• Aucun résultat trouvé

Transposition from a batch to a continuous process for microencapsulation by interfacial polycondensation

N/A
N/A
Protected

Academic year: 2021

Partager "Transposition from a batch to a continuous process for microencapsulation by interfacial polycondensation"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-00878628

https://hal.archives-ouvertes.fr/hal-00878628

Submitted on 30 Oct 2013

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Transposition from a batch to a continuous process for microencapsulation by interfacial polycondensation

Félicie Theron, Zoé Anxionnaz-Minvielle, Nathalie Le Sauze, Michel Cabassud

To cite this version:

Félicie Theron, Zoé Anxionnaz-Minvielle, Nathalie Le Sauze, Michel Cabassud. Transposition from a batch to a continuous process for microencapsulation by interfacial polycondensation. Chem- ical Engineering and Processing: Process Intensification, Elsevier, 2012, vol. 54, pp. 42-54.

�10.1016/j.cep.2012.01.001�. �hal-00878628�

(2)

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 10006

To link to this article : doi:10.1016/j.cep.2012.01.001 URL : http://dx.doi.org/10.1016/j.cep.2012.01.001

To cite this version : Theron, Félicie and Anxionnaz-Minvielle, Zoé and Le Sauze, Nathalie and Cabassud, Michel Transposition from a batch to a continuous process for microencapsulation by interfacial polycondensation. (2012) Chemical Engineering and Processing, vol.

54 . pp. 42-54. ISSN 0255-2701

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

(3)

Transposition from a batch to a continuous process for microencapsulation by interfacial polycondensation

FélicieTherona,b,∗,ZoéAnxionnaz-Minviellec,NathalieLeSauzea,b,MichelCabassuda,b

aUniversitédeToulouse;INPT,UPS;LaboratoiredeGénieChimique;4AlléeEmileMonso,BP84234,F-31432Toulouse,France

bCNRS;LaboratoiredeGénieChimique;F-31432Toulouse,France

cCEALITEN,AlternativeEnergiesandAtomicEnergyCommission,17ruedesMartyrs,38054GrenobleCedex9,France

Keywords:

Microencapsulation Interfacialpolycondensation Continuousprocess Staticmixer Millireactor Coiledtubereactor

a b s t r a c t

A novel continuous processis proposed and investigated toproduce microcapsules byinterfacial polycondensation.Polymericmicrocapsulesareobtainedviaatwo-stepprocessincludinganinitialemul- sificationoftwoimmisciblefluidsinstaticmixersandasubsequentinterfacialpolycondensationreaction performedintwodifferentcontinuousreactors,theDeanhexheatexchanger/reactororaclassicalcoiled- tube.Thisstudyiscarriedoutthroughastepbystepapproach.Amodelsysteminvolvingpolyureaas thepolymericmembraneandcyclohexaneastheencapsulatedspeciesischosen.Asemi-batchreaction kineticstudyisfirstperformedinordertoobtainkineticsdataofthepolycondensationreactionand tohighlighthydrodynamicissuesthatcanhappenwhenrunningtheencapsulationreactioninclassical stirredtank.Parametersinfluencingdropletssizeobtainedwhencarryingoutemulsificationinstatic mixersaretheninvestigated.ThehydrodynamicoftheDeanhexreactorusedisalsocharacterizedin termsofmixingtimeandresidencetimedistribution.Tovalidatetheinnovativecontinuousprocess, theemulsiondropletsobtainedatthestaticmixeroutletareencapsulatedfirstlyintheDeanhexreac- torandsecondlyinthecoiled-tube.Theapparentreactionkineticsandmicrocapsulescharacteristics correspondingtodifferentoperatingconditionsarediscussed.

1. Introduction

Microencapsulation is a widely used method to produce microparticlesenclosing anactiveingredient. Thesemicroparti- clesmaybeeithersolid networksformingmatricesinwhich is dispersedthesolidorliquidactivesubstancecalledmicrospheres, orcore–shellsystemsmadeofasolidwallenclosingandprotect- ingaliquidorsolidcorecalledmicrocapsules[1–3].Thepresent studyconcernsthesynthesisofthelastformofmicroparticles.In general,thesizeofmicrocapsulesrangesfrom5to200mm[4].

Interestformicroencapsulationisrelatedtothedevelopmentof variousapplicationssuchascarbonlesscopyingpaperwithcap- sulesdiametersfromseveralmicrometersto30mm, medicines, flavorinthefoodindustry[5,6],andcosmetics.Sinceseveralyears, microencapsulationisalsousedbythetextileindustry[7]topro- posefragrancedoractiveclothestocustomerslikeperfumedtissue papersorslimmingtights.

Correspondingauthorat:UniversitédeToulouse;INPT,UPS;Laboratoirede GénieChimique;4AlléeEmileMonso,BP84234,F-31432Toulouse,France.

Tel.:+33534323672.

E-mailaddress:felicie.theron@mines-nantes.fr(F.Theron).

Microcapsulesarehighaddedvalueproductswithmanydiffer- entpropertieswhicharenoteasilycontrollable.Theseproperties maybe adjustedand optimized duringthe formulation step.A homogeneousproduction withoutanydiscrepancy towards the expectedpropertiesmustbeguaranteedbythemanufacturingpro- cess.

Thepresent workaimsatdemonstrating thedesignand the feasibilityofacontinuousprocessofmicroencapsulationbyinter- facial polycondensation. This chemical encapsulation technique consistsinareactionbetweentworeactivemonomersattheinter- faceofdroplets.Anemulsioninvolvingtheactiveingredientand afirstmonomerinsidedropletsisfirstlyprepared,thenasecond monomerisaddedinthecontinuousphase.Theinterfacialreaction atdropletsinterfacestartsassoonasbothmonomersareincontact.

Polymerwallspreparedbyinterfacialpolycondensationmaybefor examplepolyester,polyamide,polyurethane,orpolyurea[4].Con- tinuousprocessesarewelladaptedtointerfacialpolycondensation thatpresentrelativelyfastreactionkinetics.

Nowadaysbatchprocessesinvolvehighvolumereactors.They arereliableandflexible,theiroperatingmodesarewell-knownand residencetimesinsuchprocessesareaslongasrequired.Moreover both steps involved in the process require different hydrody- namicconditionsthatarehardlycompatibleinthesameapparatus.

The final microcapsules size distribution is fixed during the

doi:10.1016/j.cep.2012.01.001

(4)

emulsificationstepthatrequireshighshearconditions.Thenitis importanttoinsurethatnocoalescenceoccursbeforeaddingthe secondmonomerandthatnoagglomerationphenomenonhappens during thepolycondensation reaction.Concerning this reactive step thekey parameters are thehydrodynamic conditions and thesecondmonomeradditionrate[8–10].Thecontinuousphase monomermust bequickly homogenizedin this phase in order toguaranteethatthereactiontakesplacesimultaneouslyatthe interfaceofall droplets soastoinsure a good homogeneityof microcapsulesproperties,whatrequiresafastmixingtime.More- overtheflowconditionsinthereactormusttendtoaplugflowin ordertoavoidtheagglomerationphenomenonandtoinsuregood membranethicknesshomogeneity.

Thatisthereasonwhythepresentpaperproposestousecon- tinuous technologies welladapted tothe hydrodynamic issues ofbothsuccessivestepsinvolvedininterfacialpolycondensation.

Thisapproachallowstoremovehydrodynamicbarrierspreviously cited,whilekeepingtheemulsiondropletssizedistributiondur- ingthepolycondensationreaction.Inordertoincreasetheprocess yieldwewishtoincreaseasmuchaspossiblethemicrocapsules concentrationduringthereactionwithoutanyagglomerationphe- nomenon.

InthisstudytheemulsificationstepisperformedinaSulzer SMXTMstaticmixerandthereactivestepinawavychannel(Dean- hexreactor)orinaclassicalcoiled-tubereactor.Staticmixersare fixedstructuresinserted intocylindrical pipes.TheSulzerSMX mixerconsistsinanarrayofcrossedbarsarrangedatanangleof45 againstthetubeaxis.Staticmixersoffertheadvantagestorepresent lowinvestmentsandenergycostscomparedtoaclassicalstirred tank[11].Liquid–liquiddispersionoremulsificationisachievedby flowingthetwoimmiscibleliquidsco-currentlythroughthemixer.

Theenergycostoftheoperationisrelatedtothepumpsrequiredto transporttheliquidsthroughthemixer.Theenergyconsumption canbeestimatedthroughpressuredropmeasurementsandenables topredictthedropletssize[11–15].Staticmixersareparticularly interestingforliquid–liquiddispersionasshearstressismoreuni- formthaninstirredtanks,whatresultsinlowertimesneededto reachtheequilibriumbetweenbreakupandcoalescence[16,17].

TheDeanhexreactorisanexampleofheatexchanger/reactor whichtechnologyisbasedontheplateheatexchangers[18].By combiningaheatexchangerandareactorinthesameapparatus, anaccuratethermalcontrolofthereactionisexpected.Moreover thereactors requireasufficient residencetime tocompletethe

chemicalsyntheses.Thus,awaytointensifyheatandmasstrans- ferswhileoperatinginlaminarflowistostructurethechemical path[19–21].ThisisthemaincharacteristicoftheDeanhexreac- torwhichismadeofareactionplateinsertedbetweentwocooling plates.Awavymilli-channelhasbeenmachinedinthefirstone.The thermo-hydrauliccharacterizationsofthis2Dgeometryhavebeen madeinhomogeneousliquidphase[22].Itshowsnarrowresidence timedistributions,highheatandmasstransfersandmoderatepres- suredropsintransitionalflowregime(Reynoldsnumberaround 2000).

Thehelicallycoiledtubereactoriswelldocumentedinthelitera- ture[23–26].Insuchreactorstheactionofcentrifugalforceonfluid elementsmovingwithdifferentaxialvelocitiesinacurvedcircu- larpipeinducesasecondaryflowinthetubecross-sectionplane.

Thissecondaryflowfieldleadstoincreasedpressure drops,but alsotohigherheatandmasstransfercoefficients,andtonarrowed residencetimes.

The continuous encapsulation process investigated is tested withamodelsystemdescribedintheliteratureandalreadystudied inbatchprocesses[27–31].Thereactioninvolveshexamethylene diisocyanate(HMDI) and hexamethylene diamine(HMDA). The emulsificationstepinvolvescyclohexanecontainingHMDI(first monomer)asthedispersedphase,andwaterascontinuousphase.

This emulsion is stabilized using a surfactant: Tween 80. Con- tinuous phase (water+Tween 80) containing HMDA as second monomeristhenaddedtotheemulsiontoinitiatethereactivestep.

Theemulsionisthusdiluted.Thetwomonomersreactthroughan athermalreactiontoformapolyureamembrane atthedroplets interface:

nH2N (CH2)6 NH2+nO C N (CH2)6 N C O

[HN (CH2)6 NH OCNH (CH2)6NHCO]n HMDA+HMDIPolyurea

The methodology used to transfer the batch encapsulation processtoacontinuousoneinvolvesseveralexperimentalsteps presentedin Fig.1.Thefirstpartofthis paperreportsthepre- liminarystudiesperformedinordertoacquiretheexperimental datarequiredtosetupthecontinuousprocess.Theencapsulation reactionisfirstinvestigatedthroughasemi-batchprocessinorder tocollectkineticsdataandtohighlighthydrodynamicissuespre- sentedbytheclassicalstirredtank.EmulsificationinSMXstatic

Deanhex hydrodynamic characterization

Semi-batch encapsulation process study

Emulsification in SMX static mixer

Continuous encapsulation process

Droplets size range Reaction kineticsdata

Hydrodynamic data

Preliminary studies

Data expected

-Membrane properties - Emulsion’s droplets and microcapsulessize distribution -Reaction rate at reactor outlet

Continuous process characteristics

studied

Fig.1. Schematicdiagramofthemethodologyusedtotransferthebatchencapsulationprocesstoacontinuousone.

(5)

Table1

Physico-chemicalpropertiesofcontinuousanddispersedphasesinvolvedinthe presentstudy.

Fluid Water– Tween80(1.5vol.%) Cyclohexane

Density(kgm−3) 995 770

Viscosity(Pas) 0.0010 0.0009

Fig.2. Asetof10SMXelements.

mixerisstudiedinordertoevaluatetheinfluenceofhydrodynamic parametersondropletssizes.TheDeanhexreactorischaracterized intermsofhydrodynamicperformances.

Thesecondpartofthispaperdealswiththeinvestigationsofthe continuousprocessproposed.Thisprocessisfirstassessedthrough membraneproperties,apparentreactionkinetics,andmicrocap- sulessizedistribution.Theinfluenceofthereactiontemperature onbothreaction kineticsandmicrocapsules sizedistributionis alsoanalyzed.Finallythecontinuousprocessiscarriedoutwithout surfactantinthecontinuousphase.

2. Experimental

2.1. Materials

HMDAandHMDIusedasmonomersarepurchasedfromAcros Organics. The surfactant and oil phase are respectively Tween 80andcyclohexane,andarepurchasedfromPanreacandAcros Organics.Viscositiesofcontinuousanddispersedphasesaremea- suredusinganAR2000rheometer(ARinstruments).Monomersare addedinsuchlowconcentrationinbothphasesthatviscositiesand densitiescanbeconsideredasthoseofthepureaqueousandoil phases,asdetailedinTable1.

Theinterfacialtensionbetweenbothphasesatequilibriumis measuredusingtheWhilelmyplatemethodwithaBalance3S(GBX Instrumentstensiometer).Itisequalto3.5mNm−1anditisnot modifiedbymonomers.

2.2. Experimentalsetupandprocedure

Theemulsificationstepisperformedina stainlesssteeltube packedwithastainlesssteelSulzerSMXstaticmixermadeof10 elements(seeFig.2).ThediameterofeachelementD,theaspect ratioD/L(elementdiameter/elementlength),theporosityε,the hydraulicdiameterDh,andthecrossbarsthicknessıaregivenin Table2.

ThereactivestepiscarriedouteitherinaDeanhexreactoreither inaclassicalcoiled-tubereactor.TheDeanhexreactorismadeof threeplates:acooling(orheating)platecalled‘utilityplate’sand- wichedbetweenaclosingplateanda‘processplate’inwhichflow thereactants.The‘utilityplate’,madeofaluminium,isremoved fortheimplementationoftheinterfacialpolycondensationreac- tionduetoitsathermalaspect.The‘closing’and‘process’plates aremadeofpolymethylmethacrylate(PMMA)whichistranspar- entin order to visualize theflow during theexperiments (see

Table2

GeometricaldataoftheSMXmixer.

D(mm) D/L ε Dh(mm) ı(mm)

10 1 0.67 2.45 0.99

Fig.3. Deanhexreactor:(a)primaryinlet;(b)secondaryinlet;(c)outlet.

Fig.4. SchematicviewofthegeometricalparametersoftheDeanhexreactorchan- nel.

Table3

GeometricaldataofthecorrugationparametersoftheDeanhexreactivechannel.

dh(mm) a/b Rc/dh Ld(mm) () Ltot(mm)

Deanhex2×2 2 1 2 20.28 90 3400

Deanhex4×4 4 1 1 20.28 90 3400

Fig.3).Thesquarecrosssectionwavychannelismachinedonthe

‘processplate’andtwogeometriesaretestedinthisstudy.They arecharacterizedbythehydraulicdiameter,dh,theaspectratio, a/b(channelheight/channelwidth),thecurvatureratio,Rc/dh,the straightlengthbetweentwobends,Ld,theangleofthebend,and thetotaldevelopedlengthofthechannel,Ltot.Theseparametersare representedinFig.4andthegeometricaldataaregiveninTable3.

TheDeanhexreactorhastwoflow inletsinordertomixthe tworeactantsinthewavychannelandavoidalimitingupstream premix.Twotemperatureandpressureprobesaresetupatthe inletandtheoutletofthereactor.

Fig.5.Coiled-tubereactor:(a)inlet;(b)outlet;(c)samplingvalves.

(6)

Thecoiled-tubereactor(cf.Fig.5)consistsina4mminnerdiam- eter50mlengthpipe,withacoildiameterof300mm.Fivesampling valvesaresetupalongthepipe.

Fig.6presents aschematic diagramof theexperimentalset up.Duringeachexperimenttheemulsionflowsthroughthestatic mixerwheretheflowrateisfixedto167Lh−1.Thedispersedphase concentrationФemulsion isfixedthankstorespectivecontinuous anddispersedphasevolumes.Thelargestpartoftheemulsionflow recirculatesthroughatank,whereasasmallfractionofthisstream flowsthroughthereactor.Theemulsionflowratepassingthrough thereactorisdeterminedbyweighingthevolumecollectedatthe reactoroutletfor agivenexperimentaltime.Themicrocapsules concentrationФmicrocapsulesiscontroledbychoosingtherelevant ratioofboththeemulsionandthecontinuousphasecontaining HMDAflowrates:

microcapsules= emulsionQemulsion

Qtot (1)

where˚emulsionisthedispersedphaseconcentrationintheemul- sion,andQtotisthetotalflowrateinthereactor.

ThepHoftheslurry’scontinuousphaseatthereactoroutletis measuredwithaPHM210MeterlabpH-meter(radiometeranalyt- ical)inordertocalculatetheHMDAconversion.ThepHisgiven witha0.01pHunitprecision.

Finallysamplesofemulsiondropletsatthestaticmixeroutlet andmicrocapsulesatthereactoroutletarecollectedinorderto characterizetheirsizedistributionsandtoanalyzemicrocapsules properties.

2.3. Dropletsandmicrocapsulescharacterization

Somemicrocapsulespropertiesareanalyzedinordertovali- datethecontinuousprocess.Thedeterminationofbothemulsion dropletsandmicrocapsulessizedistributionsallowstoevaluate whetherthe dispersed phase size distribution is kept constant duringthepolycondensationreaction.Thermalpropertiesofthe polymeric membrane and its chemical structure are identified usingrespectively differentialscanning calorimetryand Fourier TransformedInfra-Redspectroscopy.

2.3.1. Dropletsandmicrocapsulessizedistribution

Sizedistributionsofbothemulsiondropletsandmicrocapsules aredeterminedusingaMastersizer2000(MalvernInstruments).

2.3.2. Differentialscanningcalorimetry(DSC)

Thermalpropertiesofthepolymericmembraneareanalyzedvia differentialscanningcalorimetry(DSC)withaQ2000calorimeter (TAInstruments).Beforeanalysis,themicrocapsulesarerecovered fromtheslurrybyfiltration,washedwithethanoltoremoveunre- actedmonomersfromthesurface,filteredagain,anddriedin a vacuumovenat 25C foratleast24h.Samplesabout2mg are sealedinDSCpansandheatedfrom25Cto400Cataheating rateof10Cmin−1.

2.3.3. FourierTransformedInfra-Redspectroscopy(FTIR)

Infraredspectraofthepolymericmembraneareobtainedwith aNicolet5700(ThermoFischer)spectrophotometer.Beforeeach analysisthemembranesamplesaretreatedasforDSCmeasure- ments.

3. Preliminarystudies

3.1. Reactionkineticsstudyinsemi-batchconditions

Inthebatchtocontinuoustranspositionapproachperformed, asemi-batchreactionstudyiscarriedoutbeforeperformingthe

wholeprocesscontinuously.TheemulsionisgeneratedintheSMX staticmixer andthe reactionrunsin a classicalstirred tank. It isobviousthatreactioncharacteristictimesmustbedetermined todesigncontinuousreactors.Moreoverbatchstudiesenableto highlighttypical issues occurringin stirred tankhydrodynamic conditionsandthatmaybeavoidedwhenworkingcontinuously.

Thesemi-batchstudyisdescribedinthissection.Theexper- imental method chosen to follow the reaction kinetics is first detailed.Thentypicalkineticsresultsareshown.Andfinallysome hydrodynamic issues encountered in classical stirred tanks are exhibited.

The reaction is performed in a 4 baffles jacketed 1L tank, stirred with a 3 blades turbine. The stirring speed is fixed to 200rpm,correspondingtotheminimumspeedtokeepthesuspen- sionhomogeneous.ThereactorisalsoequippedwithapH-sensor (Mettler–Toledo)connectedtoacomputerinordertoacquirecon- tinuousphasepHprofiles.

BeforeexperimentsthetankispouredwiththeHMDAsolution, thestirringspeedaswellasthejackettemperatureisfixed,and thepH-acquisitionisstarted.Thentherespectiveflowratesofboth waterandcyclohexane-HMDIsolutioninthestaticmixerarefixed.

Duringthistransienttimeofflowratesadjustmenttheemulsionat mixeroutletisconveyedtoareceivingtank.Assoonasthetargeted totalflowrateanddispersedphaseconcentrationarereachedthe fixedvolumeofemulsionflowingatstaticmixeroutletispoured intothetank.

3.1.1. Experimentalmeasurementofreactionkinetics

The experimental acquisition of kinetics data of interfacial polycondensationreactionsisratherdifficultduetotheirinhomo- geneityandfastkineticrates.Themostoftenstudiedparameters arethemembranethicknessorthecontinuousphase monomer consumptionversustime.Themembranethicknessmeasurement hasbeenusedbyseveralauthors[32–35].

Butthismethodisespeciallydifficulttocarryoutbecauseofthe lowmembranesthicknessandtheexperimentalbarrierssuchas reactionquenching,samplepreparationandrepresentativeness.

For the case of polyurea membranes, the continuous phase monomerisanaminethatconfersabasiccharactertotheaque- oussolution.ThecontinuousphasepHrecordingthusenablesto determinetheamineconcentrationprofileasafunctionoftime.

ThistechniquehasbeenusedbyYadavetal.[27,36],Kuboetal.

[37],Dhumaletal.[29]andWaghetal.[31]andischoseninthis paper.

ThetranspositionfromthecontinuousphasepHprofiletothe amine(hereHMDA)concentrationrequiresa calibrationstep.It consistsinmeasuringpHofaqueoussolutionswithvariousknown HMDAconcentrations.Thiscalibrationiscarriedouthereinpres- enceof surfactant inthe continuousphase and withdispersed phasedropletsinordertoreproduceexperimentalconditionsdur- ingencapsulationreactions.Itisperformedat25C.Thecalibration curvescorrespondingtothepHwithandwithoutdispersedphase dropletsarepresentedinFig.7.TheHMDAconcentrationranges from10−2 to2×10−4molL−1 whichcorrespondstopHranging from11.47to9.96.

ThepHofthecontinuousphaseisslightlylowerwhencyclo- hexanedropletsareinvolved.Butthediscrepancyisalwayslower than2%.IntheHMDAconcentrationrangestudiedtherelation- ship betweenthepH and theHMDA concentrationis linear in log-normalrepresentation.Thisrelationshipcanthusbemodelled, intheHMDAconcentrationrangeconsidered,asfollows:

CHMDA=1.7×10−15×Ch−1.1 (2) whereCHMDAandCharetheHMDAandthehydrogenionscon- centrationsinthecontinuousphase.Theconstantaswellasthe

Références

Documents relatifs

The experimental study of the interfacial instability of both miscible uids and immiscible uids provided interesting insights into the critical values of applied pa- rameters such

Reactive Functionalized Multilayer Poly- mers in a Coextrusion Process: Experimental and Theoretical Investigations of Interfacial Instabili- ties. 11th ESAFORM Conference on

After injection of RABV in skeletal muscles (hatched), first-order labeling is observed in motoneurons, followed by second-order labeling in SpIN, RN, LVN, third-order labeling

The first step consisted on a simultaneous D-glucose isomerization and D-fructose transportation through a fructoboronate complex, followed by the second step characterized by

Inspired by Pitman’s con- struction of coalescing random forests, we consider for every n ∈ N a uniform random tree with n vertices, and at each step, depending on the outcome of

Considering the efficiency as well as greener aspects of the process, due to the use of ionic liquids which loss is highly limited in aqueous phase, a more

Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells [77-79].. These effects have been attributed to M3AChR- induced

Accord- ing to our model these oscillations may result in the generation of loss cone or ring like resonant instability with 7L cx nile+ , leading to the excitation of ULF