e r .

When t h e t h i c k e n i n g r a t e Rs by s u c t i o n and t h e t h i n n i n g r a t e Rf by f r e e z i n g a r e e q u a l , f r e e z i n g f r o n t does n o t advance towards t h e unfrozen s o i l , but i c e l e n s i s c o n t i n u o u s l y formed. T h e r e f o r e , from t h e c o n d i t i o n s f o r s t e a d y s t a t e :

we c a n o b t a i n t h e l a y e r t h i c k n e s s 6 and t h e r a t e Rh of f r o s t heave d u r i n g c o n t i n - uous f o r m a t i o n of i c e l e n s a s f u n c t % n s of s u p e r c o o l i n g AT a t t h e water l a y e r [ 4 ] :

The o b t a i n e d r a t e R~ c o n s i s t s of a n o v e r a l l d r i v i n g f o r c e f o r f r o s t h e a v i n g ( s e e t h i c k arrow i n Fig.2) p r o p o r t i o n a l t o AT i n t h e numerator and a sum of t h e r e s i s t a n c e akT/D of t h e f r e e z i n g p r o c e s s and t h e r e s i s t a n c e r s / ~ of t h e s u c t i o n p r o c e s s i n t h e denominator.

Using numerical v a l u e s , Kuroda showed t h a t t h e r e s i s t a n c e akT/D i s n e g l i g i b l y small a g a i n s t t h e r e s i s t a n c e r s / K [4]. T h e r e f o r e , Rh can b e expressed a s

(6)

Namely, t h e r a t e of f r o s t heave i s s u b s t a n t i a l l y c o n t r o l l e d by t h e r a t e Rs of s u c t i o n of pore water a t t h e water l a y e r .

We d e r i v e d t h e r a t e of f r o s t heave under t h e assumptions t h a t supercooling AT i s g i v e n a t f r e e z i n g f r o n t and s o i l is s a t u r a t e d w i t h water. To pursue t h e r a t e of f r o s t heave i n a c t u a l system, we must combine t h i s s t u d y on k i n e t i c s a t t h e water l a y e r between i c e l e n s and s o i l p a r t i c l e s w i t h s t u d i e s on h e a t conduction p r o c e s s c o n t r o l l i n g AT and macroscopic mass t r a n s p o r t p r o c e s s from water t a b l e f o r compen- s a t i n g a d e c r e a s e i n w a t e r c o n t e n t due t o s u c t i o n of p o r e w a t e r n e a r f r e e z i n g f r o n t . 4.2 Conditions f o r continuous formation of i c e l e n s

I n s e c t i o n 4.1, we d e r i v e d t h e r a t e Rh of f r o s t heave d u r i n g continuous forma- t i o n of i c e l e n s which i s r e a l i z e d when o n l y t h e water drawn towards t h e f r e e z i n g f r o n t by s u c t i o n f r e e z e s and f r e e z i n g f r o n t does n o t advance downwards.

It i s h i g h l y d e s i r e d t o f i n d t h e c o n d i t i o n s f o r determining whether t h e f r e e z - i n g f r o n t advance, p e n e t r a t i n g through narrow water c h a n n e l s among s o i l p a r t i c l e s , o r n o t . There a r e twokey f a c t o r s concerned w i t h t h i s problem. One i s chemical p o t e n t i a l of i c e w i t h a s m a l l r a d i u s of c u r v a t u r e and t h e o t h e r i s s t a b l e e x i s t e n c e of a water l a y e r between i c e and s o i l p a r t i c l e s . I f a p a r t of f r e e z i n g f r o n t begins t o advance towards unfrozen s o i l , r a d i u s rt of c u r v a t u r e of t h e t i p of i c e g r a d u a l l y d e c r e a s e s ( s e e 1, 2 and 3 i n F i g . 4 ) . T h e r e f o r e , t h e chemical p o t e n t i a l Ap(rt)of t h e t i p of i c e becomes l a r g e r t h a n t h e chemical p o t e n t i a l of b u l k i c e because of Gibbs- Thomson e f f e c t based on i n t e r f a c i a l t e n s i o n O i l w between i c e and water:

where v i i s t h e volume of a m o l e c u l e ' i n i c e . On t h e o t h e r hand, t h i n water l a y e r e x i s t s between i c e and s o i l p a r t i c l e s so a s t o lower t h e t o t a l f r e e energy of t h e system. Thus, t h e minimum r a d i u s r t of c u r v a t u r e of t h e t i p of i c e corresponding t o t h e p o s i t i o n 3 i n Fig.4 may be roughly given by

rt = rP - Beq(AT)

where r p i s t h e mean s i z e of pore among s o i l p a r t i c l e s and 6, (AT) i s t h e e q u i l i b r i u m t h i c k n e s s ( e q . ( 6 ) ) . T h e r e f o r e , t h e l a r g e s t chemical p o t e n t i a ? of convex p a r t of i c e i s expressed a s

I

i c e lens I no ice lens

Fig.4 Schematic r e p r e s e n t a t i o n of Fig.5 Schematic r e p r e s e n t a t i o n of chemical advance of f r e e z i n g f r o n t through p o t e n t i a l Aui(rt) of t i p of i c e and chemi- narrow water c h a n n e l s and change c a l p o t e n t i a l Au(rp) of pore water a s of i t s r a d i u s rt of c u r v a t u r e . f u n c t i o n s of supercooling AT.

(7)

JOURNAL DE PHYSIQUE

Since 6, (AT) i n c r e a s e s w i t h d e c r e a s i n g AT, i t becomes e q u a l t o rp a t a c e r t a i n supercoofing AT; and consequently Aui(rt) d i v e r g e s a t AT;. For AT > AT:, Ap+ ( r t ) d e c r e a s e s w i t h i n c r e a s i n g AT(F'ig.5). For AT < AT;, f r e e z i n g f r o n t never p e n e t r a t e through c h a n n e l s of p o r e s f i l l e d w i t h w a t e r , because 6, (AT) > rp.

On t h e o t h e r hand, t h e chemical p o t e n t i a l Au(rp)

02

p o r e water which i s l o c a t e d i n f r o n t of t h e t i p of i c e i s roughly assumed t o b e e q u a l t o t h e chemical p o t e n t i a l Apw of b u l k water ( s e e Fig.2). A s shown i n Fig.5, Au(rp) i s p r o p o r t i o n a l t o AT.

T h e r e f o r e , t h e r e i s a c r i t i c a l supercooling AT= f o r which

I f s u p e r c o o l i n g AT a t f r e e z i n g f r o n t exceeds t h e c r i t i c a l v a l u e AT^, t h e convex p a r t of iceshown i n Fig.4 b e g i n s t o advance towards t h e unfrozen s o i l , s i n c e Aui(rt) <

Ap(rp) f o r AT > AT, (Fig.5). Namely, i c e l e n s i s never formed f o r AT > AT,. On t h e o t h e r hand, any p a r t s of f r e e z i n g f r o n t cannot advance towards t h e unfrozen s o i l f o r AT < ATc, because Api(rt) > Au(rp). Under t h e circumstances, o n l y t h e water drawn towards t h e f r e e z i n g f r o n t by s u c t i o n f r e e z e s so t h a t i c e l e n s can be formed c o n t i n u o u s l y . T h i s t h e o r e t i c a l p r e d i c t i o n i s q u a l i t a t i v e l y i n good agreement w i t h such experimental r e s u l t s t h a t i c e l e n s i s e a s i l y formed when t h e r a t e of h e a t removal i s s m a l l o r s o i l f r e e z e s slowly(8],becausesmaller r a t e of h e a t removal reduces t h e s u p e r c o o l i n g AT a t t h e f r e e z i n g f r o n t . It should be n o t i c e d t h a t t h e c r i t i c a l s u p e r c o o l i n g ATc determined by eqs. (6) and (15) depends on kind of s o i l through w e t t a b i l i t y parameter A% d e f i n e d by eq. (4) and on s i z e rs of s o i l p a r t i c l e s . Acknowledgement

The a u t h o r wishes t o e x p r e s s h i s c o r d i a l t h a n k s t o P r o f . R. Lacmann f o r s t i m u l a t i n g h i s i n t e r e s t i n t h e growth k i n e t i c s w i t h which a water l a y e r a t an i c e s u r f a c e i s concerned. The a u t h o r i s a l s o g r a t e f u l t o Prof. S. Kinosita, D r s . K. Horiguchi and M. Fukuda f o r u s e f u l d i s c u s s i o n on t h e f r o s t heaving.

References

[ I ] Kuroda,T. and Lacmann,R., J. C r y s t a l Growth 56 (1982)189 -205.

[ 2 ] Lacmann,R. and S t r a n s k i , I . , J. C r y s t a l Growth 13/14(1972)236-240.

[ 3 ] Ohtomo,M. and Wakahama,G., J. Phys. Chem. 87(1983)4139-4142.

[4] Kuroda,T., i n Ground Freezing, ed. S.Kinosita and M.Fukuda(Balkema, Rotterdom)

- -

v o l . 1 , 1985, 39-45.

151 F l e t c h e r .N.H., P h i l . Mag 7 (1962)255-269; 18(1968)1287-1300.

- -

-

-

[6] ~ o r i ~ u c h i , ~ .

,

- i n Ground ~reezi-ng , ed. S .K i n o s i t a and M.Fukuda(Balkema, Rotterdom) v o l . 1 , 1985, 33-38.

[ 7 ] Xiaozn, Xu e t a l . , i n Ground Freezing, ed. S.Kinosita and M.Fukuda(Balkema, Rotterdom) vo1.2, 1985, 83-87.

[8] Takeda,K., Nakazawa,J. and Kinosita,S., i n Ground F r e e z i n g , ed. S.Kinosita and M.Fukuda(Balkema, Rotterdom) vo1.2, 1985, 89-94?

COMMENTS E. GAFFNEY

I n your d i s c u s s i o n of t h e d i v i s i o n of t h e energy balance l e a d i n g t o f r o s t heaving ( p a r t i t i o n i n g between s u c t i o n and l a t e n t h e a t of f r e e z i n g ) you seem t o have ignored t h e energy r e q u i r e d t o r a i s e t h e m a t e r i a l above t h e f r e e z i n g l a y e r . T h i s w i l l e q u a l t h e overburden p r e s s u r e . A t Im depth t h a t w i l l b e on t h e o r d e r o f 200 J/mol.

Answer :

Yes, you are r i g h t , overburden p r e s s u r e makes t h e chemical p o t e n t i a l X)J^

(6)

of a

(8)

thin water layer relative to bulk ice smaller. So, it reduces the rate of frost heave (see Ref. ( 4 ) in the paper for Proceedings).

V.F. PETRENKO

When you calculate a thickness of 'liquid-like' layer at the Ice surface do you use the thermodynamic parameters of ordinary water ? I mean that now when we know that this layer is in superionic state you have to take into account a unique property of this layer for chemical potential calculations.

Answer :

Yes, it is necessary for precise calculation based on the microscopic point of view.

Références

Documents relatifs

The beam power can be used to vary the depth and shape of the melt zone within a limited range, but it is best to adjust the power to give a good melt and vary the

For much larger deposits of Sm, the W spots were not visible, as expected, and then only a simple hexago- nal-symmetry LEED pattern occurred, as also seen in figure 3.. Extra

&amp; s d - Deux dcanismes se rapportent &amp; la croissance des cristaux de glace 5 partir de la phase vapeur : i) processus de diffusion des mo~kcules dleau, ii)

(1) volume diffusion process of water molecules to the crystal surfaces (2) surface kinetic process for incorporation of water molecules into the crystal lattice (3)

has been purified by successive distillations followed by zone refining. The creep deformation used to introduce the substructure allows also to study the

(B) Proportions of influenza viruses A/H1N1 pdm; A/H1N1; A/H3N2 and B in Corsica islands.. within an antibody antigenic site divided by the number of amino acids defining the

Nous pr´esentons dans [ BGT10 ] une formule pour la probabilit´e de succ`es d’une cryptanalyse statistique similaire ` a celle donn´ee par Sel¸cuk si ce n’est qu’elle ne fait

In order to obtain detailed structure of the zebrafish brain ventricular system, we filled the ventricles with 2000  kDa dextran conjugated to fluorescein and used SPIM to