• Aucun résultat trouvé

CMIS-1Comment mesurer les concentrations en éléments traces, ultra-traces… isotopes ?InductivelyCoupledPlasma Mass Spectrometry: ICP-MS

N/A
N/A
Protected

Academic year: 2022

Partager "CMIS-1Comment mesurer les concentrations en éléments traces, ultra-traces… isotopes ?InductivelyCoupledPlasma Mass Spectrometry: ICP-MS"

Copied!
83
0
0

Texte intégral

(1)

1 Dr Yann Sivry - sivry@ipgp.fr

Aquatic Geochemistry Team - Institut de Physique du Globe de Paris & Université Paris 7 UMR CNRS 7154

1, Rue Jussieu 75238 Paris cedex 05 Tel : +33 (0) 1 83 95 74 55 Fax : +33 (0) 1 83 95 77 08

e-mail : sivry@ipgp.fr

CMIS-1

Comment mesurer les concentrations en éléments traces, ultra- traces… isotopes ?

Inductively Coupled Plasma Mass Spectrometry : ICP-MS

Université Paris Diderot LiPAC

Novembre 2020

(2)

Dr Yann Sivry - sivry@ipgp.fr

CMIS-1

Comment mesurer les concentrations en éléments traces, ultra- traces… isotopes ?

Inductively Coupled Plasma Mass Spectrometry : ICP-MS

(3)

3

Definitions

 Spectroscopy = general term used to describe analytical methods based on absoprtion, emission or fluorescence of some molecules (Receptor = eye)

 Spectrometry = methods using a dispersive element (Receptor is not the eye)

 Spectroscopic methods = methods based on interaction between electromagnetic radiations and matter

(4)

Periodic table of elements - Mendeleïev

(5)
(6)

• Emission: ICP-AES, DP-AES, flame

• Absorption: flame, oven, atomic vapor

• Fluorescence: atomic, X (XRF)

• Mass (+ isotopes): ICP-MS, étincelle, TOF-SIMS

• Core: INAA (neutronic activation)

Elemental analysis

(7)

7

Analytical range(s)

(8)

Reminds on prefixes used

(9)

9

Introduction: Mass Spectrometry

 Analytical tools/methods allowing the detection and quantification of almost all the periodic table elements

This involves free atomes at vapor state (no more included in a molecule)

 Thus, the machine will:

o produce atomic vapor from the sample

o induce the molecule destruction = no more information on the nature of initial molecules (except if coupling with speciation technique)

 Possible to dose simultaneously all the species of a given element

(10)

Mass spectrometry

Measurement of the mass/charge ratio of ionized molecules

Major steps of the measurement:

1) Ionization and extraction of the sampling gas

2) Separation of charged molecules as a function of the m/q ratio:

- Increasing the velocity (v) in an electric potential (U) - Separating in a magnetic field (B)

3) Collection of the charged molecules and creation of an electric current which is amplified then converted into high voltage

Introduction: Mass Spectrometry

(11)

11

Sample introduction: nebulisation

(12)

Cyclonic chamber Scott chamber

Nebulisation/Spray chambers

(13)

• Nebulizer reproducibility is essential: flow and size distribution of droplets. Ultrasonic nebulizer is not dependent on pneumatic variations nor turbulances: it will ensure the best reproducibility.

• Nebulization variability will induce analytical variability.

The internal standard method is the best method to correct this bias as the element added is measured exactly simultaneously to the analyte.

13

Nebulisation efficiency

(14)

• Induced current (ICP) or microwave (MW).

• Coupling Plasma-Generator with a spire from 2 to 4 rolls.

• High frequencey (MHz), high power (kW).

• Plasma (ionized gas) from 6000K to 12000K.

Warming system: the plasma torch

(15)

15

Warming system: the plasma torch

(16)

Warming system: the plasma torch

(17)

Inductively Coupled Plasma

= ion source

Mass Spectrometry

= detection

17

ICP-MS

(18)

• Ar, Ar + , e - , atoms and ions.

• If T increases, ionization increases

• Saha law:

Oxyde rate: M

+

+ O = MO

+

Nebulization

Position of the flame

ICP-MS: Plasma Chemistry

(19)

19

ICP-MS – The Interface: Extraction

(20)

ICP-MS: Separation between ions and neutrals/photons

1/ Quadrupole ion deflector (Perkin)

(21)

21

ICP-MS: Separation between ions and neutrals/photons

2/ Ion transfer optics (Thermo)

(22)

Tiges métalliques Détecteur

Tension AC + DC Faisceau ionique

issue de la source

m/z

ICP-MS: Mass Filter

1/ Quadrupolar (Q-ICP-MS)

(23)

23

ICP-MS: Mass Filter

2/ Magnetic sector field (HR-ICP-MS)

(24)

ICP-MS: detection system

1/ Discrete Dynode Detector

(25)

ICP-MS: detection system

2/ Faraday cup

(26)

ICP-MS: Global Scheme

1/ The Nexion Triple-Q-ICP-MS (Perkin)

(27)

27

ICP-MS: Global Scheme

2/ The X-Series Q-ICP-MS (Agilent)

(28)

ICP-MS: Global Scheme

3/ The Element II HR-ICP-MS (Thermo)

(29)

ICP-MS: Global Scheme

4/ The Neptune Multi-Collector-ICP-MS (Thermo)

(30)

2) Separation of charged molecules as a function of the m/q ratio:

- Increasing the velocity (v)

- Separating in a magnetic field (B)

3) Collection of the charged molecules and creation of an electric current which

ICP-MS: Global Scheme

(31)

ICP-MS: Global Scheme

(32)

General scheme of the Nier’s mass spectrometer

ICP-MS: Global Scheme

(33)

33

(34)

TIMS : Thermal Ionization Mass Spectrometry

(35)

MC-ICP-MS: Multi-Collector Inductively Coupled Plasma Mass Spectrometry

(36)

Interférences isobariques,

polyatomiques

(37)

The atomic core is composed by 2 types of particles: protons and neutrons, also

called nucleons

A X

Z

Z = nb of protons in the core N = nb of neutrons in the core

Z is also equal to the nb of electrons (except for ions) since neutrons are not charged

A = atomic mass nb = N + Z

Reminds: the internal structure of atoms

(38)

1 uma = 12 10

-3

kg / 12. Na = 1,66055 10

-27

kg Na = Avogadro nb = 6,022098 10

23

atoms

1 proton = 1.00727647 uma 1 neutron = 1.008665 uma

Same value for Z (protons) not for A Two isotopes have different neutrons

Definition:

1 mole of

12

C atoms = 12.00000000…g Atomic mass of C :

Reminds: Isotopes

(39)

Reminds: Which isotopes (elements) are analyzed by ICP-MS?

39

(40)

Z (atomic nb) = nbof protons

Phosphorus isotopes

12 C

127N 137N

13 C

11 C

Reminds: the nuclides table

(41)

First step: Chemical preparation of samples

CRUSHING < 60 µm EVAPORATION

AQUEOUS SOLUTION  ACID DIGESTION in a clean room

Isolation of the target element (Sr, Zn…)  CHEMICAL SEPARATION in a clean room

ISOTOPIC COMPOSITION measurement by mass spectrometry

SAMPLING

(42)

0 5 10 15 20 25 30

142 143 144 145 146 147 148 149 150 151 152 153 154

masses

Abundance(%)

Samarium (Sm) Néodyme (Nd)

Why do we need to purify the element?

Isobars may disturb the measurement of 143Nd/144Nd!

(43)

The Rubidium – Strontium couple

0 10 20 30 40 50 60 70 80 90

84Sr 86Sr 87Sr 88Sr

Sr isotopes

%

0,56%

9,86% 7,00%

82,58%

Natural abundances (%)

0 10 20 30 40 50 60 70 80

85Rb 87Rb

Isotopes du Rb

%

72,165%

27,835%

Natural abundances (%)

Isobaric interferences

(44)

Polyatomic interferences

(45)

Work in a clean room

Chemical separation

Cationic exchange resin:

This reaction is associated to a value “K” which is resin, acid and ion dependent.

M++ H-R  M-R + H+

(46)

Elements et isotopes

Isotope Masse (a.m.u.) Abondance (%) Isotope Masse (a.m.u.) Abondance (%)

1H 1.007825 99.985 31P 30.973763 100

2H (D) 2.014102 0.015 32S 31.972072 95.02

12C 12.000000 98.90 33S 32.971459 0.75

13C 13.003355 1.10 34S 33.967868 4.21

14N 14.003074 99.634 36S 35.967079 0.02

15N 15.000109 0.366 35Cl 34.968853 75.77

16O 15.994915 99.762 37Cl 36.965903 24.23

17O 16.999131 0.038 79Br 78.918336 50.69

18O 17.999159 0.200 81Br 80.916290 49.31

19F 18.998403 100 127I 126.904477 100

Masse

16

O proche masse de

32

S ou

32

S

2+

comme

16

O

+

(47)

Interférences polyatomiques

• Plasma: O, H, Cl, C, Ar, O + , Ar + , Cl + , C + ,

…..

• Formation de tous les ions bi moléculaires possibles, quelques tri.

– Ar: 40, 36, 38 – O: 16, 18, 17 – C: 12, 13

– N: 14, 15

• ArC + , ArO + , ArO 2 + , ….

47

(48)

Interférences courantes

(49)

49

(50)
(51)

Calcul de la résolution nécessaire ?

51

Isotope Ion interférant Résolution

56

Fe

40

Ar

16

0 2500

75

As

40

Ar

35

Cl 7800

80

Se

40

Ar

40

Ar 9700

40

Ca

40

Ar 193000

(52)

Exemples d'interférences

Isotope Ion interférant Résolution

56

Fe

40

Ar

16

0 2500

75

As

40

Ar

35

Cl 7800

80

Se

40

Ar

40

Ar 9700

40

Ca

40

Ar 193000

(53)

Interférences isobariques

53

(54)

Interférences isobariques

Exercice : Si 10^6 coups/ppb quel que soit l’élément

(55)

55

(56)
(57)

57

(58)
(59)

59

(60)
(61)

61

(62)
(63)

63

(64)

Q Resolution M/M = 300

(65)

65

(66)
(67)

67

(68)
(69)

69

(70)
(71)

71

(72)
(73)

73

(74)
(75)

75

(76)
(77)

77

(78)
(79)

79

(80)
(81)

81

(82)

Exemples de prix (Perkin)

(83)

83

Références

Documents relatifs

filling has also been applied to a broad range of distributed network paradigms; see e.g., [14] for an application to cognitive radio OFDM networks... Algorithm [source]

degenerating which influence the family. ﺔﻣﺪﻘﻣ : ﻪﺑ ﺰﻴﳝ نأ عﺎﻄﺘﺳا يﺬﻟا اﺬﻫ ، ﻞﻘﻌﻠﻟ ﻪﻛﻼﺘﻣا ةﺰﻴﲟ ﺔﻴﳊا تﺎﻗﻮﻠﺨﳌا ﻊﻴﲨ ﻦﻋ نﺎﺴﻧﻹا ﺰﻴﲤ ﺪﻘﻟ ﺎﻬﺒﻨﺘﺟﺎﻓ ﻩﺮﻀﺗ

COMPARISON OF SECONDARY ION MASS SPECTROMETRY (SIMS) WITH ELECTRON MICROPROBE ANALYSIS (EPMA) AND OTHER THIN FILM ANALYTICAL

Identifiez chaque

Model peak correction shown for glutamate using MetaboliteDetector—(a) Gas chromatographic peak and respective mass spectrum of the glutamate MSTFA derivative (Glutamate_3TMS);

Des limites de couche très nettes et brutales (pas de changement progressif des faciès), la présence d’une couche de litière enterrée à 60 cm de profondeur (liseré noir sur

Discussion on the optimization and best practices in data processing has been rather limited in the literature, but a variety of methods have been developed to aid

of arboviruses to the Pacific from the Americas is exemplified by the introduction of dengue virus serotype 3 (in 2013) and chikungunya virus (in 2014) to French Polynesia from the