• Aucun résultat trouvé

Effect of electropolymerisation conditions on the permeability of polyphenol films deposited on a vitreous carbon electrode

N/A
N/A
Protected

Academic year: 2021

Partager "Effect of electropolymerisation conditions on the permeability of polyphenol films deposited on a vitreous carbon electrode"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-00878691

https://hal.archives-ouvertes.fr/hal-00878691

Submitted on 30 Oct 2013

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Effect of electropolymerisation conditions on the

permeability of polyphenol films deposited on a vitreous

carbon electrode

Noureddine Belhadj Tahar, André Savall

To cite this version:

Noureddine Belhadj Tahar, André Savall. Effect of electropolymerisation conditions on the

perme-ability of polyphenol films deposited on a vitreous carbon electrode. Electrochimica Acta, Elsevier,

2012, vol. 82, pp. 427-433. �10.1016/j.electacta.2012.06.080�. �hal-00878691�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 10005

To link to this article : doi:10.1016/j.electacta.2012.06.080

URL :

http://dx.doi.org/10.1016/j.electacta.2012.06.080

To cite this version : Belhadj Tahar, Noureddine and Savall, André

Effect of electropolymerisation conditions on the permeability of

polyphenol films deposited on a vitreous carbon electrode. (2012)

Electrochimica Acta, vol. 82 . pp. 427-433. ISSN 0013-4686

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

Effect

of

electropolymerisation

conditions

on

the

permeability

of

polyphenol

films

deposited

on

a

vitreous

carbon

electrode

Noureddine

Belhadj

Tahar

a

,

André

Savall

b,∗

aInstitutSupérieurdesSciencesAppliquéesetTechnologiedeMahdia,UniversitédeMonastir,Tunisia

bLaboratoiredeGénieChimique,CNRS,UniversitéPaulSabatier,118,RoutedeNarbonne,31062Toulousecedex,France

Keywords: Rotating-diskelectrode Phenolelectropolymerisation Vitreouscarbon Permeability Wastewatertreatment

a

b

s

t

r

a

c

t

Polymericfilmswerepreparedfromalkaline(NaOH)phenolaqueoussolutionsonavitreouscarbon (VC)electrodebypotentiostaticorgalvanostaticelectro-oxidation.Permeationthroughsuchfilmswas studiedbyrotating-diskelectrodeusingtheferricyanideredoxcouple,andbycyclicvoltammetryusing phenateions.TheinfluenceoftheelectropolymerisationcontrollableparameterssuchasNaOHand phe-nolconcentrations,potentialorcurrentapplied,electrosynthesistime,temperatureandhydrodynamic conditions(electroderotation+solutionmagneticstirring)onthepermeabilityofthesepolymericfilms wasexamined.Conditionsfortheremovalofphenolbyelectropolymerisationarediscussedonthebasis ofthepermeabilityofpolyphenolfilmsobtainedbyelectrosynthesis.Permeablefilmswereformedfora concentrationoffreehydroxylanionlargerof0.1M.Anincreaseofthetemperatureto85◦Cfavoursthe

formationofhighlypermeablefilms,thusavoidingelectrodefouling.

1. Introduction

In recent years there hasbeenan increasing interest inthe developmentofelectrochemicalpolymerisationfortheremoval ofphenolsfromaqueoussolutions.Themainadvantagein pro-ceedingbyelectropolymerisationisthelowconsumption ofthe electricchargecomparedwithelectrochemicalmineralisation[1]. Inthisway,theremovalofphenolsfromaqueoussolutionsby elec-trochemicalpolymerisationwasconductedongranularactivated carbon[2],carbonfibre[3],Ta/b–PbO2[1,4]andpolyaniline/glassy

carbonelectrodes[5].Nevertheless,electropolymerisationof phe-noliccompoundsleadstothedepositionofanon-conductivefilm that blocksthe electrode activityand preventsfurtherremoval of phenol [6–11]. Many works have shown that diffusion of electroactivespeciesthroughpolymericfilmsdependsonthe elec-tropolymerisationconditionssuchasthemonomerconcentration

[12],thenatureofthesolventused[13],thepHandbackground electrolyte[14],thedegreeofcross-linkingofthepolymerchains

[15],thenatureoftheelectrode[16],theelectrodepositionmodes (cyclicvoltammetryandpotentiostaticorgalvanostatic electroly-sis)[12,17],theappliedpotential[14,18]orcurrent[19]andthe electropolymerisationtime(filmthickness)[12].

Theaimofourpreviousworks[1,4,20,21]wastofindthe operat-ingconditionsthatallowelectropolymerisationtoproceedaslong

∗ Correspondingauthor.Tel.:+33561556110;fax:+33561556139. E-mailaddresses:nour.belhadj@fsm.rnu.tn(N.BelhadjTahar),

savall@chimie.ups-tlse.fr(A.Savall).

asacurrentissuppliedtotheelectrode;thus,thepolymericfilm inevitablydepositedontheelectrodesurfacemusthavethehighest permeabilityforphenolmolecules.Themainoperatingconditions weredescribedinRef.[1].Theelectrochemicalresponseof phen-ateiononbare VCandpolyphenolfilm-coated VCwasstudied in 1MNaOH aqueoussolutions [20]. Howeverusing suchhigh concentrationofNaOHintheprecursorphenolsolutionpenalizes anyeventualtreatmentbasedontheremovalofphenolsby elec-tropolymerisation.Theaimofthisworkwastomeasurebyusing arotating-diskelectrodethepermeabilityforferricyanideanionof polyphenolfilmsdepositedinalkalinemediumonVCundervarious electropolymerisationconditions.Inparticularwearelookingfor theminimalconcentrationofNaOHwhichallowsthecontinuous formingofafilmofsufficientpermeabilitynottoblockthe elec-tropolymerisation.Therelativepermeabilityforphenateanionwas alsoevaluatedbymonitoringchangesincyclicvoltammogramsof phenolsolutionrecordedonpolyphenolfilm-coatedVCas com-paredtobareVC.InordertooptimisetheconcentrationofNaOHin theprecursorphenolsolutionparticularattentionwaspaidtoits effectonthepermeabilityofthepolyphenolfilm.

2. Experimental 2.1. General

Cyclicand rotating-diskvoltammetryand chronoamperome-trymeasurementswereperformedusingacomputercontrolled Eco Chemie Autolab Model 30 (Utrecht, The Netherlands).The conventionalthree-electrodecellsystemconsistedofbareVCor

(4)

polyphenolfilm-covered VC(disk of3mmdiameter,Metrohm) working electrode, a platinum spiral counter electrode and an Hg/Hg2Cl2/Cl− (saturated) reference electrode connected tothe

electrolytic solutionby a long Luggin capillary placed nearthe workingelectrodeandfilledwith0.1MNa2SO4.Allthepotentials

arereportedversustheabovespecifiedreferenceelectrode.Before eachexperiment,theworkingelectrodewaspolishedtoamirror with1mmaluminaslurriesonpolishingsheet(3M262XIMPERIAL LappingFilm)andsubsequentlywashedwithdistilledwater.

2.2. Preparationofpolyphenolfilm-coatedvitreouscarbon electrode

Polyphenolfilmswerepreparedbyoxidative electropolymeri-sationperformedeithergalvanostaticallyorpotentiostaticallyonto thediskofVCelectrode surfacefromphenolaqueoussolutions containing0.1MNa2SO4andNaOHatvariousconcentrations.

Elec-tropolymerisationwasperformedonafixedelectrodeandwithout magneticstirringunlessotherwiseinstructed.Thepolyphenol film-coatedelectrodeswerecopiouslyrinsedwithdistilledwaterand usedimmediatelyinpermeationexperiments.

2.3. Polyphenolfilmpermeabilitymeasurement ThepermeabilityPfilm

ferr.ofthepolyphenolfilmforferricyanide

anionwasmeasuredwitha rotating-diskelectrode(RDE)inpH 7phosphate(0.1M)buffersolutioncontaining0.01Mpotassium ferricyanideat25◦C.ThelimitingcurrentI

Lofthe

electrochemi-calreductionofferricyanideaniononthepolyphenolfilm-covered RDEcanbedescribedbythefollowingequation[22]:

I−1

L =(nFACsPferr.film) −1

+(0.62nFACsD2/3s −1/6)

−1

ω−1/2 (1)

whereAistheelectrodearea(cm2),C

sistheconcentrationof

fer-ricyanideanioninthesolution(molcm−3),D

sistheferricyanide

diffusioncoefficientinthesolution(cm2s−1),isthekinematic

viscosityofthesolution(cm2s−1),ωistheangularrotationrateof

theelectroderotation(rads−1)andn(=1)andFhavetheirusual

meanings.

Thepermeabilityofthepolyphenolfilmforferricyanideanion Pferr.film wasobtainedfromtheinterceptsofIL−1 plotsversusω−1/2

atω−1/2=0.ThesolutionpermeabilityforferricyanidePsol. ferr.was

obtainedfromtheslopesofplots Id versusω1/2 whereIdisthe

limitingcurrentatthebareVCelectrode asdescribed byLevich

[22]:

Id=0.62nFACsD2/3s −1/6ω1/2=nFACsPferr.sol. (2)

Therelativepermeability ofthepolyphenolfilmforphenate anionPfilm

Ph. wasassessedbysubjectingthepolyphenolfilm-coated

electrodetocyclinginthesamesolutionusedforthefilm prepa-ration.TherelativepermeabilityforphenateanionPfilm

Ph. ,expressed

asapercentage,isdefinedastheratiooftheoxidationpeak cur-rentintensityduringthe1stscanatthepolyphenolfilm-coated electrodeIfilmoverthatatthebareelectrodeIbare[23,24]:

PPh.film=

Ifilm

Ibare

×100 (3)

Inpractice,thepermeabilityofthefilmofpolyphenolfor fer-ricyanideanionswascalculatedfromvoltammogramsrecordedat 25◦Conbareglassycarbondisk(freshlypolished)andonthisdisk

coveredwiththefilmevenwhenthefilmwaspreparedat85◦C.

However,thepermeabilityofthefilmofpolyphenolforphenate anionswascalculatedfromvoltammogramsrecordedonbareVC andonpolyphenolfilm-coatedVCinthesamesolutionandatthe sametemperatureusedforthepreparationofthefilm.

-800 -600 -400 -200 0 200 400 200 0 -200 -400 -600 -800 E vs. SCE / mV I / µ A (1) (2)

Fig.1. VoltammogramsonaVCrotateddiskof0.01Mpotassiumferricyanidein pH7sodiumphosphate(0.1M)buffersolutionat25◦

C.Scanrate:10mVs−1and

ω=5000rpm.(1)BareVC;(2)polyphenolfilmelectrosynthesizedonVC rotating-diskelectrode(ω=1000rpm)byanodicpolarisationat1800mVduring60minin amagneticallystirred0.01Mphenolsolutioncontaining0.1MNaOHand0.1M Na2SO4at85◦C.

3. Resultsanddiscussion

3.1. Generalbehaviourofthebarevitreouscarbonandthe polyphenolfilm

Fig. 1 shows typical rotating-disk voltammograms for the reductionof0.01Mpotassium ferricyanidesolutionatbareand polyphenol film-coated VC electrodes. The film did not affect thestartingferricyanidereductionpotentialbutthecurrentwas stronglyattenuated.

3.2. Polyphenolfilmspreparedbypotentiostaticoxidation

Polyphenolfilmswerepreparedbypotentiostaticoxidationin ordertohighlighttheinfluenceontheirpermeabilityofoxygen evolutionwhenitoccurssimultaneouslywith electropolymerisa-tion.

3.2.1. Influenceoftemperature

ValuesoffilmpermeabilityweredeterminedbyplottingIL−1vs. ω−0.5andextrapolatingtoveryhighrotationrateatω−0.5=0,where

masstransportistotallyfilmlimited.Fig.2representsplotsofIL−1vs. ω−0.5forbareandpolymermodifiedVCelectrodes.Table1shows

30000 32000 34000 36000 VC/polyphenol (30 mM) VC/polyphenol (50 mM) (3) (4) 0 1000 2000 3000 4000 ϖ− 1/2 / (rad s-1)-1/2 ϖ− 1/2 / (rad s-1 )-1/2

(I

li m .

)

-1

/ A

-1

(I

li m .

)

-1

/ A

-1 VC/polyphenol (10 mM) bare VC (2) (1) 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

Fig.2.ReciprocalLevichplotsoflimitingreductioncurrentsforpermeationof ferri-cyanideanionthroughfilmsofpolyphenolonaVCrotateddisk.Scanrate:10mVs−1.

Polyphenolfilmswerepreparedat85◦

Conarotating-diskelectrode(ω=1000rpm) byanodicpolarisationat1800mVduring30mininamagneticallystirred0.1M NaOHand0.1MNa2SO4aqueoussolutionwithphenolconcentrations:0Mcurve

(5)

Table1

Relationshipsbetweentemperatureandthepermeabilityforferricyanideanion ofthepolyphenolfilmPfilm

ferr.electrosynthesizedonvitreouscarbonelectrode

dur-ing30minatvariousappliedpotentialsEfrom0.01Mphenolaqueoussolution containing1MNaOHand0.1MNa2SO4.

T/◦C 25 85 Evs.SCE/mV 500 900 1200 500 600 700 Pfilm ferr.×10 4 /cms−1 0 5 221 0 1961 3349

therelationshipsbetweenthetemperatureandthepermeability ofthepolyphenolfilmselectrosynthesizedonVCduring30min atvariousappliedpotentialsfrom0.01Mphenolaqueoussolution containing1MNaOHand0.1MNa2SO4.Polyphenolfilmsprepared

atpotentialslessthan500mVwerenotatallpermeableatboth25 and85◦C.Above500mV,thepermeabilityincreasedsubstantially

at85◦Cwhilepolyphenolfilmsremainedalmostimpermeableuntil

900mVat25◦C.

The raising of permeability with temperature and applied potential(Table1)mayresultfromanincrease inthe polyphe-nolfilmgrowthrate;thediameteranddensityoftheporesinthe filmareexpectedtostronglyincreasewiththefilmgrowthrate.On thecontrary,afilmgrownslowlyismorecompactanddensewith lessandnarrowerpores[15].Insummary,thelargerpermeability valueswereobtainedathightemperature,whichallowstheuseof lowerpotentials.

3.2.2. InfluenceofNaOHconcentration

Fig.3showscyclicvoltammogramsrecordedonbareVC elec-trodeat85◦Cin0.01Mphenolaqueoussolutioncontaining0.1M

Na2SO4andNaOHatdifferentconcentrations.Decreasingthe

con-centrationofNaOHfrom1to0.01Mhadnoeffectonthepeak potentialbut noticeablydiminishedthe peakcurrent ofphenol oxidationindicatingthattheelectrodepassivationwasmoreand morepronounced.Notethatfor0.01MNaOHtheresponseof phe-nol(practicallypresentasphenate)isexpressedasawave(curve 3).

Table2showstherelationshipsbetweenthepermeabilityfor ferricyanide anion and theconcentration of NaOHused during thepolyphenolfilmpreparationatvariousappliedpotentials.For NaOHconcentrationof1M,polyphenolfilmspreparedatpotentials below500mVarenotatallpermeablewhiletheonesprepared atpotentialhigherthan600mVwerehighlypermeable.Inthese conditions,comparisonbetweenvaluesofPfilm

ferr.(Table2)andP sol. ferr.

(Fig.4)showsthatphenoloxidationratewaslimitedbythelow membranepermeabilityofpolyphenolfilmspreparedatpotentials lowerthan500mV.Onthecontrary,theoxidationratewaslimited bythesolutionforfilmspreparedatpotentialshigherthan600mV.

Table2showsthatpolyphenolfilmswithhighpermeabilityto fer-ricyanideanionwerepreparedatincreasingpotentialsastheNaOH concentrationdecreasedfrom1to0.01M.Ontheotherhand,very lowpermeabilityvalueswereobservedevenathighapplied poten-tialsforNaOHconcentrationslessthan0.1M.Theseresultsarein

0 50 100 150 200 250 900 700 500 300 100 -100 -300 E vs. SCE / mV I / µ A (1) (2) (3)

Fig.3.Effectofsodiumhydroxideconcentrationoncyclicvoltammograms(1st cycles).recordedonbareVCelectrodein0.01Mphenolaqueoussolution contain-ing0.1MNa2SO4andNaOHataconcentrationof1M(curve1),0.1M(curve2)and

0.01M(curve3).Scanrate:100mVs−1andT=85

C.

Fig.4. Variationofthesolutionpermeabilityforferricyanideanionasafunctionof theelectroderotationrate.

agreementwithcyclicvoltammogramspresentedinFig.3ifwe considerthatthepeakcurrentofphenoloxidationdecreasedas thepermeabilityofthepolyphenolfilmdiminished.

CyclicvoltammogramspresentedinFig.5showthatnophenol oxidationpeakwasobservedforNaOHconcentrationslessthan 0.1M(curves1and2)indicatingthatundertheseconditionsthe polyphenolfilmswereimpermeabletophenateanion.Therelative permeabilityPfilm

Ph. forphenateanionofthepolymerfilmprepared

in0.1MNaOHwasevaluated,accordingtoEq.(3),fromcurve2 inFig.3and curve3inFig.5.Pfilm

Ph. isequal to184%;this value,

higherthan100%,suggeststhatthefilmpermeabilityfor phen-ateanionisgovernedbythepreferentialpartitioningoftheprobe intothepolyphenolfilmduetostrongerinteractions(electrostatic, hydrophobic,etc.)inthefilmthaninthesolution[24].

Phenolisaweakacid(pKa=9.9)andataninitialconcentration

of0.01MitsreactionwithNaOHinitiallyat1M,0.1M,0.05Mor 0.01MleadstoequilibriumconcentrationsoffreeOH−respectively

equalto0.99M,0.09M,0.04Mand0.00M.Consequently,at rel-ativelyhighNaOHinitialconcentration(1Mand0.1M)thereis enoughfreeOH−toinstantaneouslyneutralizetheacidityarising

attheelectrodesurfacefromwaterdischargeoccurringin paral-lelwithpolyphenolelectrosynthesis.Ontheotherhand,withlow NaOHconcentrations(0.05and0.01M)thefreeOH−

concentra-tionistooweaktoneutralizethetotalityofprotonsproducedat thesurfaceoftheanodewhentheappliedpotentialincreases. Fur-thermore,thelowvaluesofpermeabilityobservedwiththelower NaOHconcentrations(0.05and0.01M),evenforexperiments per-formedundermagneticstirringand withtherotatingelectrode (ω=1000rpm),indicatethathighacidityremainedattheelectrode surface(Table2).

From Table2,one can concludethat at 0.01Mphenol con-centrationandrelativelyhighNaOHconcentration(0.1and1M), thepermeability for ferricyanideanion increases as the poten-tialappliedincreases.However,atlowNaOHconcentration(0.01 and 0.05M), the permeability remains almost nil even at very highapplied potential. Therefore, we think that the key factor influencingthepermeabilityofthepolyphenolfilmsisthe concen-trationoffree OH−in thesolution:[OH]

sol.=[NaOH]−[PhOH];

0 500 1000 1500 900 700 500 300 100 -100 E vs. SCE / mV I / µ A 0.01 M 0.05 M 0.1 M (3) (1) (2)

Fig.5.Measurementsofpolyphenolfilmpermeabilityforphenateion.Scanrate: 100mVs−1.Thepolyphenolfilmswerepreparedbyanodicpolarisationat1800mV

for30minat85◦

Cin0.01Mphenolaqueoussolutionscontaining0.1MNa2SO4and

(6)

Table2

RelationshipsbetweentheNaOHconcentrationin0.01Mphenolaqueoussolutioncontaining0.1MNa2SO4at85◦CandthepermeabilityforferricyanideanionPfilmferr.ofthe

polyphenolfilmelectrosynthesizedduring30minonavitreouscarbonelectrodeatdifferentappliedpotentials.

Hydrodynamicconditions Fixedelectrodeandwithoutmagneticstirring Electroderotationrateof1000rpm

andundermagneticstirring

[NaOH]/M 1 0.1 0.05 0.01 Evs.SCE/mV 400 500 600 700 700 1300 1500 1800 1800 2500 1800 2500 Pfilm ferr.×10 4/cms−1 0 0 1961 3349 0 0 9 925 5 5 3 3 0 50 100 150 200 900 700 500 300 100 -100 -300 E vs. SCE / mV

I /

µ

A

(2)

(A)

(1) 0 1 2 3 900 700 500 300 100 -100 -300 E vs. SCE / mV

I / mA

(2)

(B)

(1)

Fig.6. Cyclicvoltammograms(firstcycles)of0.05Mphenolsolutioncontaining0.1MNa2SO4andNaOHat0.1M(curve1)and0.15M(curve2)at85◦Con(A)bareVC(B)

VCelectrodescoveredbypolyphenolfilms.Scanrate:100mVs−1.Polyphenolfilmswereelectrosynthesizedat85

Conarotateddisk(1000rpm)VCelectrodeatanapplied potentialof1800mVinamagneticallystirred0.05Mphenolsolutioncontaining0.1MNa2SO4andNaOHat0.1M(curve1)and0.15M(curve2).

the present results show that the concentration of free OH−

should be preferably higher than 0.1M to prepare polyphe-nol films with noteworthy permeability values to ferricyanide anion.Indeed,polyphenolfilmpreparedbyanodicpolarisationat 1800mV for30minin 0.05Mphenolsolution containing0.1M NaOH([OH−]

sol.=0.05M)and0.1MNa2SO4 at85◦C wasnot at

allpermeableforferricyanideanionwhereastheonepreparedin thesameconditionsexceptthatNaOHconcentrationwas0.15M ([OH−]

sol.=0.1M)hadapermeabilityequalto149×10−4cms−1.

Fig.6(AandB)showscyclicvoltammograms(firstcycles)recorded at85◦Crespectivelyonbareandpolyphenolfilm-coatedVC

elec-trodesin0.05Mphenolsolutioncontaining0.1MNa2SO4and0.1M

NaOH(curve 1)or0.15MNaOH(curve 2).Curve 1in Fig.6(B) exhibitsa weakly defined peak for phenoloxidation indicating averylowpermeabilityofthecorrespondingpolyphenolfilmto phenateanion.Alarge,butbetterdefinedpeakwasobservedfor 0.15MNaOH(curve2inFig.6(B))indicatingthatunderthese condi-tionstheoxidationprocessoccurredwithoutinhibitionandthatthe polyphenolfilmwashighlypermeabletophenateanion.Itshould beemphasizedthatthephenoloxidationpeakonpolyphenol film-coated electrodes (Fig. 6(B)) is moved toward higher potential valuesascomparedtothatonbareVCelectrode(Fig.6(A)).

Theseresultshaveshownthattheremovalofphenolby elec-tropolymerisationispossiblebyapplyingahigherpotentialasthe NaOHconcentrationdecreases.

3.2.3. Influenceofphenolconcentration

The effect of phenol concentration on the permeability of polyphenol films prepared at 85◦C on a VC rotating disk

(ω=1000rpm) was studied by potentiostatic polarisation at 1800mV during 30min in magnetically stirred 0.01, 0.03 and 0.05Mphenolaqueoussolutionscontaining0.1MNaOHand0.1M Na2SO4. Potentiostatic I–t curves (not shown) reveals that the

limiting current at the stationary state fell dramatically when phenolconcentrationincreasedfrom0.01to0.03M.Cyclic voltam-mograms (not shown) recorded on polyphenol film-coated VC electrodesinthesamesolutionsshowthat nophenoloxidation peakwasobservedfor0.03Mand0.05Mphenolconcentrations; theelectrochemicalresponseofphenolisexpressedasawavewhat preventstocalculatetherelativepermeabilityforphenateanion (almostimpermeable);for0.01Mphenolconcentration,the rela-tivepermeabilityisequalto143%.Theseresultsaswellasthose

presentedinSection3.2.2forfilmsrespectivelypreparedinNaOH 0.1Mand0.15Mmaybeexplainedintermofadecreaseinthe concentrationoffreeOH− astheconcentrationofphenolinthe

solutionrises.Inparticular,thedecreaseoftheabilityofthe solu-tiontoopposechanges inpHwhen protonsare formedonthe electrodesurfaceduringwaterdischargecanexplaintheoriginof thepermeabilityfall[21](seeSection3.3.1).

3.2.4. Influenceofelectrolysistime

Polyphenolfilmsweresynthesizedonarotating(ω=1000rpm) VCelectrodebyanodicpolarisationat1800mVforvarious elec-tropolymerisationtimes (30–120min) in a magneticallystirred 0.01Mphenolsolutioncontaining0.1MNaOHand0.1MNa2SO4

at85◦C.ResultspresentedinTable3revealthatthepermeability

decreased substantially with increasing the electropolymerisa-tion time; similar results were obtained by Wang et al. [12]. Thisbehaviourisinterpretedintermofanincreasein polyphe-nolfilmthicknesswithincreasingelectropolymerisationtime;the polyphenolfilmthicknessvariesbetween10and100nm depend-ingontheelectropolymerisationconditions[25].Fig.7(A)shows thatcyclicvoltammogramsoftheferricyanideanionare charac-terizedbyirreversiblewavesfor60and120minelectrosynthesis timeswhilemuchmorereversiblepeakswereobservedforonly 30min.Valuesoftherelativepermeabilityforphenateanion, cal-culatedfromcurves(2)and (3)inFig.7(B),wereequalto155% and 142% respectively for 60 and 120min indicating that the polyphenolfilm permeability for phenateanion isindependent of electrosynthesis times.Electropolymerisation can thus occur onpre-existingpolymerlayerobtainedbyelectrolysisofphenol 0.01Minalkaline(0.1MNaOH)solution.Thistechniquecouldbe usedasawaytoremovephenolsinceundertheseconditions elec-tropolymerisationproceedsaslongasacurrentisappliedtothe electrode.

Table3

Relationshipsbetween theelectropolymerisation time in magnetically stirred 0.01Mphenolaqueoussolutioncontaining0.1MNaOHand0.1MNa2SO4at85◦C

andthepermeabilityPfilm

ferr.oftheresultingpolyphenolfilmforferricyanideanion.

Electrosynthesistime/min 30 60 120

Pfilm ferr.×10

(7)

Fig.7.Measurementsofpolyphenolfilmpermeabilityfor(A)ferricyanideand(B)phenateions.Scanrate:(A)500mVs−1and(B)100mVs−1.Thepolyphenolfilmswere

preparedbyanodicpolarisationonarotating(ω=1000rpm)VCelectrodeat1800mVforvariouselectrolysistimesin0.01Mphenolaqueoussolutioncontaining0.1MNaOH and0.1MNa2SO4at85◦C.Electrolysistime:30min(curve1);60min(curve2)and120min(curve3).

3.3. Polyphenolfilmspreparedbygalvanostaticoxidation

In practice, a treatment of phenolic compounds based on electropolymerisationshouldbeconductedgalvanostatically;as a consequence an increase of the potential is expected during theelectropolymerisation.Therefore,theappliedcurrentmustbe determinedbytakingintoaccountthetransportpropertiesofthe polymericfilm.

3.3.1. Influenceofappliedcurrent

Fig. 8(A) exhibits galvanostatic E–t curves recorded during polyphenolfilmselectrosynthesisonarotating(ω=1000rpm)VC electrode at various applied currents in a magnetically stirred 0.05Mphenolaqueoussolutioncontaining0.15MNaOHand0.1M Na2SO4at85◦C;differentelectrosynthesistimeswerechosenin

suchawaythatthesameelectriccharge(Q=3600mC)waspassed inordertopreparepolyphenolfilmshavingmoreorlessthesame thickness.GalvanostaticE–t curves presentedin Fig.8(A)show thattheelectrodepotentialremainedconstantataround1300mV duringthefirststageofthepolyphenolfilmelectrosynthesis.The lengthofthisstepdecreasedwhenappliedcurrentincreased;then the potentialrose rapidly until it reacheda plateau at around 2000mV.Table4showsthatthepermeabilityofthefilmfor fer-ricyanideaniondropsfrom107×10−4cms−1 to2×10−4cms−1 byincreasingfrom1to3mAthecurrentappliedduringthefilm electrosynthesis.Thiscurrentdependencyofthepermeabilityis in agreementwithcyclic voltammogramsof ferricyanide anion recorded on polyphenol film-coated VC electrodes depicted in

Fig.8(B)inthatthereductionpeakcurrentdecreasedasthe cur-rentappliedincreasedintherange1–3mA.Fig.8(CandD)shows cyclicvoltammogramsof0.05Mphenolaqueoussolution contain-ing0.15MNaOHand0.1MNa2SO4recordedat85◦Conpolyphenol

film-coatedVCelectrodes.CyclicvoltammogramsinFig.8(D)show thatthephenoloxidationpeakrecordedonpolyphenolfilm-coated electrodesislargertothatonbareelectrodeanddisplacedtomore positivepotentials(curve2inFig.6(A)).

Table4 shows that when the appliedcurrent increases one observesadecreaseofthepermeabilityofthefilmtowardthe ferri-cyanideanionwhiletherelativepermeabilityofthesamefilmwith regardtothephenolincreases.Thecurrentintensityeffectonthe polyphenolfilmpermeabilitycanbeexplainedbythedischargeof

Table4

Relationshipsbetweenthe current Iapplied during theelectrosynthesis of a polyphenolfilmdepositedonarotating(ω=1000rpm)vitreouscarbonelectrode inamagneticallystirred0.05Mphenolaqueoussolutioncontaining0.15MNaOH and0.1MNa2SO4at85◦CandthepermeabilityPferr.filmforferricyanideanionandPph.film

forphenol. I/mA 1 1.5 2 3 Electrosynthesistime/min 60 40 30 20 Pfilm ferr.×10 4/cms−1 107 45 29 2 Pfilm ph. (%) 176 233 399 1115

waterwhichissourceofprotons.ThecurrentIappliedduringfilms electrosynthesiscanbeexpressedasfollows:

I=IPh.+IH

2O (4)

whereIPh.andIH2Oarethepartialcurrentsforrespectivelyphenol

andwaterelectro-oxidation.IPh.canbeevaluatedbythefollowing

equation: IPh.=nFAkPh[Ph]sol. considering thatthe concentration

ofphenolattheelectrodesurfacewasequaltozerobecausethe appliedcurrent Iwasmuchhigher thanthelimiting currentof phenoloxidation.Indeed,fortheexampleofFig.8,thelimiting cur-rentofphenoloxidation(duringelectrosynthesisofthefilms)was equaltoaround0.35mAforn=1,A=0.0707cm2,k

Ph.=10−5ms−1

and[Ph.]sol.=0.05M.Thus,asIincreased(from1to3mA),the par-tialcurrentofwaterdischargeIH2Orose,producinganincreasein

oxygenevolutionandtheoutputofprotons.Theconcentrationof protons[H+]

ele.attheelectrodesurfacecanbecorrelatedtoIH2O

by:IH2O=nFAkH+[H

]ele.consideringthatthebulkconcentration ofprotons[H+

]sol.wasequaltozeroduetohydrodynamic

condi-tions(electroderotation,ω=1000rpmplusmagneticstirring)and therelativelyhighconcentrationoffreehydroxideioninthe solu-tion([OH−

]sol.=0.1M).Thus, concentrations [H+]ele.,calculated forn=1 andkH+=10−5ms−1,wereequal toaround0.1Mand

0.4MrespectivelyforIequalto1or3mA.Theseresultsshowthat forI=3mA,theconcentrationofprotonsattheelectrodesurface ([H+

]ele.=0.4M)wasfourtimeshigherthanthatoffreehydroxide

ionin thesolution([OH−H+]sol.=0.1M).Asa result,the elec-trode/solutioninterfaceremainedacidthoughelectrosynthesisof the polyphenolfilm was performed withan electrode rotation rateof1000rpmandundermagneticstirring.Ifweassumethat polyphenolfilmspreparedherehadthesamethickness,thedrop ofpermeabilityforferricyanideanion(Table4)canbeexplainedby astrongeracidityattheelectrodesurfaceduringpolyphenolfilm electrosynthesisasIincreased.

Thecontradictorybetweentheincreaseintheapparent per-meability forphenol(%) Pfilm

Ph. andthedramatic decreaseof the

permeabilityforferricyanideanionPfilm

ferr.whentheappliedcurrent

increases(Table4)canbeinterpretedintermofachangeinthe microstructureofthepolyphenolfilm.Wethinkthat increasing theappliedcurrentandthereforetheconcomitantoxygen evolu-tionincreasesthedensityofsmallpores(permeableforphenate andnotforferricyanideanion)tothedetrimentofthatoflargeones (permeableforbothphenateandferricyanideanions).Accordingto Rothwelletal.’ssuggestion[18]weintendtostudythesefilmsby scanningelectronmicroscopytounderstandtheseeffects.

Fortheremovalofphenolbyelectropolymerisationthe oper-atingconditionsshouldfavourahighpermeabilityofthefilmfor phenateanion.ComparisonbetweenvaluesofPferr.film(Table4)and Psol.

ferr.(P sol.

ferr.=45×10

−4cms−1forω=1000rpm;Fig.4)showsthat

therateofferricyanidereductionwaslimitedbythemembrane permeabilityforpolyphenolfilmspreparedatcurrentshigherthan 2mA whereas it wasunder solution transport control for cur-rentslowerthan1.5mA.Theaboveresultsshowthatelectrolysis

(8)

-200 -150 -100 -50 0 800 600 400 200 0 -200 -400 -600 E vs. SCE / mV 1 mA 3 mA 2 mA 1.5 mA (1) (4) (3) (2) (1) (2) (3) (4)

(B)

0 100 200 300 400 900 700 500 300 100 -100 -300 E vs. SCE / mV (1) (2)

(C)

bare vitreous carbon

0 500 1000 1500 2000 900 700 500 300 100 -100 -300 E vs. SCE / mV I / μ A I / μ A I / μ A (4) (3)

(D)

0 500 1000 1500 2000 2500 70 60 50 40 30 20 10 0 Time / min E vs. SCE / mV I = 1 mA I = 1.5 mA I = 2 mA I = 3 mA

(A)

(4) (3) (2) (1)

Fig.8.(A)GalvanostaticE–tcurvesrecordedduringpolyphenolfilmselectrosynthesisonarotating(ω=1000rpm)VCelectrodeatvariousappliedcurrentsinamagnetically stirred0.05Mphenolaqueoussolutioncontaining0.15MNaOHand0.1MNa2SO4at85◦C.Appliedcurrent:(1)1mAfor60min,(2)1.5mAfor40min,(3)2mAfor30minand

(4)3mAfor20min.(B–D)Measurementsofpolyphenolfilmpermeabilityfor(B)ferricyanideand(CandD)phenateions.Scanrate:(B)500mVs−1and(CandD)100mVs−1.

performedatanappliedcurrentslightlyhigherthanthelimiting currentofphenoloxidationshouldallowtheremovalofphenol.

3.3.2. Influenceofelectroderotationandmagneticstirring

GalvanostaticE–tcurveswererecordedat85◦ConaVC

elec-trodeat an applied current of 2mA in 0.05Mphenol aqueous solutioncontaining0.15MNaOHand0.1MNa2SO4;curveswere

registeredeitherinaquiescentsolutionorforanelectrode rota-tion rate of 1000rpm and a magnetic stirring. The E–t curves havethesameshapeexceptthatthepotentialplateauat2000mV wasreachedrightfromthebeginninginthecaseofpolyphenol filmelectrosynthesizedinaquietsolution.Thepermeability for ferricyanideanion dropped from29×10−4cms−1 (Table 4) for polyphenolfilm electrosynthesizedon a rotatingelectrode and undermagneticstirringtozerointhecaseofafixedelectrodeand unstirredphenolsolution.AsinSection3.2.1,theseresultsmay beinterpretedassuminganaccumulationofhighconcentrationof protonsH+attheelectrodesurfacewhichblocksthepermeability

ofthepolyphenolfilmelectrosynthesizedonafixedelectrodein unstirredsolution[21].

4. Conclusions

Thisworkdemonstrates thatthepermeability ofpolyphenol filmsdepositedbyelectrochemicalpolymerisationonavitreous carbon electrode depends strongly on the composition of the startingphenol solution,temperature,appliedpotential or cur-rent,electrosynthesistimeandhydrodynamicconditions.Wehave shownthattheconcentrationoffreeOH−inthestartingphenol

solution([OH−]

sol.=[NaOH]−[PhOH])mustbehigherthanaround 0.1Mtopreparepolyphenolfilmspermeabletobothferricyanide andphenateanions;thiswasverifiedbyvaryingNaOH concen-trationforthesameconcentrationofphenolandviceversa;the relativelyhighfreeOH−concentrationwasnecessaryto

instanta-neouslyneutralizetheacidity,attheelectrodesurface,arisingfrom theconcomitantoxygenevolutionoccurringduringthepolyphenol filmelectrosynthesis.Electrochemicalpolymerisationconductedat hightemperature(85◦C)yieldshighpermeablepolyphenolfilms

atlowappliedpotentials.Nevertheless,polyphenolfilmsthathave suitablepermeability weresynthesized atlow temperature but

athighappliedpotential.Fortheremovalofphenolfrom waste-water by electropolymerisation,it would be bettertouse high temperatureandlowpotentialinordertominimizetheparasitic reactionofoxygenevolutionwhichaffectsthecurrentyield.We havealsoshownthatpolyphenolfilmspreparedat1800mVfrom 0.01Mphenoland0.1MNaOHhavelowpermeability,especially whenelectrolysistimeincreases;thiswasinterpretedintermof anincreaseinthepolyphenolfilmthickness.Theapparent perme-abilityofpolyphenolfilmspreparedgalvanostaticallyfrom0.05M phenoland0.15MNaOHat85◦Cincreasedforphenateanionas

theappliedcurrentincreased.Theseresultscouldbeinterpreted interms of(1)theincreasein thelocalacidityattheelectrode surfaceand(2)anincreaseinthedensityofsmallpores (perme-ableforphenateandnotforferricyanideanion)tothedetrimentof largepores(permeableforbothphenateandferricyanideanions) withincreasingtheconcomitantoxygenevolution.Itwasshown thatpolyphenolfilmspreparedonarotatingelectrodeandastirred solutionweremorepermeablethanthosesynthesizedonafixed electrodeandanunstirredsolution.

References

[1]N.BelhadjTahar,A.Savall,ElectrochimicaActa54(2009)4809.

[2]M.Gattrell,B.MacDougall,JournaloftheElectrochemicalSociety146(1999) 3335.

[3]H.Kuramitz,M.Matsushita,S.Tanaka,WaterResearch38(2004)2331. [4]N.BelhadjTahar,R.Abdelhedi,A.Savall,JournalofAppliedElectrochemistry

39(2009)663.

[5]Y.Zhang,Q.Li,H.Cui,J.Zhai,ElectrochimicaActa55(2010)7219. [6]X-Y.Li,Y-H.Cui,Y-J.Feng,Z-M.Xie,J-D.Gu,WaterResearch39(2005)1972. [7]J.Wang,M.Jiang,F.Lu,JournalofElectroanalyticalChemistry444(1998)127. [8]P.I.Iotov,S.V.Kalcheva,JournalofElectroanalyticalChemistry442(1998)19. [9]J-L.Boudenne,O.Cerclier,P.Bianco,JournaloftheElectrochemicalSociety145

(1998)2763.

[10]G.Mengoli,M.M.Musiani,ElectrochimicaActa31(1986)201.

[11]Ch.Comninellis,C.Pulgarin,JournalofAppliedElectrochemistry21(1991)703. [12] J.Wang,S-P.Chen,M.S.Lin,JournalofElectroanalyticalChemistry273(1989)

231.

[13]R.L.McCarley,JournalofElectrochemicalSociety137(1990)218C. [14]I.Losito,F.Palmisano,P.G.Zambonin,AnalyticalChemistry75(2003)4988. [15]R.L.McCarley,E.A.Irene,R.W.Murray,JournalofPhysicalChemistry95(1991)

2492.

[16]A.Witkowski,M.S.Freund,A.Brajter-Toth,AnalyticalChemistry63(1991)622. [17] M.D.Imisides,R.John,P.J.Riley,G.G.Wallace,Electroanalysis3(1991)879. [18] S.A.Rothwell,C.P.McMahon,R.D.O’Neeill,ElectrochimicaActa55(2010)1051.

(9)

[19]P.Gros,T.Gibson,A.Bergel,M.Comtat,JournalofElectroanalyticalChemistry 437(1997)125.

[20]N.BelhadjTahar,A.Savall,ElectrochimicaActa55(2009)465.

[21]N.BelhadjTahar,A.Savall,JournalofAppliedElectrochemistry41(2011) 983.

[22]V.G.Levich,PhysicochemicalHydrodynamics,Prentice-Hall,EnglewoodCliffs, NJ,1962.

[23]J.Cruz,M.Kawasaki,W.Gorski,AnalyticalChemistry72(2000)680. [24] C.A.Martinez-Huitle,C.CarlesiJara,M.Cerro-Lopez,M.A.Quiroz,Canadian

JournalofAnalyticalSciencesandSpectroscopy54(2009)53.

[25]R.Lapuente,F.Cases,P.Garcés,E.Morallon,J.L.Vasquez,Journalof Electroan-alyticalChemistry451(1998)163.

Figure

Fig. 1 shows typical rotating-disk voltammograms for the reduction of 0.01 M potassium ferricyanide solution at bare and polyphenol film-coated VC electrodes
Fig. 6. Cyclic voltammograms (first cycles) of 0.05 M phenol solution containing 0.1 M Na 2 SO 4 and NaOH at 0.1 M (curve 1) and 0.15 M (curve 2) at 85 ◦ C on (A) bare VC (B) VC electrodes covered by polyphenol films
Fig. 7. Measurements of polyphenol film permeability for (A) ferricyanide and (B) phenate ions
Fig. 8. (A) Galvanostatic E–t curves recorded during polyphenol films electrosynthesis on a rotating (ω = 1000 rpm) VC electrode at various applied currents in a magnetically stirred 0.05 M phenol aqueous solution containing 0.15 M NaOH and 0.1 M Na 2 SO 4

Références

Documents relatifs

Electrochemical deposition offers a versatile and facile method since the film formation and its properties (thickness and surface topography) can be easily

The calculated ozone and temperature changes calcu- lated by the model are believed to represent upper limits (as- suming that no major reaction is missing in the chemical

The optical anisotropy of the obliquely deposited PbTe layers is studied using the Smet relations /5/ and a graphical interpolation method.. The Smet rela- tions allowed

Considering this, we identified the presence of the subunits of AMPK in different hypothalamic nuclei involved in the pre- and post-pineal pathways that control seasonality

The original article BMethylmalonic acidaemia: Examination of genotype and biochemical data in 32 patients belong- ing to mut, cblA or cblB complementation group^ by Begona Merinero

We show that the Tolman-Ehrenfest effect (in a stationary gravitational field, temperature is not constant in space at thermal equilibrium) can be derived very simply by applying

We describe here the influence of native oxide on the grafting of the monomer, the influence of the prepara- tion conditions on the film structure (homogeneous or not)and, the mode

About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: notched and unnotched laminates...