• Aucun résultat trouvé

Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars

N/A
N/A
Protected

Academic year: 2021

Partager "Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: insu-03211833

https://hal-insu.archives-ouvertes.fr/insu-03211833

Submitted on 29 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars

E Rampe, D Ming, D Blake, T Bristow, S Chipera, J Grotzinger, R Morris, S Morrison, D Vaniman, A Yen, et al.

To cite this version:

E Rampe, D Ming, D Blake, T Bristow, S Chipera, et al.. Mineralogy of an ancient lacustrine

mudstone succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science

Letters, Elsevier, 2017, 471, pp.172 - 185. �10.1016/j.epsl.2017.04.021�. �insu-03211833�

(2)

Contents lists available atScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars

E.B. Rampea,, D.W. Minga,D.F. Blakeb,T.F. Bristowb,S.J. Chiperac,J.P. Grotzingerd, R.V. Morrisa,S.M. Morrisone,f,D.T. Vanimang, A.S. Yenh, C.N. Achillese,P.I. Craigi, D.J. Des Maraisb,R.T. Downse,J.D. Farmerj,K.V. Fendriche, R. Gellertk,R.M. Hazenf, L.C. Kahl,J.M. Morookianh,T.S. Peretyazhkom,P. Sarrazinn, A.H. Treimanh,J.A. Bergero, J. Eigenbrodep,A.G. Fairénq,r, O. Fornis,S. Guptat, J.A. Hurowitzu,

N.L. Lanzav, M.E. Schmidtw,K. Siebachd, B. Sutterm,L.M. Thompsonx

aAstromaterialsResearchandExplorationScienceDivision,NASAJohnsonSpaceCenter,Houston,TX77058,USA bNASAAmesResearchCenter,MoffettField,CA94035,USA

cChesapeakeEnergy,OklahomaCity,OK73154,USA

dDivisionofGeologicandPlanetarySciences,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA eDepartmentofGeosciences,UniversityofArizona,Tucson,AZ85721,USA

fGeophysicalLaboratory,CarnegieInstitutionofWashington,BroadBranchRdNW,Washington,DC20015,USA gPlanetaryScienceInstitute,Tucson,AZ85719,USA

hJetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA91109,USA iLunarandPlanetaryInstitute,Houston,TX77058,USA

jSchoolofEarthandSpaceExploration,ArizonaStateUniversity,Tempe,AZ85287,USA kDepartmentofPhysics,UniversityofGuelph,Guelph,ONN1G2W1,Canada

lDepartmentofEarthandPlanetaryScience,UniversityofTennessee,Knoxville,TN37996,USA mJacobsJETSContract,Houston,TX77058,USA

nSETIInstitute,MountainView,CA94043,USA

oDepartmentofEarthSciences,UniversityofWesternOntario,London,ONN6A5B7,Canada pNASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA

qCentrodeAstrobiología,CSIC-INTA,28850Madrid,Spain rDepartmentofAstronomy,CornellUniversity,Ithaca,NY14853,USA

sInstitutdeRechercheenAstrophysiqueetPlanétologie,CNRS,UMR5277,Toulouse,France tDepartmentofEarthSciencesandEngineering,ImperialCollegeLondon,LondonSW72AZ,UK uDepartmentofGeosciences,StonyBrookUniversity,StonyBrook,NY11794,USA

vLosAlamosNationalLaboratory,LosAlamos,NM87545,USA

wDepartmentofEarthSciences,BrockUniversity,St.Catharines,ONL253A1,Canada

xPlanetaryandSpaceScienceCentre,UniversityofNewBrunswick,Fredericton,NBE3B5A3,Canada

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received3August2016

Receivedinrevisedform3April2017 Accepted12April2017

Availableonline12May2017 Editor:C.Sotin

Keywords:

Mars Galecrater X-raydiffraction diagenesis

acid-sulfatealteration

The Mars Science Laboratory Curiosity rover has been traversing strata at the base of Aeolis Mons (informallyknownasMountSharp)sinceSeptember2014.TheMurrayformationmakesupthelowest exposed strata of the Mount Sharp group and is composed primarily of finely laminated lacustrine mudstoneintercalatedwithrarecrossbeddedsandstonethatisprodeltaicorfluvialinorigin.Wereport onthefirstthree drilledsamples fromtheMurray formation,measuredinthePahrumpHills section.

RietveldrefinementsandFULLPATfullpatternfittinganalysesofX-raydiffractionpatternsmeasuredby theMSLCheMininstrumentprovidemineralabundances,refinedunit-cellparametersformajorphases giving crystalchemistry,andabundancesofX-rayamorphous materials.Ourresultsfromthesamples measured atthe Pahrump Hills and previouslypublished results on the Buckskin sample measured from the Marias Pass section stratigraphically above Pahrump Hills show stratigraphic variations in the mineralogy;phyllosilicates,hematite,jarosite, andpyroxeneare mostabundantatthebase ofthe Pahrump Hills, and crystalline and amorphous silica and magnetite become prevalent higher in the succession. SometraceelementabundancesmeasuredbyAPXSalsoshow stratigraphictrends; Znand Ni are highly enrichedwith respect toaverage Mars crustatthe base ofthe Pahrump Hills (by 7.7 and 3.7 times, respectively),and gradually decrease in abundance in stratigraphicallyhigher regions

* Correspondingauthor.

E-mailaddress:elizabeth.b.rampe@nasa.gov(E.B. Rampe).

http://dx.doi.org/10.1016/j.epsl.2017.04.021

0012-821X/PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

nearMariasPass,wheretheyaredepleted withrespecttoaverageMarscrust(bymorethananorder of magnitudein some targets). The Mn stratigraphictrend is analogous to Znand Ni,however, Mn abundancesare close tothoseofaverage Marscrustatthebase ofPahrump Hills,rather thanbeing enriched,andMnbecomesincreasinglydepletedmovingupsection.MineralsatthebaseofthePahrump Hills,inparticularjarositeandhematite,aswellasenrichmentsinZn,Ni,andMn,areproductsofacid- sulfate alterationonEarth.We hypothesizethatmultiple influxesofmildlytomoderately acidicpore fluidsresultedindiagenesisoftheMurray formationand theobservedmineralogicalandgeochemical variations.ThepreservationofsomemineralsthatarehighlysusceptibletodissolutionatlowpH(e.g., mafic minerals and fluorapatite)suggests that acidicevents were not long-lived and that fluidsmay not have been extremely acidic (pH>2). Alternatively, the observed mineralogical variations within the succession may be explained by deposition in lake waters with variable Eh and/or pH, where the lowermost sediments weredeposited inan oxidizing, perhapsacidic lake setting,and sediments depositedintheupperPahrumpHills andMariasPassweredepositedlakewaters withlowerEhand higherpH.

PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Mars Science Laboratory (MSL) Curiosity rover landed on the plains of Gale crater (Aeolis Palus) to the north of Aeolis Mons(informallyknown as MountSharp) in August 2012to in- vestigate a site presumed to have a variety of ancient aqueous environments and to assess the habitability of these environ- ments (Grotzinger etal., 2012). Visible/short-wave infrared spec- tra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter show strati- graphic trends in mineralogy in the lower sedimentary layers of Mount Sharp; the lowermost layers contain phyllosilicate, sul- fate, and/or iron oxide minerals,withspectral evidence forphyl- losilicate minerals decreasing up section (Milliken et al., 2010;

Fraemanetal., 2013).Stratigraphicchangesinmineralogy suggest thattherocksinlowerMountSharprecordanenvironmentaltran- sitionfromone inwhichphyllosilicatemineralsformed toonein whichsulfatemineralsformed(Millikenetal., 2010).Bystudying the mineralogy and geochemistry of thissedimentary succession insituwithCuriosity,wecanidentifychangesinenvironmentand sedimentsourcesonamuchfinerscale.

Bedrock exposed onthe plains northofMount Sharpbelongs tostrataoftheBradburygroupandincludesmudstone,sandstone, andconglomerate sequences deposited in fluvial-lacustrine envi- ronments (Grotzinger et al., 2014, 2015; Vasavada et al., 2014).

Themudstone analyzedatYellowknife Baywas interpreted asan ancienthabitable lacustrine environmentbased onits mineralog- ical and geochemical composition (e.g., Grotzinger et al., 2014;

McLennan etal., 2014; Ming etal., 2014; Vaniman et al., 2014), wherecircumneutral fluidswithlow ionicstrength appear to be associatedwiththein-situdissolutionofolivine andprecipitation offerrian saponiteandmagnetite (Bristow etal., 2015). Curiosity reachedthebaseof MountSharpin September 2014ina region called the Pahrump Hills. Rocks of the Pahrump Hills make up thelowermostportionoftheMurrayformationandaredominated byfinelyhorizontallylaminatedmudstonewithminorintercalated cross-beddedsandstone, suggestingdeposition from lacustrine to fluvial-deltaicenvironments (Grotzingeretal., 2015). The Murray formationis mapped astime-equivalentto coarser-grained strata oftheBradburygroup, withfluvial-deltaicfacies passinglaterally intoandinterfingeringwithlacustrinefacies.

The Murrayformation was studied in detailat Pahrump Hills and at Marias Pass, 6 m stratigraphically above the top of the exposedsectionstudiedatthePahrumpHills(Fig. 1).Detailedin- vestigationsintheselocationsincluded imagingby Mastcamand theMarsHand Lens Imager (MAHLI),geochemical measurements by the Alpha Particle X-ray Spectrometer (APXS) andthe Chem- istryandCamera(ChemCam),anddeliveryofdrilledrockpowders totheinstrumentsinsidethebodyoftherover,theChemistryand

Mineralogy(CheMin) andSample Analysis at Mars(SAM) instru- ments.MineralogicalresultsfromCheMinfortheMariasPassdrill samplearereportedbyMorrisetal.(2016).Here,wereportmin- eralogical resultsfromCheMinof thesamplescollected fromthe PahrumpHillssection,includingmineralabundances,refinedunit- cell parameters, and derived crystal chemistry. We subsequently consider hypotheses about the depositional and diagenetic envi- ronmentsrecordedintheserocks.Basedonmineralogy,geochem- istry, and diagenetic features, we propose a model of multiple acidic diagenetic fluid episodes. We also consider deposition in acidsalinelakesasanexplanationfortheobservedmineralogy.

2. Materialsandmethods 2.1. Samples

FourdrillsampleswereacquiredfromthelowerMurrayforma- tionbytheMSLCuriosity’ssampleacquisitionandhandlingsystem and delivered to CheMin for analysis (Figs. 1 and 2). Details of sample acquisitionandprocessingbytheCollection andHandling for In-situ Mars Rock Analysis (CHIMRA, Anderson et al., 2012) andanalysisby theCheMininstrumentarepresentedinthesup- plementarymaterial.Thefirstthreesamplesweretakenfromthe Pahrump Hills section of the Murray formation. The Confidence Hills(CH) andMojave 2(MJ)drillsampleswereacquiredonsols 759 and882,respectively, andlie near the baseof thePahrump Hills,withtheMJsamplelocated1.2mstratigraphicallyabovethe CH drill site. The base of the Pahrump Hills records numerous features consistent with multiple diagenetic episodes, including centimeter-scale crystal clusters and dendrites enriched in Mg, Ni,andS,accordingtoAPXSmeasurements(Gellertetal., 2015a;

Kahetal.,2015a; VanBommeletal.,2016);millimeter-scalelentic- ularcrystalpseudomorphs(Kahetal., 2015b);andfracturescon- taining one or two generations of mineral fill (including a late- diageneticcalcium-sulfatephase,Kahetal.,2015a,2015b;Nachon etal.,2017).TheTelegraphPeak(TP)sample wasacquiredonsol 908atanelevation7mabovetheCHsample.TelegraphPeaklies just below a cross-stratified sandstone called Whale Rock, inter- preted asatongue ofprodeltaic gulley orlowstand fluvial mate- rials(Grotzingeretal.,2015).TheBuckskin(BK)outcrop(sampled on sol1060)is a2–3 m thick section ofthe Murrayformation exposedintheMariasPassregion,13mupsectionfromCH(Mor- ris,2016).

2.2. Methods

AllXRDdatawerefirstevaluatedbycomparisonsandsearches of the International Center for Diffraction Data (ICDD) Powder

(4)

Fig. 1.A.Curiosity’straversefromlandingthroughSol1185,showinglocationsofPahrumpHillsandMariasPass.Imagecredit:NASA/JPL-Caltech/Univ.ofArizona.Map fromhttp://mars.jpl.nasa.gov/msl/news/whatsnew/index.cformation?FuseAction=ShowNews&NewsID=1879.B.StratigraphiccolumnfortheBradburyandMountSharpgroups, includingalldrillholelocations(Grotzingeretal.,2015).C.StratigraphiccolumnoftheMurrayformation,includingthefoursamplinglocationsinthispaper(Grotzingeret al.,2015).

(5)

Fig. 2.Drillholes/targetsforsamplestakenfromtheMurrayformationandanalyzedbyCheMin.CHdrillfinesareredderthanothersamples,consistentwiththegreatest hematiteabundance.MJtargetshowslenticularwhitecrystalformsinthemudstone.TPdrillfinesaregray,andthesurroundingfinelaminationsarevisible.BKdrillfines arebright,consistentwithabundantcrystallineandamorphousSiO2.Drillholedepthsare6 cm,andsamplesdeliveredtoCheMinaresourcedfromdepthsof5–6 cm.

Images’credit:NASA/JPL-Caltech/MSSS.

DiffractionFile using MDI Jade (Materials Data Incorporated, Liv- ermore, CA) software packages. The data were analyzed further viaRietveldrefinementmethods,usingJade.TheRietveldmethod involvesconstructing a modelconsistingof thecrystal structures ofallcomponentphasesandminimizingthe differencesbetween theobserved and simulateddiffraction patternsby varying com- ponents of the model, including scale factors (related to phase abundance) and unit-cellparameters. This methodthus provides informationon all well-ordered crystalline phases, butis not di- rectly applicable to disordered phases such as clay minerals or X-rayamorphouscomponents.

Cell parameters for well-crystalline minerals present at

>∼5 wt.% abundance were refined usingstructure filesfromthe

AmericanMineralogist Crystal Structure Database.Abundances of phyllosilicate,poorlycrystalline,andXRD-amorphousphaseswere estimatedbytheFULLPATfullpatternfittingmethod(Chiperaand Bish,2002) usinglaboratorypatternsgeneratedfromCheMinIV,a laboratoryprototypeoftheCheMinflightinstrument.

Major, minor,andsome trace element abundances were mea- suredwiththeAPXSlocatedontheendofCuriosity’sroboticarm (Campbelletal.,2012; Gellertetal.,2015b).TheCheMindrillsam- pleandthedump pilesofpost-sievedsamples arenominallythe samematerial (<150 μm), and, assuch,theseAPXS analyses are thebestcomparisontoCheMinresults.

Chemicalcompositionsofcrystallinecomponentscomprisingat least5 wt.% of the sample were estimated from unit-cell pa- rameters calculated by Rietveld refinement. The calculations are insensitive, however, to trace element substitutions in the min- eralstructures.Inordertolimitartificial“assignments”ofthetrace elementstotheamorphousmaterial,weusedcompositionsofnat- urallyoccurringminerals(fromanalysesofmartianmeteorites)to estimatethetracechemicalcompositionsofthecrystallinephases

>5wt.%(after Morrisetal.,2016).The elementalcompositionof theX-rayamorphous±phyllosilicatecomponentswasestimatedby massbalancecalculationsfromthebulk APXScompositionofthe post-sieveddumppile,theinferredcompositionsofthecrystalline

phases, and the weight proportion of the X-ray amorphous and phyllosilicate components determined by FULLPAT (methods de- tailedbyVanimanetal.,2014;Morrisetal.,2016).

3. Results 3.1. Confidencehills

The Confidence Hills (CH) sample provides our stratigraphi- callylowermostmeasurementofthePahrumpHillssection ofthe Murrayformation. Themajor minerals present(>∼5 wt.% of the crystalline phases) in this sample in decreasing order of abun- dance are: plagioclase, hematite, augite, pigeonite, sanidine, and magnetite (Fig. 3, Table 1).The broad diffraction peak near10 Å indicates thepresenceofa poorlycrystalline 2:1-layertype phyl- losilicate.Theidentityofthephyllosilicatecannotbe furthercon- strainedbecauseoftheabsenceofadistinct 02peak(e.g.,Vani- manetal.,2014);thepositionofthe001peak,however,isconsis- tent witha collapsedsmectiteorillite(e.g.,MooreandReynolds, 1997). FULLPAT analysis of the CH pattern suggests this sample contains8 wt.%2:1layertypephyllosilicate.CHhasthegreatest abundancesofmaficigneousminerals,phyllosilicate,andhematite ofallsamplespresentedinthismanuscript.

Unit-cell parameters (Table 2) of plagioclase are consistent withandesine, An42(10) (Table 3, valuesin parenthesesrepresent 2-sigmaerrors),andthoseofsanidineareinagreementwithhigh sanidine, Ab26(16)Or74(16), with complete Al–Si disorder. We de- rivedapigeonitecompositionofEn60(6)Fs38(7)Wo2(2),however,the derived compositions and relative abundances of the pyroxenes havelargeuncertaintiesbecauseofoverlappingpeaksandthelow angular resolution of the CheMin instrument (0.32θ; Blake et al., 2012). The magnetite unit cell refined to an a unit-celledge lengthof8.365(6) Å,whichindicates thatmagnetiteisintermedi- atetostoichiometricmagnetiteandmaghemiteifweassumethat Fe is theonly cationin themineral (e.g.,SchwertmannandCor- nell, 2000). The derived formula of magnetite is Fe2.81(5)0.19O4

Références

Documents relatifs

H2CO and 03 have been measured regularly since October 1990 at the urban site of the Campus of the &#34;Université Libre de Bruxelles&#34;, using the Differential Optical

The study of 9 cores (the cores were made available during a project with the MRAC/KMMA) drilled for mining purposes in the Stanleyville formation in the

Using the physics asymmetries measured in forward and backward angle, we can determine the strange quarks con- tribution to the nucleon form factors as well as the isovec- tor

(the energy of the ith jet normalized to the beam energy) to compare our data with models containing scalar and vector gluons. We use the data to populate a Dalitz plot shown

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Emissions tests were performed in kitchens in Nicaragua to document the combustion emissions associated with cooking fu- els, particularly the fuel most commonly used in Nicaragua

Observed (black line) and predicted (dark blue line: model trained with only high clouds over ocean, light blue line: model trained with all cloud types over ocean, red line:

The 3 He atoms will be polarized using the technique of metastability- exchange optical pumping (MEOP), and will then be flowed into the newly commis- sioned